SciELO - Scientific Electronic Library Online

 
vol.7 número5Optimización económica de N, P, K y densidades de plantación en maíz y frijol intercaladosAceite escencial de Cynnamomum zeylanicum: alternativa de control para Penicillium expansum sobre pera en poscosecha índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ciencias agrícolas

versão impressa ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.7 no.5 Texcoco Jun./Ago. 2016

 

Articles

Morphological diversity of native population’s poblano pepper

Rocío Toledo-Aguilar1 

Higinio López-Sánchez1  § 

Pedro Antonio López1 

Juan de Dios Guerrero-Rodríguez1 

Amalio Santacruz-Varela2 

Arturo Huerta-de la Peña1 

1Colegio de Postgraduados- Campus Puebla. Carretera Federal México-Puebla, km 125.5 Santiago Momoxpan, San Pedro Cholula, Puebla, México. C. P. 72760.

2Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco, km. 36.5. Montecillo, Texcoco, Estado de México, México. C. P. 56230.


Abstract

The genetic diversity in different types of pepper in Mexico has been little studied. The poblano pepper (Capsicum annuum L.) has great culinary importance as an ingredient in traditional dishes from Puebla; also constitutes a source of income for rural families in the region of the Sierra Nevada de Puebla; however, there is no study to determine the morphological diversity of native populations of this type of pepper found in this ecological niche. The aim of this study was to analyze the morphological diversity of native population’s poblano peppers de la Sierra Nevada de Puebla. By using descriptors were analyzed 41 populations of pepper poblano, four of ancho pepper, two of “Loco” pepper, one of “Miahuateco” and hybrid pepper ancho pepper “Doroteo” (Ahern Seeds®). An experimental design was used in three randomized complete block assessment in two locations. In the combined analysis of variance statistically significant difference in 60% of the variables found. With the selection of 30 morphological was performed variables principal component analysis, where populations of pepper poblano formed a group, away from the rest of populations evaluated and the hybrid. The cluster analysis was also performed, in which four subgroups were defined. The native populations that shaped each subgroup were not related to the geographical location of seed collection, suggesting the exchange of germplasm among farmers. In the native populations of pepper poblano morphological diversity found mainly in fruit variables, plant habit and earliness.

Keywords: Capsicum annuum L; characterization; morphological variation; multivariate analysis; native varieties

Resumen

La diversidad genética existente en los diferentes tipos de chile en México ha sido poco estudiada. El chile Poblano (Capsicum annuum L.) tiene gran importancia culinaria por ser ingrediente de platillos tradicionales de Puebla; además, constituye una fuente de ingresos para las familias rurales de la región de la Sierra Nevada de Puebla; sin embargo, no existe ningún estudio que determine la diversidad morfológica de las poblaciones nativas de este tipo de chile encontradas en este nicho ecológico. El objetivo de este estudio fue analizar la diversidad morfológica de poblaciones nativas de chiles poblanos de la Sierra Nevada de Puebla. Mediante el uso de descriptores se analizaron 41 poblaciones de chile Poblano, cuatro de chile Ancho, dos de chile Loco, una de chile Miahuateco y el híbrido de chile Ancho “Doroteo” (Ahern Seeds®). Se utilizó un diseño experimental en bloques completos al azar triple en dos localidades de evaluación. En los análisis de varianza combinados se encontraron diferencias estadísticamente significativas en 60% de las variables. Con la selección de 30 variables morfológicas se realizó un análisis de componentes principales, donde las poblaciones de chile Poblano formaron un grupo, separándose del resto de poblaciones evaluadas y del híbrido. Se realizó también un análisis de conglomerados, en el que se definieron cuatro subgrupos. Las poblaciones nativas que conformaron cada subgrupo no tuvieron relación con el lugar geográfico de colecta de su semilla, lo que sugiere el intercambio de germoplasma entre agricultores. En las poblaciones nativas de chile Poblano se encontró diversidad morfológica principalmente en variables de fruto, porte de la planta y precocidad.

Palabras clave: Capsicum annuum L.; análisis multivariado; caracterización; variación morfológica; variedades nativas

Introduction

Within the genus Capsicum the species C. annuum L. is the most widely distributed and importance in the world due to the different uses that already uses the excellent adaptation presented (Long-Solís, 1986; Pickersgill, 1997; Ulloa, 2006). This species was domesticated in Mexico (Eshbaugh, 1993; Hernández-Verdugo et al., 1999), a country that is considered also as its center of diversity (IBPGR, 1983), so you can find a variety of different native peppers types (Aguilar et al., 2010). An example of this are called "poblano" or "mulatto", whose cultivation in the Sierra Nevada de Puebla is extended significantly. Also, they have great historical, cultural, culinary importance and its cultivation is a source of income for rural families in this region of Puebla (Rodríguez et al., 2007). Despite the importance and the various problems of this crop in Puebla, there is a study to determine the level of morphological diversification of native population’s poblano peppers.

In the available studies on morphological diversity in the genus Capsicum is the by Moreno et al. (2007) with populations of guajillo of Mexico, who found greater variation in length and width characteristics of leaf, petiole length and reproductive traits such as days to flowering and fruiting. In Turkey, Kadri et al. (2009) conducted a study of 48 populations of Capsicum annuum L., where most variation was observed in fruit variables such as weight, diameter and dry matter content. These results represent an area of opportunity to improve agronomic characters of interest, through programs for selection of genotypes to higher yields and better features, depending on the needs and interests of farmers. In this regard, Franco et al. (2005) and Laurentin (2009) mention that the proper conservation and characterization of materials is essential to detect genotypes that can be used in breeding programs.

However, specifically in Puebla poblano or mulatto pepper native populations do not have a record of morphological diversity that can serve as a basis for application programs, conservation and genetic improvement of this plant genetic resource. In addition, it is unknown whether there is any association between the native populations according to the locality in which are planted. This gave pattern to approach this research, the aim was to evaluate the morphological diversity of a set of native populations of pepper poblano in the region of the Sierra Nevada state of Puebla, by characterizing those using morphological descriptors guide of IPGRI (1995).

Materials and methods

Vegetal material

The 41 seeds poblano pepper native populations were collected in 10 municipalities of the Sierra Nevada state of Puebla, Mexico. This area is located west of the state in the area comprised between parallels 19° 02’ and 19° 28’ north latitude and meridians 98° 15’ and 98° 40’ west longitude; three populations of Ancho pepper (A13, A23 and A30) and two Loco pepper in the same region (L43 and L36), a Miahuateco pepper (M48) of the municipality of Santiago Miahuatlán , Puebla and Ancho pepper also collected Fresnillo, Zacatecas (A10); it was also considered the commercial hybrid ancho Doroteo pepper (A49).

Seedling production and localities evaluation

The planting was carried out in styrofoam trays of 200 cavities and as a substrate a mixture of peat moss and forest soil (1:1) was used. Seedling production was conducted in a greenhouse. The towns of evaluation were Chahuac, municipality of Domingo Arenas, Puebla, located 19º 08’ north latitude and 98º 27’ west longitude at an altitude of 2 240 meters and San Lorenzo Chiautzingo, Puebla, located 19º 12’ north latitude and 98º 28’ west longitude, at an altitude of 2 360 meters, both with temperate humid with summer rains (INEGI, 2011). In the first locality he was transplanted to 68 days after sowing (dds) and the second at 77 dds, when the seedlings were 12 cm high and 6 true leaves.

Design and experimental unit

The populations were evaluated in plots of cooperating farmers through an experimental design in randomized complete block design with three replications. The experimental unit consisted of a groove of 4.2 m long and 0.8 m wide, with two floors each 0.35 m.

Variables registered

The five plants were chosen for experimental plot to record 71 morphological and agronomic variables, using the manual descriptors Capsicum (IPGRI, 1995); additionally the variable width (cm) length (cm) and dry fruit weight (g) were measured; fresh fruit yield per hectare and indices of length-width cotyledon leaf, mature leaf, cool and dry fruit was also estimated. Seedling variables were recorded in prior greenhouse transplant and the rest in field grown plants. The five fruits that were measured were obtained from the second crop of five floors full competition.

Statistical analysis

Using SAS program version 9.0 (SAS Institute, 2002), an analysis of variance considering the model completely randomized design for variables seedling stage and combined analysis of variance model design in randomized complete block for the rest held variables; these analyzes allowed to identify the variables with statistically significant differences and then discriminating variables correlated by Pearson correlation analysis. Product of the two previous analyzes were obtained 30 variables that were the basis for the principal component analysis (ACP) and cluster analysis using the method of pairs of groups unweighted arithmetic average (UPGMA, for its acronym). According to the groups formed in the dendrogram of cluster analysis of variance between groups to see if there are statistical differences between them it took place.

Results and discussion

In the combined analysis of variance, 60% of the variables showed statistically significant differences. Similar data were found in pepper water collections in Oaxaca (Martínez-Sánchez et al., 2010), where 66% of the variables showed differences between collections. In the study by Medina et al. (2006) of 94.2% of the variables showed statistically significant differences because of different pepper six species were evaluated. In this paper, fruit variables were those that showed greater variation, with 82.1% of significance; on the contrary, flower variables were those with fewer significant variables, with only 23.5%. This data is an indicator of high morphological diversity in native populations and that is not being exploited or its use is concentrated in a few variables, such as performance.

Results of analysis of variance and Pearson correlation was obtained a decreased to 30 morphological variables (Table 1), same that were used for multivariate analysis (principal and grouping components).

Table 1 Morphological variables recorded for the principal component analysis and cluster. 

Variables
  • Plántula*. Color del hipocotilo, pubescencia del hipocotilo, color de la hoja cotiledónea, forma de la hoja cotiledónea.

  • Planta*. Color del tallo, forma de la hoja, antocianinas en los nudos de las plantas, macollamiento, longitud del tallo (cm), altura de la planta (cm), ancho de la planta (cm).

  • Floración*. Días a floración, longitud de la antera (mm), pigmentación del cáliz.

  • Fructificación*. Manchas antocianínicas en el fruto, cuajado del fruto, color del fruto maduro, peso de fruto fresco (g), longitud del pedicelo del fruto (mm), espesor de la pared del pericarpio (mm), forma del ápice del fruto, apéndice del fruto, longitud de la placenta (mm), condición de la mezcla varietal.

  • Semilla*. Peso de 1000 semillas (g), número de semillas por fruto.

  • Variables estimadas. Rendimiento (kg ha-1), índices longitud/ancho de: hoja cotiledónea, de hoja madura y de fruto fresco.

*Registro de variables con base en el manual de descriptores para Capsicum del IPGRI et al. (1995).

The principal component analysis showed that the first four components explained 56% of the total variation. The first principal component (PC1) explained 22% of the total variance and was composed of variables regarding the quality of the fruit, as fruit weight and color of the fruit when ripe; CP2, with 18% of the total variation, was influenced by variables on reproductive capacity in the fruit, such as length of the placenta and fruit set; CP3, with 9% of the variation was influenced by variables days to flowering and presence of anthocyanins in plant and fruit; and CP4, with 7% of the variation, consisted of characteristics of plant structure such as height and width of the floor and index length and width of the cotyledon leaf.

The fruit variables were important in this study, since 50% of the variables of principal component analysis were related to this body, followed by variables of the structure of the plant and precocity. The native populations of poblano peppers showed more diversity in variables related to weight and color of the fruit; the latter feature is very important because it is what gives color to the mole main product poblano pepper or mulatto in mature state; Also, the bearing of the plant must be suitable to bear a greater burden of fruit, and finally the precocity for quality fruit market in less time. Regarding the amount of total variation detected in other studies, Kadri et al. (2009) mention that with the first six principal components obtained 54.3% of the total variation in 48 accessions of pepper of Turkey, where the CP1 was formed by diameter, weight and volume of fruit and CP2 for fruit length and pedicel of the same.

By contrast, studies with a single type of pepper like Moreno et al. (2007), who used accessions guajillo from Durango, Zacatecas and Guerrero was found that the first five principal components explained 71.3% of the total variation and the variables that contributed most to the total variation were vegetative and reproductive type. Also, in the work of Martínez-Sánchez et al. (2010) in Oaxaca pepper water found greater variation in precocity characters and branching density.

Given this, one might consider what Latournerie et al. (2001) mention, regarding the genetic wealth present in the various regional peppers largely due to the diversity of soil and climatic factors that have been developed, as well as the preservation and management of native seeds for hundreds of years by farmers. In this regard, Medina et al. (2006) indicate that the existence of genetically diverse germplasm can be included in breeding programs through the selection of characteristics of interest. Meanwhile, González and Bosland (1991) indicate that the collection and characterization of local populations is necessary to obtain and find additional genetic resources that are not known and that the desirable characteristics can be transferred to commercial cultivars.

Furthermore, Geleta et al. (2005) suggest that reproductive behavior is determinant in the degree of genetic diversity among cultures; although Lefebvre et al. (1993) mention that the reproductive behavior of C. annuum L. is very fickle, compared to other self-pollinating species, because most species of Capsicum, among them C. annuum L., are protogynous (Pickersgill, 1997; Djian-Caporalino et al., 2006) and there is a degree of “excursion” the stigma different for each genotype, which extends the possibility of crosspollination between populations (Pickersgill, 1997). The way of reproduction of these peppers, as well as the empirical selection that have made the producers of the region of the Sierra Nevada de Puebla has given the possibility of finding genetically diverse germplasm, mainly in characteristics of fruit, where you can find variability in weight , size and color.

As a result of principal component analysis Figure 1, where the dispersion of the populations shown based on the first two principal components obtained. In this we can see that most stocks poblano pepper grouped in quadrants I and IV; however, a separation of these populations according to local collection was not obtained, which can be attributed to these populations are located in a small niche.

*Poblano ■ Ancho ● Loco ◊ Miahuateco ○ Híbrido ancho. PDF= weight of fruit; CFM= color fruit when ripe; CUF= ripened fruit; LPL= length of the placenta (variables associated with CP1 and CP2).

Figure 1 Dispersion of poblano pepper populations native to the Sierra Nevada of Puebla, through the first two components. 

The separation of populations poblano of ancho pepper (A13, A23 and A30) and populations loco pepper (L43 and L36) in the region of the Sierra Nevada de Puebla, which were located in Quadrant II, is attributed to one of the most important variables for this study was the color of the fruit when ripe. On the other hand, the collection of ancho de Zacatecas (A10), closest to hybrid (A49) and the population of Miahuateco pepper (M48) were placed in Quadrant III.

However, despite a general grouping in the towns of pepper poblano subgroup formation (Figure 2) it can be seen, encountering this heterogeneity within it. About Votava et al. (2005) note that in each region processes of natural and artificial selection are performed by each of the farmers and this may be the reason to find such heterogeneity. Also, for the variable fruit weight most poblano pepper populations show higher fruit weight than other types of pepper. For length of the placenta were Loco pepper populations which showed the longest; this due to the elongated shape of the fruit, there likewise increased fruit set for this type of pepper.

Figure 2 Dendrogram of native populations poblano, anchos, locos and a hybrid, generated with the clustering method UPGMA. 

The formation of three subgroups of native populations of poblano pepper and a subset of ancho pepper shown in Figure 2. There existed a group of stocks in accordance with the municipality of collecting possibly related to losses in seedling production by diseases as "damping off" disease caused by a group of fungi consisting of Phytophthora capsici Leo., Fusarium spp., Rhizoctonia spp. and Verticillium spp. (Velásquez et al., 2001), where data found losses of up to 90% (Rodríguez et al., 2007). The germplasm loss caused by this disease require farmers to use other seeds or seedlings available in the region, whereby a flow of germplasm is promoted between locations. In this regard, Rincón and Hernández (2000) mentioned that the flow of genetic material between farmers and between communities contributes in part to the gradual modification of the genetic diversity of local materials. In Figure 2 can also be distinguished six varieties that are not part of a specific subgroup, reaching the ends of the dendrogram. On the left side is a variety of pepper poblano (P01) and the collection of Miahuatlán (M48). These two varieties, although they were collected in different regions showed similarities to settle at CP1 associated with features of very small fruits and brown.

The data obtained for the four groups formed and populations that are not part of any group are described in Table 2. The analysis of variance between groups (data not shown in table) showed statistically significant differences for all the variables that make up the first four main components: fruit weight (p= 0.0001**), ripe fruit color (p= 0.0001**), ripened fruit (p= 0.0001**), length of the placenta (p= 0.0001**), anthocyanins at the nodes of the plant (p= 0.0066**), days to flowering (p= 0.0030**), anthocyanins spots on the immature fruit (p= 0.0161*), length-width ratio of the cotyledon leaf (p= 0.0002**), the plant width (p= 0.0022**) and plant height (p= 0.0340*).

Table 2 Variables that make up the first four principal components contrasted with the groups formed and individual collections. 

GPO NP PDF (g) CFM CUF LPL (mm) APL DFL MAF ILAHC ALP (cm) ANP (cm)
I†† 9 14.2 Marrón Intermedio 23 Morado oscuro 91 0 0.25 44.3 37
II 15 15.1 Negro Intermedio 23.7 Morado oscuro 82 1 0.25 45.4 35.9
III 15 19.9 Marrón Intermedio 23.4 Morado oscuro 83 1 0.25 48.4 36.4
IV 4 11.4 Rojo oscuro Alto 26.9 Morado claro 78 0 0.26 45.3 37.4
P01 7.6 Marrón Intermedio 22.3 Morado claro 78 0 0.16 53 42.4
M48 6 Marrón Intermedio 20 verde 95 0 0.2 48.7 39.8
A10 19.1 Rojo oscuro Intermedio 21 Verde 84 0 0.23 37.9 32.2
L43 7.2 Rojo oscuro Alto 30 Morado claro 77 0 0.27 42.1 43
L36 8.8 Rojo Alto 27.7 Morado oscuro 87 0 0.24 49.8 38.5
A49 12.7 Rojo oscuro Intermedio 16.9 verde 84 0 0.26 38.1 24.1

NP= número de poblaciones; PDF= peso de fruto; CFM= color del fruto maduro; CUF= cuajado del fruto; LPL= longitud de la placenta; APL= antocianinas en los nudos de la planta; DFL= días a floración; MAF= manchas antocianínicas en el fruto (0: ausente, 1: presente); ILAHC= índice ancho-largo de la hoja cotiledónea; ALP= altura de planta; ANP= ancho de la planta. I††, II y III: grupos de chiles poblanos; IV= grupo de chiles anchos y un poblano.

The results of this research reflect the existence of genetic diversity in native populations of poblano peppers in the study region, whose origin, at least in part, is the team that for years farmers have had on these populations, obtaining desirable characteristics for them and consumers, such as size, color, earliness, length of the placenta, the presence of anthocyanins in fruits and plants, as well as width and length of the plant, yield, among others. This same selection and generate genetically different materials has favored the adaptation of these populations to specific locations and environments.

Proper evaluation and characterization of diversity is important to initiate programs aimed at selection of yielding varieties, rescuing some characters of interest to effectively leverage this plant genetic resource (Kadri et al., 2009), also allowing its conservation, expanding the genetic base of crops and protection for the same (Yüzbaşıoğlu et al., 2006). In this context, Votava et al. (2002 and 2005) indicate that the availability and strategic use of genetic diversity inter and intra are the pillars on which rests the future of improvement.

Conclusions

The existence of morphological diversity in populations of native pepper poblano de la Sierra Nevada de Puebla is due to variables fruit, followed by plant habit and earliness. The separation of poblano pepper varieties of loco pepper and ancho pepper, as well as those introduced and the hybrid occurred based on these variables.

Based on the existing morphological diversity three subgroups in populations of pepper poblano and one of ancho pepper were identified, mainly determined by fruit weight, color of ripe fruit, fruit set, length of the placenta, anthocyanins in knots plant, days to flowering, anthocyanins spots on the fruit, wide-index over the cotyledon leaf, plant height and width of the plant.

The formation of subgroups in populations of poblano pepper was not related to the towns of collecting seed, possibly due to the flow of seed, seedling or pollen that exists in the region.

Literatura citada

Aguilar, R. V. H.; Corona, T. T.; López, L. P.; Latournerie, M. L.; Ramírez, R. M.; Villalón, M. H. y Aguilar C. J. A. 2010. Los chiles de México y su distribución. SINAREFI. Colegio de Postgraduados, INIFAP, IT-Conkal, UANL, UAN. Montecillo, Texcoco, Estado de México. 114 p. [ Links ]

Djian, C. C.; Lefebvre, V.; Sage, D. A. M. and Palloix, A. 2006. Capsicum. In: genetic resources, chromosome engineering, and crop improvement. Vegetable Crops. R J Singh (ed). CRC Pres. N. Y. USA. 3:185-243. [ Links ]

Eshbaugh, W. H. 1993. History and exploitation of a serendipitous new crop discovery. In: Janick, J. and Simon, J. E. (Eds.). New crops. Wiley, New York, USA. 132-139 pp. [ Links ]

Franco, J.; Crossa, J.; Taba, S. and Shands, H. 2005. A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci. 45:1035-1044. [ Links ]

Geleta, L. F.; Labuschagne, M. T. and Viljoen, C. D. 2005. Genetic variability in pepper (Capsicum annuum L.) estimated by morphological data and amplified fragment length polymorphism markers. Biod. Conservation. 14:2361-2375. [ Links ]

González, M. M. and Bosland, P. W. 1991. Strategies for stemming genetic erosion of Capsicum germplasm in the Americas. Diversity 7:52-53. [ Links ]

Hernández-Verdugo, S.; Dávila, A. P. y Oyama, K. 1999. Síntesis del conocimiento taxonómico, origen y domesticación del género Capsicum. Boletín de la Sociedad Botánica de México. 64:65-84. [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2011. anuario estadístico puebla. aspectos geográficos. Coordenadas geográficas y altitud de las cabeceras municipales. Serie I. http://www3.inegi.org.mx/sistemas/mexicocifras/datosgeograficos/21/21048.pdf. [ Links ]

International Board of Plant Genetic Resources (IBPGR). 1983. Genetic resources of Capsicum. Int. Board Plant Genetic Res. Rome, Italy. 116 p. [ Links ]

IPGRI, AVRDC y CATIE. 1995. Descriptores para Capsicum (Capsicum spp.). Instituto Internacional de Recursos Fitogenéticos, Roma, Italia; Centro Asiático para el Desarrollo y la Investigación Relativos a los Vegetales, Taipei, Taiwán y Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica. 51 p. [ Links ]

Kadri, B. M.; Esiyok, E. and Turhan, K. 2009. Patterns of phenotypic variation in a germplasm collection of pepper (Capsicum annuum L.) from Turkey. Spanish J. Agric. Res. 7:83-95. [ Links ]

Latournerie, L.; Chávez, J. L.; Pérez, M.; Hernández, C. F.; Martínez, R.; Arias, L. M. y Castañón, G. 2001. Exploración de la diversidad morfológica de chiles regionales en Yaxcabá, Yucatán, México. Agron. Mesoam. 12:41-47. [ Links ]

Laurentin, H. 2009. Data analysis for molecular characterization of plant genetic resources. Gen. Res. Crop Ev. 56:277-292. [ Links ]

Lefebvre, V.; Palloix, A. and Rives, M. 1993. Nuclear RFLP between pepper cultivars (Capsicum annuum L.). Euphytica 71:189-199. [ Links ]

Long, S. J. 1986. Capsicum y cultura: la historia del chili. Fondo de Cultura Económica. México, D. F. 181 p. [ Links ]

Martínez, S, D.; Pérez, G, M.; Rodríguez, P, J. E. y Moreno, P, E. C. 2010. Colecta y caracterización morfológica de ‘chile de agua’ (Capsicum annuum L.) en Oaxaca, México. Rev. Chapingo Ser. Hortic. 16:169-176. [ Links ]

Medina, C. I.; Lobo, M. y Gómez, F. A. 2006. Variabilidad fenotípica en poblaciones de ají y pimentón de la colección colombiana del género Capsicum. Rev. Corpoica- Ciencia y Tecnología Agropecuaria 7:25-39. [ Links ]

Moreno, P. E. C.; Cruz, A. O.; Avendaño, A. C. H.; Martínez, D. M. A. T. y Peña, L. A. 2007. Morphological variation in guajillo chili pepper plants (Capsicum annuum L.). Afr. Crop Sci. Soc. 8:327-332. [ Links ]

Pickersgill, B. 1997. Genetic resource and breeding of Capsicum spp. Euphytica 96:129-133. [ Links ]

Rincón, S. F. y Hernández, C. J. M. 2000. Conservación de recursos fitogenéticos en México. In: Ramírez V. P.; Ortega, P. R.; López, H. A.; Castillo. G. F. ; Livera, M. M.; Rincón, S. F. y Zavala, G. F. (Eds). Recursos Fitogenéticos de México para la Alimentación y la Agricultura. Informe Nacional. Servicio Nacional de Inspección y Certificación de Semillas y Sociedad Mexicana de Fitogenética A. C. Chapingo, México. 96-111 pp. [ Links ]

Rodríguez, J.; Peña, O. V. P.; Gil, M. A.; Martínez, C. B.; Manzo, F. y Salazar, L. L. 2007. Rescate in situ del chile “poblano” en Puebla, México. Rev. Fitotec. Mex. 30:25-32. [ Links ]

SAS Institute. 2002. SAS User’s Guide: Statistics. Version 9.0. Statistic Analysis System Institute. Cary, North Carolina, USA. 1032 p. [ Links ]

Ulloa, C. 2006. Aromas y sabores andinos. In: Morales, R. M.; Øllgaard, B.; Kvist, L. P.; Borchsenius, F. y Balslev, H. (Eds). Botánica económica de los Andes Centrales. Universidad Mayor de San Andrés, La Paz, Bolivia. 313-328 pp. [ Links ]

Velásquez, V. R.; Medina, A. M. M. y Luna, R. J. J. 2001. Sintomatología y géneros de patógenos asociados con las pudriciones de la raíz de chile (Capsicum annuum L.) en el Norte Centro de México. Rev. Mex. Fitopatol. 19:175-181. [ Links ]

Votava, E. J.; Nabhan, G. P. and Bosland, P. W. 2002. Genetic diversity and similarity revealed via molecular analysis among and within an in situ population and ex situ accessions of chiltepín (Capsicum annuum var. glabriusculum). Conservation Genetics 3:123-129. [ Links ]

Votava, E. J.; Baral, J. B. and Bosland, P. W. 2005. Genetic diversity of chile (Capsicum annuum var. annuum L.) landraces from Northern New Mexico, Colorado, and Mexico. Econ. Bot. 59:8-17. [ Links ]

Yüzbașioğlu E.; Özcan, S. and Açik, L. 2006. Analysis of genetic relationships among Turkish cultivars and breeding lines of Lens culinatis Mestile using RAPD markers. Genetic Resources and Crop Evolution. 53:507-514. [ Links ]

Received: March 2016; Accepted: May 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons