SciELO - Scientific Electronic Library Online

 
vol.28 número2Cambio climático y su efecto sobre la distribución de especies arbóreas del bosque mesófilo de montaña de OaxacaEl cambio climático afectará la distribución del búho manchado mexicano (Strix occidentalis lucida Nelson 1903) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Chapingo serie ciencias forestales y del ambiente

versão On-line ISSN 2007-4018versão impressa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.28 no.2 Chapingo Mai./Ago. 2022  Epub 16-Fev-2024

https://doi.org/10.5154/r.rchscfa.2021.04.024 

Scientific articles

Population structure and spatial distribution of oregano (Lippia graveolens H. B. K.) at the Tehuacán-Cuicatlán Biosphere Reserve, Mexico.

Xareni Ramírez-López1 

Carlos Ramírez-Herrera1  * 

Mario V. Velasco-García2 

Víctor M. Cetina-Alcalá1 

1Colegio de Postgraduados, Campus Montecillo. km 36.5 carretera México-Texcoco. C. P. 56230. Montecillo, Texcoco, Estado de México, México.

2Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF). Av. Progreso núm. 5, Santa Catarina. C. P. 04010. Coyoacán, Ciudad de México, México.


Abstract

Introduction:

Oregano (Lippia graveolens H. B. K.) grows in semi-arid ecosystems. There is no information on the population dynamics of this species at the Tehuacán-Cuicatlán Biosphere Reserve (RBTC).

Objective:

To determine the vertical structure and spatial distribution of L. graveolens in five topographic conditions in the RBTC.

Materials and methods:

Ten sampling units were established in five topographic conditions (TC), where six plant height categories were defined. Density and structural variables were measured, from which IVI was obtained and population structure curves were constructed. The spatial distribution pattern was analyzed with the Ripley's transformed function (L (t) ).

Results and discussion:

TC1 showed population curve type IV (low frequency in the first, third and fourth height categories, high in the second and fifth categories, and low in the rest) with lower density (100 plants∙ha-1; 1.6 %) in category 6 (>251 cm), and higher density (1 840 plants∙ha-1; 29 %) in category 4 (151 a 200 cm). For TC2 to TC5, the curve was V-type (low frequency in the first category, gradual increase up to the intermediate category, and gradual decrease in the rest) with lower density (20 plants∙ha-1; 0.4 %) in category 6, and higher density (2 320 plants∙ha-1; 51 %) in category 4 which also had the highest IVI (92.8 to 126.1). Spatial distribution was aggregated in TC1 to TC4 and randomized in TC5.

Conclusions:

Topographic conditions influenced the vertical structure and spatial distribution of oregano.

Keywords: Topographic conditions; topoform; exposure; slope; structural attributes

Resumen

Introducción:

El orégano (Lippia graveolens H. B. K.) crece en ecosistemas semiáridos. Hay nula información sobre la dinámica de poblaciones de esta especie en la Reserva de la Biosfera Tehuacán-Cuicatlán (RBTC).

Objetivo:

Determinar la estructura vertical y distribución espacial de L. graveolens en cinco condiciones topográficas en la RBTC.

Materiales y métodos:

Diez unidades de muestreo se establecieron en cinco condiciones topográficas (CT), donde se definieron seis categorías de altura de las plantas. La densidad y las variables estructurales se midieron, con las cuales se obtuvo el IVI y se construyeron las curvas de estructura poblacional. El patrón de distribución espacial se analizó con la función transformada de Ripley (L (t) ).

Resultados y discusión:

La CT1 mostró curva poblacional tipo IV (frecuencia baja en la primera, tercera y cuarta categoría de altura, alta en la segunda y quinta, y baja en el resto) con densidad más baja (100 plantas∙ha-1; 1.6 %) en la categoría 6 (>251 cm), y densidad mayor (1 840 plantas∙ha-1; 29 %) en la categoría 4 (151 a 200 cm). En la CT2 a CT5, la curva fue tipo V (frecuencia baja en la primera categoría, aumento gradual hasta la categoría intermedia y disminución gradual en el resto) con densidad más baja (20 plantas∙ha-1; 0.4 %) en la categoría 6, y densidad mayor (2 320 plantas∙ha-1; 51 %) en la categoría 4 que tuvo también el IVI más alto (92.8 a 126.1). La distribución espacial fue agregada en la CT1 a CT4 y aleatoria en la CT5.

Conclusiones:

Las condiciones topográficas influyeron en la estructura vertical y distribución espacial de orégano.

Palabras clave: condición topográfica; topoforma; exposición; pendiente; atributos estructurales

Highlights:

  • Topographic conditions influence the vertical and spatial structure of Lippia graveolens.

  • Basal diameter and height were higher on slopes than on plains and ravines.

  • The number of branches and basal area were higher on the southeast exposure and on steep slopes

  • The spatial distribution of oregano is clustered and sometimes random.

Introduction

Oregano (Lippia graveolens H. B. K.) is an aromatic plant used as a condiment and for medicinal use (García-Pérez, Castro-Álvarez, Gutiérrez-Uribe, & García-Lara, 2012). Oregano oil is used in the production of soaps, perfume, cosmetics and flavorings (Koksal, Gunes, Orkan, & Ozden, 2010). This species grows in 24 states of Mexico under climates with precipitation between 300 and 400 mm per year (Soto, González, & Sánchez, 2007). Oregano has threatened wild populations, due to overgrazing and overharvesting of plants for commercialization (Osorno-Sánchez, Flores-Jaramillo, Hernández-Sandoval, & Lindig-Cisneros, 2009; Osorno-Sánchez, Torres, & Lindig-Cisneros, 2012).

The structure of a population is the result of the action of biotic agents such as dispersers, predators and competitors; abiotic agents such as climate, soil, relief and geology to which members are subject (Letcher et al., 2012); and human-induced disturbances such as vegetation use and grazing (Ayerde-Lozada & López-Mata, 2006).

The structure of a population can be characterized with the vertical ordering of strata per height category, and horizontal ordering with the use of spatial distribution indices (Zarco-Espinosa, Valdez-Hernández, Ángeles-Pérez, & Castillo-Acosta, 2010). The spatial distribution pattern of a species is useful for understanding ecological processes such as competition, symbiosis, and dispersal (Law et al., 2009). The distance between individuals can reflect processes of seed dispersal, competition and predation, along with the result of environmental constraints, which will define the spatial structure of the population (Gómez, 2008).

Information on the current status of L. graveolens populations in the Tehuacán Cuicatlán Biosphere Reserve is scarce. In this context, the objective of the present study was to determine the vertical structure and spatial distribution of L. graveolens under different topographic conditions. The hypothesis proposes that the vertical structure and spatial distribution are different between topographic conditions, because exposure and slope modify the microclimatic context as found in the species Carnegiea gigantea (Engelm.) Britton & Rose and Neobuxbaumia tetetzo (F. A. C. Weber ex K. Schum.) Backeb (López-Gómez, Zedillo-Avelleyra, Anaya-Hong, González-Lozada, & Cano-Santana, 2012).

Materials and Methods

Study area and sampling

The study was carried out in the ejido Santa María Coapan, Tehuacán, Puebla, located at the Tehuacán-Cuicatlán Biosphere Reserve (RBTC), between the geographical coordinates 18° 23´ 26.85´´ - 18° 23´ 0.31´´ N and 97° 23´14.93´´- 97° 22´17.53´´ W (Figure 1), at an average altitude of 1 465 m.

Figure 1 Location of the study area of Lippia graveolens, topographic conditions and sampling units at the Tehuacán-Cuicatlán Biosphere Reserve (RBTC), Mexico. 

Five topographic conditions were identified based on topoform, exposure and slope of the soil (Figure 1; Table 1). Exposure was obtained with the 1:50 000 scale digital elevation model (Instituto Nacional de Estadística y Geografía [INEGI], 2013), using "aspect" from ArcGis V.10.5 software (Environmental Systems Research Institute [ESRI], 2016) as a geoprocessing tool. Slope was measured with a Suunto clinometer. Oregano plant variables were measured under a targeted systematic sampling design, where two contiguous 250 m2 (10 x 25 m) sampling units were located at each topographic condition.

Table 1 Characterization of five topographic conditions (TC) of Lippia graveolens populations at the Tehuacán-Cuicatlán Biosphere Reserve, Mexico. 

Topographic conditions Topoform Exposure Slope (%)
TC1 Plain Zenith 0
TC2 Ravine East 15
TC3 Hillslope East 8
TC4 Hillslope North 31
TC5 Hillslope Southeast 65

Population structure

L. graveolens plants were enumerated and located on the Cartesian plane (X, Y) of the sampling units. Height (cm), basal diameter (mm) of each stem and number of stems of each plant were recorded in September 2019. The number of plants counted in the sampling units was extrapolated to estimate plant density∙ha-1. Six plant height categories of L. graveolens were defined based on the sampling carried out: 1 = 0 to 50 cm, 2 = 51 to 100 cm, 3 = 101 to 150 cm, 4 = 151 to 200 cm, 5 = 201 to 250 cm and 6 = >251 cm. For each topographic condition, population structure curves were constructed with the percentage of plants in the height categories and compared to each other with the Ӽ2 test. Moreover, curves were classified according to typical structural types (Bongers, Popma, Meave-del Castillo, & Carabias, 1988; Martínez-Ramos, & Álvarez-Builla, 1995; Peters, 1994; Velasco-García, Valdez-Hernández, Ramírez-Herrera, & Hernández-Hernández, 2017): type I (Bongers = Peters' type I) has high frequency of individuals in the first or second diameter class and gradual decrease in higher classes; type II (Bongers = Peters' type II = Martínez-Ramos' type III) has high frequency of individuals in the first diameter class, second or third class poorly represented, increased frequency in intermediate classes, and decrease in higher classes; type IIb (Velasco-García) has low proportion of the first category, decrease in the next two categories, increase and high proportion of intermediate categories and drastic decrease in the rest of the higher categories; type III (Bongers = type I of Martínez-Ramos) has 50 % or more individuals in the first diameter class and very low and uniform frequency in the following classes; type IV (Velasco-García) with low frequency in the first category, high frequency in the second category, very low frequency in the third and fourth categories, high frequency in the fifth category and low frequency with gradual decrease in the rest of the categories.

The importance value index (IVI = relative density + relative dominance + relative frequency) (Ajayi & Obi, 2016) was calculated treating height categories as distinct elements in each topographic condition (Velasco-García et al., 2016).

The assumption of normality of structural attributes was examined with the Shapiro-Wilks test. Height and importance value index met the assumption of normality; therefore, analysis of variance (ANOVA) and Tukey's mean comparisons (P ≤ 0.05) were performed. Basal diameter, number of stems and basal area did not meet the assumption of normality, so nonparametric tests of variance and Kruskal-Wallis multiple comparisons (P ≤ 0.05) were performed. All analyses were carried out using the statistical program InfoStat version 2019 (Di Rienzo et al., 2019), with the model Yij = µ + Ci + εij; where, Y ij is the observation value, μ is the effect of the overall mean, C i is effect of the i-th topographic condition and ɛ ij is the effect of the experimental error.

Spatial distribution pattern

For the analysis of spatial distribution, the two contiguous sampling units in each topographic condition were used as a single sampling unit (20 x 25 m = 500 m2). Perpendicular distances between the sampling unit boundaries (width and length) and between each of the plants were measured to locate them on a Cartesian plane. The spatial distribution pattern of L. graveolens plants was determined with the Ripley's transformed function (K (t) ): L(t)=K(t)π-t2; where, t is the distance between plants (Besag, 1977; Ripley, 1977). The significance of the L (t) function was analyzed with Monte Carlo simulations using the TOOLBOX program (Fisher, 2000).

Results and Discussion

Population structure

Based on Table 2, the structural attributes of L. graveolens showed significant differences (P < 0.05) among topographic conditions (TC). TC3 had the plants with the highest height and basal diameter, and TC5 also had the plants with the highest height. In contrast, TC2 and TC1 had the lowest values for both variables. The average plant height was 32 % higher in TC5 compared to TC2 and the basal diameter was 21 % higher in TC3 compared to TC2.

Table 2 Structural attributes of Lippia graveolens under five topographic conditions at the Tehuacán-Cuicatlán Biosphere Reserve, Mexico. 

Topographic conditions Height (cm) Basal diameter (mm) Number of stems Basal area (cm2)
TC1 136.8 bc 10.4 c 3.2 c 4.0 c
TC2 125.3 c 10.0 c 3.6 bc 3.9 c
TC3 165.1 a 12.1 a 3.5 b 5.4 ab
TC4 151.4 ab 11.6 ab 3.4 bc 4.9 b
TC5 165.6 a 11.9 b 4.3 a 7.3 a
Mean 148.8 11.2 3.5 5

Mean values of height with different letters are significantly different according to the Tukey's test (P < 0.05). Mean values of basal diameter, number of stems and basal area with different letters are significantly different among topographic conditions according to the Kruskal-Wallis test (P < 0.05). TC features are shown in Table 1.

Topoform, exposure and slope may be the cause of differences in height and basal diameter of L. graveolens. In general, plain and gully topoforms had plants with lower plant diameter and height compared to hillslopes. It has been reported that arid ecosystem sites with northern exposure have higher moisture and lower temperature and evapotranspiration, which favors plant growth (Bochet, García-Fayos, & Poesen, 2009). Moreover, Carrasco-Ríos (2009) and Raffo (2014) indicate that plants develop better in the southern and eastern exposures, because they receive more solar radiation compared to the northern exposure slopes. In agreement with the aforementioned, although TC3 and TC2 had the same exposure (east), TC3 had plants with higher height and basal diameter, due to the lower slope (8 %) of the terrain. On the other hand, TC4, despite the high slope (31 %), also had higher plant height due to its location on the northern exposure. In contrast, topographic condition 5, even though it was located on the southeast exposure and on a steeper slope, had taller plants, possibly because most of them were adults. Oregano generally grows in very shallow soils with low amounts of organic matter and steep slopes (González, 2012; Granados-Sánchez, Martínez-Salvador, López-Ríos, Borja-De la Rosa, & Rodríguez-Yam, 2013); however, besides exposure and slope, there are other environmental factors such as climate, water, and geology that can affect plant growth (Niua et al., 2014).

In the present study, the average height of L. graveolens (148.8 cm) was higher than in semidesert plants in Querétaro (69.9 cm; Osorno-Sánchez et al., 2012) and the Comarca Lagunera (94.8 cm; Flores et al., 2011). This difference may be due to the level of disturbance in these regions. In the wild populations of Querétaro, Coahuila, Durango, and Chihuahua, L. graveolens plants are cut at early ages to sell the foliage as a condiment in the local and national market (Granados-Sánchez et al., 2013; Orona, Salvador, Espinoza, & Vázquez, 2017). Taller plants can have a high foliage quantity, so these are cut and smaller plants are left behind. This causes changes in plant size structures in populations where this species is collected (Flores et al., 2011; Osorno-Sánchez et al., 2012). Also, livestock grazing can influence plant size due to browsing. In contrast, disturbance from harvesting and grazing is minimal for L. graveolens populations in the RBTC, which causes plants to reach the maximum growth allowed by the environment. The populations of this species in the reserve are not subject to harvesting based on a management program, as is the case with populations in northern Mexico. Furthermore, the environmental conditions are different in the state of Puebla, compared to those of other states where L. graveolens grows; for example, annual precipitation is 437 mm and mean annual temperature is 20.5 °C in the RBTC (Rehfeldt, 2006), while in ecosystems of the states of Guanajuato, Querétaro, Coahuila, Durango and Chihuahua, mean annual precipitation is reported between 125 to 400 mm and mean annual temperatures between 15 to 21 °C (Granados-Sánchez, Sánchez-González, Granados, & Borja, 2011; Ocampo-Velázquez, Malda-Barrera, & Suárez-Ramos, 2009).

TC5 had significant differences (P ≤ 0.05) compared to the other conditions in the number of stems and basal area, which were 34 % and 87 % higher, respectively, than the values of TC1, TC2 and TC4. This occurred possibly because the slope is steeper and the exposure is southeast in TC5; in addition, it has more open space. The above suggests that steep slopes and southeast exposure positively influence the number of oregano stems and basal area.

The orientation of the slopes modifies the microclimatic conditions and influences the architecture of the plant; for example, N. tetetzo had a higher number of branches in the northern exposure (López-Gómez et al., 2012). As a result, wind can cause damage to the main stem of oregano seedlings, promoting a higher number of stems and, consequently, a larger basal area. In addition, plants may emit a higher number of stems when grown in populations with lower densities (Salomón-Montijo, Reyes-Olivas, & Sánchez-Soto, 2016).

The average number of stems (3.5) of oregano in this study was lower than in oregano populations in Coahuila and Durango (8.7; Flores et al., 2011). This may be a consequence of use of foliage in those states (Orona et al., 2017), where pruning promotes shoot emergence (Granados-Sánchez et al., 2013; Osorno-Sánchez et al., 2009). Based on the above, use of foliage in L. graveolens plants can generate a higher number of stems.

According to Table 3, density ranged between 1 820 and 6 240 plants∙ha-1 in TC2 and TC1, respectively. Density, without considering topographic conditions, was higher (4 044 plants∙ha-1) than densities in oregano populations in Querétaro (3 891 and 2 450 plants∙ha-1; Osorno-Sánchez et al., 2009, 2012) and in Tamaulipas (905 plants∙ha-1; Sánchez-Ramos, Quezada, Lara-Villalón, Medina-Martínez, & Pérez-Quilantán, 2011). Differences may be due to the lack of harvesting and low disturbance in the study population, because there is no management program and people do not illegally harvest the species, because as the extraction of L. graveolens plants increases, density decreases as a consequence of altered mortality and selection rates (Osorno-Sánchez et al., 2009, 2012). Also, the slope may influence plant density due to the dragging of seeds from the upper parts (steep slopes) to areas with lower slope, which allows a higher plant abundance in these areas (Grasty, Thompson, Hendrickson, Pheil, & Cruzan, 2020).

Table 3 Density of Lippia graveolens in five topographic conditions (TC) per altitude categories at the Tehuacán-Cuicatlán Biosphere Reserve, Mexico. 

Height category Density (plants∙ha-1)
TC1 TC2 TC3 TC4 TC5
1 (1-50 cm) 760 120 40 80 20
2 (51-100 cm) 1 340 460 380 460 300
3 (101-150 cm) 1 080 680 1 000 1 700 800
4 (151-200 cm) 1 840 480 2 320 2 200 980
5 (201-250 cm) 1 120 40 720 340 660
6 (>251 cm) 100 40 60 20 80
Total 6 240 1 820 4 520 4 800 2 840

The description of TC is shown in Table 1.

The highest number of oregano plants was recorded in height category 4 (201-250 cm) in all topographic conditions except for TC2. The lowest plant density was found in category 1 (1-50 cm) of TC5 and in category 6 (>251 cm) of TC4 (Table 3). TC1 had the highest number of plants in category 1 compared to the other topographic conditions for this category. The presence of a higher number of small plants in TC1 may be due to the flat terrain, which contains a higher concentration of nutrients in the soil than the higher parts, favoring the regeneration of oregano plants (López-Acevedo et al., 2004). The results showed a low number of plants in the lower and higher height categories. This may reflect that new oregano plants are selected only in years with favorable environmental conditions (Osorno-Sánchez et al., 2012).

Population structures of L. graveolens were different (P < 0.05) among the five topographic conditions. Type IV curve (Velasco-García et al., 2017) was found in TC1 (Figure 2). This curve type had a low percentage of plants (<20 %) in height categories 1, 3, 5 and 6, and slightly higher (20 to 30 %) in categories 2 and 4. The above may be due to biotic and abiotic constraints for fruit and seed production (Velasco-García et al., 2017), so there is discontinuous selection in larger height categories. Fruit production of L. graveolens depends on pollinators of the genus Melipona (Ocampo-Velázquez et al., 2009); the temporary absence of these can disrupt seed regeneration (Ocampo-Velázquez et al., 2009); moreover, fruit production of L. graveolens only occurs in 11.4 % of the total flowers (Ocampo-Velázquez et al., 2009).

TC2 to TC5 had population structure different from typical population structure curves (Bongers et al., 1995; Martínez-Ramos & Álvarez-Builla, 1995; Peters, 1994; Velasco-García et al., 2017), which was called V-type curve (Figure 2). This type of curve was characterized by a very low percentage in height category 1, gradual increase in the following categories up to high percentage in the intermediate category and gradual decrease in higher categories up to very low percentage in the last category. A similar population structure curve was reported for populations of Dioon holmgrenii De Luca, Sabato & Vazquez Torres disturbed by grazing (Velasco-García et al., 2016). The V-type population structure in L. graveolens may be due to factors limiting regeneration such as low seed germination percentage, due to extreme environmental conditions (temperature and moisture) in arid areas that may influence selection of new individuals (Martínez, Blando, Morales, & Gómez, 2013; Martínez-Hernández, Villa-Castorena, Catalán-Valencia, & Inzunza-Ibarra, 2017). Increasing harvest rate causes changes in the population structure curve of L. graveolens, from type I curve (Bongers et al., 1988) in areas with low harvest, going through type II curve (Martínez-Ramos & Álvarez-Builla, 1995), to type V curve in areas with high harvest rate (Osorno-Sánchez et al., 2009, 2012). In the present study, despite the absence of oregano harvesting and differences in exposure and slope, the type V population structure curve seems to be common in this species; however, the flat soil and zenithal exposure did not favor oregano selection, which generated the type IV curve.

Figure 2 Population structure curves per height categories (1 = 1-50 cm, 2 = 51-100 cm, 3 = 101-150 cm, 4 = 151-200, 5 = 201-250 cm, 6 > 251 cm) of Lippia graveolens in the five topographic conditions (TC) at the Tehuacán-Cuicatlán Biosphere Reserve, Mexico. 

IVI was different (P < 0.05) among height categories in each of the topographic conditions. According to Table 4, the highest IVI was found in height category 4 (151-200 cm) in all TC, while height category 1 (seedling) had low values. These results are consistent with the average density of the height categories and population structure curves, which also showed the null extraction of reproductive oregano plants in this zone; however, natural regeneration is deficient, due to multiple biotic and abiotic factors that require more detailed studies.

Table 4 Importance value index (IVI) per height category of Lippia graveolens in five topographic conditions (TC) at the Tehuacán-Cuicatlán Biosphere Reserve, Mexico. 

Height categories Importance value index
TC1 TC2 TC3 TC4 TC5
1 (1-50 cm) 27.4 b 12.7 b 9.7 c 11.5 b 8.9 c
2 (51-100 cm) 40.5 b 56.1 ab 31.7 bc 33.2 b 31.6 bc
3 (101-150 cm) 42.3 b 100.7 ab 53.4 bc 85.8 a 60.3 ab
4 (151-200 cm) 92.8 a 103.7 a 126.1 a 118.2 a 95.9 a
5 (201-250 cm) 71.4 ab 15.3 ab 65.7 b 40.0 b 73.5 ab
6 (>251 cm) 25.6 b 11.5 b 13.5 c 11.3 b 29.8 bc
Total 300 300 300 300 300

Mean values of IVI with different letters are significantly different between height categories according to Tukey's test (P < 0.05) for each TC. Description of the TC is shown in Table 1.

Spatial distribution

Figure 3 indicates that the distribution pattern of L. graveolens plants was aggregated (P ≤ 0.01) for TC1 to TC4. Maximum clustering occurred at t distances of 4.8 m (L (t) = 0.93) in TC1, 4.4 m (L (t) = 1.74) in TC2, at 3.6 m (L (t) = 0.84) in TC3, and at 8.8 m (L (t) = 1.35) in TC4. The spatial distribution of plants was both random and aggregated for TC5 (P ≤ 0.01). The aggregated spatial distribution of L. graveolens is influenced by the slope; TC1 to TC4 had lower percentages of slope compared to TC5 (65 %). The aggregate distribution pattern of plants may be associated with topography (Linzaga-Román, Ángeles-Pérez, Catalán-Heverástico, & Hernández-De la Rosa, 2011) and may indicate interactions among individuals and between individuals with the environment (Linzaga-Román et al., 2011; Ruiz-Aquino, Valdez-Hernández, Romero-Manzanares, Manzano-Méndez, & Fuentes-López, 2015). Limitations in terms of seed dispersal distance can lead to an aggregate distribution pattern (Lara-Romero, de la Cruz, Escribano-Ávila, García-Fernández, & Iriondo, 2016) around the mother plant. This occurs in L. graveolens, when the fruits ripen, the seeds are expelled and fall to the ground near the plant (Martínez et al., 2013, 2017).

The random spatial distribution in TC5 (Figure 3) is due to the steeper slope that may influence the distribution and germination of seeds in the soil, which are commonly dispersed by the wind (Martínez et al., 2013). Mortality of seeds or seedlings of some species is likely to cause greater distances between survivors, reflecting a less clumped pattern (Vallejo & Galeano, 2009). Random spatial distribution contributes to multifunctionality related to nutrient cycling in a plant community (Maestre, Castillo-Monroy, Bowker, & Ochoa-Hueso, 2012).

Figure 3 Spatial distribution of Lippia graveolens (points) and Ripley's L (t) index (lines) in five topographic conditions at the Tehuacán-Cuicatlán Biosphere Reserve, Mexico. 

Conclusions

Soil topographic conditions influenced the vertical structure and spatial distribution of Lippia graveolens. The slope condition positively influenced plant diameter and height. Southeast exposure and steep slopes positively affected branch number and basal area. Also, a low number of new shoots and few senescent individuals were found, indicating little regeneration and that the population may decrease. The type V population structure curve (low frequency in the first category, gradual increase up to the intermediate category and gradual decrease in the rest) was common; however, the flat condition and zenithal exposure were not favorable for the selection of L. graveolens, generating the type IV curve (low frequency in the first, third and fourth height categories, high in the second and fifth, and low in the rest). The spatial distribution of oregano was commonly clustered, but the high slope of the ground also caused the random distribution.

Acknowledgments

The first author thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship received during her master's studies and development of the present research. The authors also thank the Colegio de Postgraduados for funding the present research through the triple A budget.

References

Ajayi, S., & Obi, L. (2016). Tree species composition, structure, and importance value index (IVI) of Okwangwo División, Cross River National Park, Nigeria. International Journal of Science and Research, 5(12), 85‒93. doi: 10.21275/ART20162455 [ Links ]

Ayerde-Lozada, D., & López-Mata, L. (2006). Estructura poblacional y parámetros demográficos de Juniperus flaccida Schltdl. Madera y Bosques, 12(2), 65‒76. Retrieved from https://www.redalyc.org/articulo.oa?id=617/61712206Links ]

Besag, J. (1977). Contribution to the discussion on Dr Ripley’s paper. Journal of the Royal Society B (Methodological), 39(2),193‒195. doi: 10.1111/j.2517-6161.1977.tb01616.x [ Links ]

Bochet, E., García-Fayos, P., & Poesen, J. (2009). Topographic thresholds for plant colonization on semi-arid eroded slopes. Earth Surface Processes & Landforms, 34(13), 1758‒1771. doi: 10.1002/esp.1860 [ Links ]

Bongers, F., Popma, J., Meave-del Castillo, J., & Carabias, J. (1988). Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio, 74, 55‒80. doi: 10.1007/BF00045614 [ Links ]

Carrasco-Ríos, L. (2009). Efecto de la radiación ultravioleta-b en plantas. IDESIA (Chile), 27(3), 59‒76. doi: 10.4067/S0718-34292009000300009 [ Links ]

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2019). InfoStat versión 2019. Argentina: Universidad Nacional de Córdoba. Retrieved from http://www.infostat.com.arLinks ]

Environmental Systems Research Institute (ESRI). (2016). ArcGIS Desktop: Release 10. Redlans, CA, USA: Author. [ Links ]

Fisher, M. (2000). Software available for sophisticated spatial statistics. Fiji: University of the South Pacific. [ Links ]

Flores, H., Hernández, H. J. A., López, M. J. I., Valenzuela, N. L. M., Martínez, S. M., & Madinaveitia, R. H. (2011). Producción y extracción de aceite de orégano (Lippia graveolens Kunth) bajo cultivo en la comarca lagunera. Revista Mexicana de Ciencias Forestales, 2(3), 113‒120. Retrieved from https://www.redalyc.org/articulo.oa?id=63438956009Links ]

García-Pérez, E., Castro-Álvarez, F. F., Gutiérrez-Uribe, J. A., & García-Lara, S. (2012). Revisión de la producción, composición fitoquímica y propiedades nutracéuticas del orégano mexicano. Revista Mexicana de Ciencias Agrícolas, 3(2), 339‒353. Retrieved from http://www.redalyc.org/articulo.oa?id=263123201010Links ]

Gómez, A. L. (2008). Spatial patterns of recruitment in Mediterranean plant species: linking the fate of seeds, seedlings and saplings in heterogeneous landscapes at different scales. Journal of Ecology, 96(6), 1128‒1140. doi: 10.1111/j.1365-2745.2008.01431.x [ Links ]

González, M. F. (2012). Las zonas áridas y semiáridas de México y su vegetación (1.a ed.). México: SEMARNAT. [ Links ]

Granados-Sánchez, D., Sánchez-González, A., Granados, V. R. L., & Borja-De la Rosa, A. (2011). Ecología de la vegetación del desierto chihuahuense. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(1), 111‒130. doi: 10.5154/r.rchscfa.2010.10.102 [ Links ]

Granados-Sánchez, D., Martínez-Salvador, M., López-Ríos, G. F., Borja-De la Rosa, A., & Rodríguez-Yam, G. A. (2013). Ecología, aprovechamiento y comercialización del orégano (Lippia graveolens H. B. K.) en Mapimí, Durango. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(2), 305‒321. doi: 10.5154/r.rchscfa.2012.05.035 [ Links ]

Grasty, M. R., Thompson, P. G., Hendrickson, E. C., Pheil, A. E., & Cruzan, M. B. (2020). Fine-scale habitat heterogeneity and vole runways influence seed dispersal in Plagiobothrys nothofulvus. American Journal of Botany, 107(3), 413‒422. doi: 10.1002/ajb2.1433 [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). (2013). Modelo de elevación digital. Conjunto de datos ráster. Escala 1:50000. México: Autor. [ Links ]

Koksal, O., Gunes, E., Orkan, O. O., & Ozden, M. (2010). Analysis of effective factors on information sources at Turkish Oregano farms. African Journal of Agricultural Research, 5(2), 142‒149. doi: 10.5897/AJAR09.598 [ Links ]

Lara-Romero, C., de la Cruz,M., Escribano-Ávila, G., García-Fernández, A., & Iriondo, J. M. (2016). What causes conspecific plant aggregation? Disentangling the role of dispersal, habitat heterogeneity and plant-plant interactions. Oikos, 125(9), 1304-1313. doi: 10.1111/oik.03099 [ Links ]

Letcher, S. G., Chazdon, R. L., Andrade, A. C. S., Bongers, F., van Breugel, M., Finegan, B., …Williamson, B. G. (2012). Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics, 14(2), 79‒87 doi: 10.1016/j.ppees.2011.09.005 [ Links ]

Linzaga-Román, B. E., Ángeles-Pérez, G., Catalán-Heverástico, C., & Hernández-De la Rosa, P. (2011). Estructura espacial de Pachycereus weberi (Coult.) Backeb. en la cañada del zopilote, Guerrero. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(2), 189‒198. doi: 10.5154/r.rchscfa.2010.06.039 [ Links ]

Law, R., Illian Burslem, D. F. R. P., Gratzer, G., Gunatilleke, C. V. S., & Gunatilleke, I. A. U. N. (2009). Ecological information from spatial patterns of plants: insights from point process theory. Journal of Ecology, 97(4), 616‒628. doi: 10.1111/j.1365-2745.2009.01510.x [ Links ]

López-Acevedo, R. M., Poch, C. R. M., & Porta, C. J. (2004). Edafología: Uso y protección de suelos (3.a ed.). Madrid, España: Mundi Prensa. [ Links ]

López-Gómez, V., Zedillo-Avelleyra, P., Anaya-Hong, S., González-Lozada, E., & Cano-Santana, Z. (2012). Efecto de la orientación de la ladera sobre la estructura poblacional y ecomorfología de Neobuxbaumia tetetzo (Cactaceae). Botanical Sciences, 90(4), 453‒457. doi: 10.17129/botsci.473 [ Links ]

Maestre, F. T., Castillo-Monroy, A. P., Bowker, M. A., & Ochoa-Hueso, R. I. (2012). Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology, 100(2), 317-330. doi: 10.1111/j.1365-2745.2011.01918.x [ Links ]

Martínez, S. M., Blando, N. J. L., Morales, N. C., & Gómez, C. M. (2013). Caracterización ecológica y socioeconómica del orégano (Lippia berlandieri Schauer). In S. M. Martín (Ed.), Ecología y usos de especies forestales de interés comercial de las zonas áridas de México (1.a ed., pp. 9-41). México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. [ Links ]

Martínez-Hernández, M., Villa-Castorena, M. M., Catalán-Valencia, E. A., & Inzunza-Ibarra, M. A. (2017). Producción de plántula de orégano (Lippia graveolens Kunth) por semilla en vivero para trasplante. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(1), 61‒73. doi: 10.5154/r.rchscfa.2015.11.051 [ Links ]

Martínez-Ramos, M., & Álvarez-Buylla, E. (1995). Ecología de poblaciones de plantas de una selva húmeda en México. Boletín de la Sociedad Botánica de México, 56, 121‒153. doi: 10.17129/botsci.1469 [ Links ]

Niua, S., Luo, Y., Li, D., Cao, S., Xia, J., Li, J., & Smith, M. D. (2014). Plant growth and mortality under climatic extremes: An overview. Environmental and Experimental Botany, 98(2), 13‒19. doi: 10.1016/j.envexpbot.2013.10.004 [ Links ]

Ocampo-Velázquez, R. V., Malda-Barrera, G. X., & Suárez-Ramos, G. (2009). Biología reproductiva del orégano mexicano (Lippia graveolens Kunth) en tres condiciones de aprovechamiento. Agrociencia, 43(5), 475‒482. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952009000500003&lng=es&tlng=esLinks ]

Orona, C. I., Salvador, A. A. J., Espinoza, A. J. J., & Vázquez, V. C. (2017). Recolección y comercialización del orégano (Lippia spp.) en el semi-desierto mexicano, un caso de estudio: Reserva ecológica municipal sierra y cañón de Jimulco, México. Revista Mexicana de Agronegocios, 41(1), 684‒695. Retrieved from https://www.redalyc.org/articulo.oa?id=141/14153918003Links ]

Osorno-Sánchez, T., Flores-Jaramillo, D., Hernández-Sandoval, L., & Lindig-Cisneros, R. (2009). Manejo y extracción de Lippia graveolens en las tierras áridas de Querétaro, México. Economic Botany, 63(3), 314-318. doi: 10.1007/s12231-009-9087-2 [ Links ]

Osorno-Sánchez, T., Torres, R. A., & Lindig-Cisneros, R. (2012). Effects of harvesting intensity on population structure of Lippia graveolens (Verbenaceae, Lamiales) in the Semidesert of Queretaro, Mexico. African Journal of Agricultural Research, 7(1), 100‒108. doi: 10.5897/AJAR11.1797 [ Links ]

Peters, C. M. (1994). Sustainable harvest of non-timber plant resources in tropical moist forest: An ecological primer. Washington D.C., USA: Biodiversity Support Program. [ Links ]

Raffo, D. (2014). La radiación solar y las plantas: un delicado equilibrio. Revista Fruticultura & Diversificación, 74, 40‒44. Retrieved from https://inta.gob.ar/documentos/la-radiacion-solar-y-las-plantas-un-delicado-equilibrioLinks ]

Rehfeldt ,G. E. (2006). A spline model of climate for the western United States. Gen. Tech. Rep. RMRS-GTR-165. Fort Collins, CO, USA: Department of Agriculture, Forest Service, Rocky Mountain Research Station. doi: 10.2737/RMRS-GTR-165 [ Links ]

Ripley, B. D. (1977). Modelling spatial patterns (with discussion). Journal of the Royal Statistical Society, Series B (Methodological), 39(2), 172-212. Retrieved from https://www.jstor.org/stable/2984796Links ]

Ruiz-Aquino, F., Valdez-Hernández, J. I., Romero-Manzanares, A., Manzano-Méndez, F., & Fuentes-López, M. E. (2015). Spatial distribution of two oak species and ecological attributes of pine-oak woodlands from Ixtlán de Juárez, Oaxaca. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21(1), 67-80. doi: 10.5154/r.rchscfa.2014.05.023 [ Links ]

Sánchez-Ramos, G., Quezada, F. H., Lara-Villalón, M., Medina-Martínez, T., & Pérez-Quilantán, L. M. (2011). Parámetros ambientales y abundancia del orégano mexicano (Lippia graveolens) en el estado de Tamaulipas. CienciaUAT, 6(1), 24‒31. Retrieved from http://www.redalyc.org/articulo.oa?id=441942925008Links ]

Salomón-Montijo, B., Reyes-Olivas, A., & Sánchez-Soto, B. (2016). Fenología reproductiva de Stenocereus thurberi (Cactaceae) en una región de transición del norte de Sinaloa, México. Gayana Botánica, 73(2), 381‒390. doi: 10.4067/S0717-66432016000200381 [ Links ]

Soto, M. A., González, M. F., & Sánchez, O. (2007). Evaluación del riesgo de extinción de Lippia graveolens de acuerdo al numeral 5.7 de la NOM-059-SEMARNAT-2001. In O. Sánchez, R. Medellín, A. Aldama, B. Goettsch, J. Soberón, & M. Tambutti (Eds.), Método de evaluación del riesgo de extinción de las especies silvestres en México (MER) (pp. 93‒96). México: SEMARNAT, INE, Instituto de Ecología de la UNAM, CONABIO. [ Links ]

Vallejo, M. I., & Galeano, G. (2009). Cambios a corto plazo en los patrones de distribución espacial de nueve especies de plantas comunes en un bosque nublado al sur-occidente de Colombia. Caldasia, 31(1), 77‒98. Retrieved from https://revistas.unal.edu.co/index.php/cal/article/view/36073Links ]

Velasco-García, M. V., Valdez-Hernández, J. I, Ramírez-Herrera, C., Hernández-Hernández, M. L., López-Upton, J., López-Mata, L., & López-Sánchez, H. (2016). Estructura, heterogeneidad de estadios y patrón de dispersión espacial de Dioon holmgrenii (Zamiaceae). Botanical Sciences, 94(1), 75‒87. doi: 10.17129/botsci.258 [ Links ]

Velasco-García, M. V., Valdez-Hernández, J. I., Ramírez-Herrera, C., & Hernández-Hernández, M. L. (2017). Atributos dendrométricos, estructura poblacional y diversidad de estadios de Dioon holmgrenii (Cycadales: Zamiaceae). Revista de Biología Tropical, 65(3), 1‒16. Retrieved from https://www.scielo.sa.cr/pdf/rbt/v65n4/0034-7744-rbt-65-04-01609.pdfLinks ]

Zarco-Espinosa, V. M., Valdez-Hernández, J. I., Ángeles-Pérez, G., & Castillo-Acosta, O. (2010). Estructura y diversidad de la vegetación arbórea del parque estatal Agua Blanca, Macuspana, Tabasco. Universidad y Ciencia Trópico Húmedo, 26(1), 1‒17. Retrieved from http://www.scielo.org.mx/pdf/uc/v26n1/v26n1a1.pdfLinks ]

Received: April 21, 2021; Accepted: April 01, 2022

*Corresponding author: kmcramcolpos@gmail.com; tel.: +52 557 378 6568.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License