SciELO - Scientific Electronic Library Online

 
vol.8 número2Application of nonlinear compensation to limit input dynamic range in analog optical fiber linksDetection of mixed-culture growth in the total biomass data by wavelet transforms índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.8 no.2 Ciudad de México Ago. 2010

 

Vibration Analysis Of a Self–Excited Elastic Beam

 

M. A. Barrón–Meza

 

Departamento de Materiales Universidad Autónoma Metropolitana Azcapotzalco Av. San Pablo 180, Col. Reynosa–Tamaulipas C.P. 02200, México, D.F., MÉXICO. E–mail: bmma@correo.azc.uam.mx

 

ABSTRACT

The vibration behavior and the energy exchange among the normal modes of a clamped–free self–excited elastic beam are analyzed in this work. To model this kind of beam, the damping term of a van der Pol oscillator is directly added to the equation of a linear elastic beam, yielding a single nonlinear partial differential equation. To solve this equation, a spectral method is employed. Three vibration modes are considered in the analysis, and the values of the self–exciting constant are varied in order to cover from linear to nonlinear vibration behavior. Multiple frequencies of the nonlinear beam are determined through the power spectral density of the beam free–end time series. Given that this relatively simple model mimics at least in a qualitative way some key issues of the fluid–structure problem, it could be potentially useful for fatigue studies and vibration analysis of rotating blades in turbomachinery.

Keywords: Beam vibration, fluid–structure problem, modal interaction, self–excited beam, spectral method, turbine blade vibration, van der Pol oscillator.

 

RESUMEN

En este trabajo se analizan el comportamiento bajo vibración y el intercambio de energía entre los modos normales de una barra elástica autoexcitada con un extremo fijo y el otro libre. Para modelar esta clase de barra se le agrega directamente el término de amortiguamiento de un oscilador van der Pol a la ecuación de una barra elástica lineal, obteniéndose una sola ecuación diferencial parcial. Para resolver esta ecuación se usa el método espectral. En el análisis se consideran tres modos de vibración, y los valores de la constante de auto–excitación se varían a modo de cubrir un comportamiento a la vibración desde lineal hasta no lineal. Las múltiples frecuencias de la barra no lineal se determinan mediante el espectro de potencias de las series de tiempo del extremo libre. Dado que este modelo relativamente simple reproduce, al menos cualitativamente, algunos aspectos clave del problema fluido–estructura, puede ser potencialmente útil para estudios de fatiga y análisis de la vibración de álabes rotatorios en turbomaquinaria.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Y.L. Lau, R.C.K. Leung, and R.M.C. So. Vortex–induced vibration effect on fatigue life estimate of turbine blades. Journal of Sound and Vibration, Vol. 307, 2006, pp. 698–719.         [ Links ]

[2] Z. Mazur, R. Garcia–Illescas, J. Aguirre–Romano, and N. Perez–Rodriguez. Steam turbine blade failure analysis. Engineering Failure Analysis, Vol. 15, 2008, pp. 129–141.         [ Links ]

[3] P. Beauseroy and R. Lengelle. Nonintrusive turbomachine blade vibration measurement system. Mechanical Systems and Signal Processing, Vol. 21, 2007, pp. 1717–1738.         [ Links ]

[4] Y.Y. Jiang, S. Yoshimura, R. Imai, H. Katsura, T. Yoshida, and C. Kato. Quantitative evaluation of flow–induced structural vibration and noise in turbomachinery by full–scale weakly coupled simulation. Journal of Fluids and Structures, Vol. 23, 2007, pp. 531–544.         [ Links ]

[5] C.G. Rodriguez, E. Egusquiza, and I.F. Santos. Frequencies in the vibration induced by the rotor stator interaction in a centrifugal pump turbine. ASME Journal of Fluids Engineering, Vol. 129, 2007, pp. 1428–1435.         [ Links ]

[6] R. Violette, E. de Langre, and J. Szydlowsky. Computation of vortex–induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments. Computers and Structures, Vol. 85, 2007, pp. 1134–1141.         [ Links ]

[7] K.B. Skaugset and C.M. Larsen. Direct numerical simulation and experimental investigation on suppression of vortex induced vibrations of circular cylinders by radial water jets. Flow, Turbulence and Combustion, Vol. 71, 2003, pp. 35–59.         [ Links ]

[8] E. Guilmineau and P. Queutey. Numerical simulation of vortex–induced vibration of a circular cylinder with low mass–damping in a turbulent flow. Journal of Fluid and Structures, Vol. 19, 2004, pp. 449–466.         [ Links ]

[9] G.S. Pisarenko and Y.S. Vorobev. Issues of simulation of turbomachine blade vibration. Strength of Materials, Vol. 32, 2000, pp. 487–489.         [ Links ]

[10] J. Li, S.T. Lie, and Z. Cen. Numerical analysis of dynamic behavior of stream turbine blade group. Finite Elements in Analysis and Design, Vol. 35, 2000, pp. 337–348.         [ Links ]

[11] G. Dimitriadis, I.B. Carrington, J.R. Wright, and J.E. Copper. Blade–tip timming measurement of synchronous vibrations of rotating bladed assemblies. Mechanical Systems and Signal Processing, Vol. 16, 2002, pp. 599-622.         [ Links ]

[12] S. Kumar, N. Roy, and R. Ganguli. Monitoring low cycle fatigue damage in turbine blade using vibration characteristics. Mechanical Systems and Signal Processing, Vol. 21, 2007, pp. 480–501.         [ Links ]

[13] M.A. Barron and M. Sen. Synchronization of coupled self–excited elastic beams. Journal of Sound and Vibration, Vol. 324, 2009, pp. 209–220.         [ Links ]

[14] P. Bisegna and G. Caruso. Optimization of a assive vibration control scheme acting on a bladed rotor using a homogenized model. Structural and Multidisciplinary Optimization, Vol. 39, 2009, pp. 625–636.         [ Links ]

[15] J.S. Rao and A. Saldanha. Turbomachine blade damping. Journal of Sound and Vibration, Vol. 262, 2003, pp. 731–738.         [ Links ]

[16] R.D. Gabbai and H. Benaroya. An overview of modeling and experiments of vortex–induced vibration of circular cylinders. Journal of Sound and Vibration, Vol. 282, 2005, pp. 575–616.         [ Links ]

[17] R.E.D. Bishop and A.Y. Hassan. The lift and drag forces on a circular cylinder in a flowing fluid. Proceedings of the Royal Society Series, Vol. A277, 1963, pp. 32–50.         [ Links ]

[18] Y.S. Lee, A.F. Vakakis, L.A. Bergman, and D.M. McFarland. Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non–linear energy sinks. Structural Control and Health Monitoring, Vol. 13, 2006, pp. 41–75.         [ Links ]

[19] R.T. Hartlen and I.G. Currie. Lift–oscillator model of vortex induced vibration. Journal of the Engineering Mechanics, Vol. 96, 1970, pp. 577–591.         [ Links ]

[20] C.H.K. Williamson and R. Govardhan. A brief review of recent results in vortex–induced vibrations. Journal of Wind Engineering, Vol. 96, 2008, pp. 713–735.         [ Links ]

[21] D. Lucor and M.S. Triantafyllou. Parametric study of a two degree–of–freedom cylinder subject to vortex–induced vibrations. Journal of Fluid and Structures, Vol. 24, 2008, pp. 1284–1293.         [ Links ]

[22] M.L. Facchinetti, E. de Langre, and F. Biolley. Coupling of structures and wake oscillators in vortex–induced vibrations. Journal of Fluids and Structures, Vol. 19, 2004, pp. 123–140.         [ Links ]

[23] A.H. Nayfeh. Nonlinear Interactions. Wiley, New York, NY, 2000.         [ Links ]

[24] K.L. Graff. Wave Motion in Elastic Solids. Oxford University Press, London, UK, 1975.         [ Links ]

[25] B. van der Pol and J. van der Mark. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Philosophical Magazine, Vol. 6, 1928, pp. 763–775.         [ Links ]

[26] J. Grasman, F. Verhulst, and S. Shih. The Lyapunov exponents of the van der Pol oscillator. Mathematical Methods in Applied Sciences, Vol. 28, 2005, pp. 1131-1139.         [ Links ]

[27] D.W. Storti and R.H. Rand. Dynamics of two strongly coupled relaxation oscillators. SIAM Journal on Applied Mathematics, Vol. 46, 1986, pp. 56–67.         [ Links ]

[28] J.S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time–Dependent Problems. Cambridge University Press, Cambridge, UK, 2007.         [ Links ]

[29] A.N. Yanmeni, R. Tchoukuegno, and P. Woafo. Non–linear dynamics of an elastic beam under moving loads. Journal of Sound and Vibration, Vol. 273, 2004, pp. 1101–1108.         [ Links ]

[30] M. Zielinski and G. Ziller. Noncontact vibration measurements on compressor rotor blades. Measurement Science and Technology, Vol. 11, 2000, pp. 847–856.         [ Links ]

[31] M.L.J. Verhees. Experimental Modal Analysis of a Turbine Blade. Traineship Report, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2004.         [ Links ]

[32] E.D. Cohen. Vibration Detection in Turbomachinery Using Non–contacting Sensors. Master's Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2006.         [ Links ]

[33] P. Malatkar and A.H. Nayfeh. On the transfer of energy between widely spaced modes in structures. Nonlinear Dynamics, Vol. 31, 2003, pp. 225–242.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons