SciELO - Scientific Electronic Library Online

 
vol.18 número2Selección de atributos y casos para el clasificador NN a través de conjuntos aproximados y algoritmos inspirados en la naturalezaAprendizaje no supervisado para la desambiguación sintáctica índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Computación y Sistemas

versão On-line ISSN 2007-9737versão impressa ISSN 1405-5546

Resumo

ARELLANO-VERDEJO, Javier; GUZMAN-ARENAS, Adolfo; GODOY-CALDERON, Salvador  e  BARRON FERNANDEZ, Ricardo. Efficiently Finding the Optimum Number of Clusters in a Dataset with a New Hybrid Cellular Evolutionary Algorithm. Comp. y Sist. [online]. 2014, vol.18, n.2, pp.313-327. ISSN 2007-9737.  https://doi.org/10.13053/CyS-18-2-2014-034.

A challenge in hybrid evolutionary algorithms is to employ efficient strategies to cover all the search space, applying local search only in actually promising search areas; on the other hand, clustering algorithms, a fundamental base for data mining procedures and learning techniques, suffer from the lack of efficient methods for determining the optimal number of clusters to be found in an arbitrary dataset. Some existing methods use evolutionary algorithms with cluster validation index as the objective function. In this article, a new cellular evolutionary algorithm based on a hybrid model of global and local heuristic search is proposed for the same task, and extensive experimentation is done with different datasets and indexes.

Palavras-chave : Clustering; cellular genetic algorithm; micro-evolutionary algorithms; particle swarm optimization; optimal number of clusters.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons