SciELO - Scientific Electronic Library Online

 
vol.1 número2Real-Time Process Manager and its application in roboticsOn-line wear detection of milling tools using a displacement fiber optic sensor índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.1 no.2 Ciudad de México Ago. 2003

 

Faraday plasma current sensor with compensation for reciprocal birefringence induced by mechanicalperturbations

 

Y. O. Barmenkov & F. Mendoza-Santoyo

 

Centro de Investigaciones en Óptica, A.C. Loma del Bosque No. 115 Col. Lomas del Campestre C.P. 37150 León Gto. México. Tel. (52-4) 773-10-17 ext. 204, Fax (52-4) 717-50-06, E-mail: yuri@foton.cio.mx

 

Received: August 15h 2001.
Accepted: May 3th 2002.

 

ABSTRACT

A Faraday fiber-optic current sensor was employed to measure the tokamak plasma current. In order to decrease the influence of mechanical perturbations on the sensor sensitivity, a two-pass optical scheme with a variable Faraday mirror at the fiber end is proposed. A decrease, by two orders of magnitude, in the influence of the linear birefringence produced by an external piezoceramic fiber modulator was experimentally observed.

Keywords: Schlieren, Flow visualization, Natural Convection.

 

RESUMEN

Se utilizó un sensor de corriente hecho de fibra óptica empleando el efecto Faraday, para medir la corriente en el plasma de un tokamak. Para reducir la influencia de ruido mecánico en la sensitividad del sensor, se propone un arreglo óptico de dos pasos con un espejo variable de Faraday colocado en un extremo de la fibra. Experimentalmente se observo una disminución, de dos ordenes de magnitud, en la influencia de la birefringencia lineal producida externamente por un modulador piezocerámico de fibra.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] ITER concept definition (IAEA, Vienna, 1989).         [ Links ]

[2] ITER Physics Basis Editors, ITER Physics Expert Group Chairs and Co-Chairs, ITER Joint Central Team and Physics Integration Unit, "ITER Physics Basis", Nuclear Fusion 39 (1999) 2137-2638.         [ Links ]

[3] Rosenbluth, M.N. "Physics fundamentals for ITER", Plasma Phys. Control Fusion 41 (1999) A99-A113.         [ Links ]

[4] Tang, D. A.H.Rose, G.W.Day, S.E.Etzel, "Annealing of linear birefringence in single-mode fiber coils:applications to optical fiber current sensors", J. of Lightwave Technology 9 (1991) 1031-1037.         [ Links ]

[5] Rogers, A.J. J.Xu, J.Yao, "Vibration immunity for optical-fiber current measurement", J. of Lightwave Technology 13 (1995) 1371-1377.         [ Links ]

[6] Clarke, I.G. "Temperature-stable spun elliptical-core optical-fiber current transducer", Opt. Lett. 18 (1993) 158-160.         [ Links ]

[7] Fang, X. A.Wang, R.G.May, R.O.Claus, "Polarization dependence of response function in 3x3 Sagnac optical fiber sensor", J. of Lightwave Technology 12 (1994) 1504-1509.         [ Links ]

[8] Rogers, A.J. "Optical-fiber current measurement", Int. J. Opt. 3 (1989) 397-407.         [ Links ]

[9] Kaliteevski, N. "Optique Ondulatoire" (Mir, Moscow, 1980), p.152.         [ Links ]

[10] Cruz, J.L. M.V.Andres, M.A.Hernandez, "Faraday effect in standard optical fibers: dispersion of the effective-Verdet constant",-Appl.-Opt. 35 (1996) 922-926.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons