Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Computación y Sistemas
versão On-line ISSN 2007-9737versão impressa ISSN 1405-5546
Resumo
BALALI, Ali; ASADPOUR, Masoud e FAILI, Hesham. A Supervised Method to Predict the Popularity of News Articles. Comp. y Sist. [online]. 2017, vol.21, n.4, pp.703-716. ISSN 2007-9737. https://doi.org/10.13053/cys-21-4-2848.
In this study, we identify the features of an article that encourage people to leave a comment for it. The volume of the received comments for a news article shows its importance. It also indirectly indicates the amount of influence a news article has on the public. Leaving comment on a news article indicates not only the visitor has read the article but also the article has been important to him/her. We propose a machine learning approach to predict the volume of comments using the information that is extracted about the users’ activities on the web pages of news agencies. In order to evaluate the proposed method, several experiments were performed. The results reveal salient improvement in comparison with the baseline methods.
Palavras-chave : Text mining; comments volume; content popularity; user behavior; social media.