SciELO - Scientific Electronic Library Online

 
vol.9Predicción de la producción semi-intensiva de Penaeus vannamei mediante modelos de regresión lineal simple: Un análisis de la importancia de las variables ambientales y de manejo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.9  Tepic  2022  Epub 12-Abr-2024

https://doi.org/10.15741/revbio.09.e1368 

Original articles

Characterization of a bokashi-type compost made from different manure source and its effect on fodder corn production

Caracterización de abono tipo bocashi elaborado con diferentes fuentes de estiércol y su efecto en la producción de maíz para ensilar

Mauricio Jesús Romero-Méndez1 
http://orcid.org/0000-0002-0629-2564

Juana Elvira Ramírez-Meléndez2  * 
http://orcid.org/0000-0002-9244-0390

Sergio Arturo García-Hernández1 
http://orcid.org/0000-0003-2195-9117

Gustavo Contreras-Hernández3 
http://orcid.org/0000-0002-5076-9761

Isaac De Gasperin-López3 
http://orcid.org/0000-0001-5417-9091

Samuel López-Aguirre3 
http://orcid.org/0000-0003-0465-5365

1Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Carretera San Luis Potosí, Matehuala. Ejido Palma de la Cruz. Soledad de Graciano Sánchez, S.L.P CP. 78321, México.

2 Programa de Ganadería, Colegio de Posgraduados, Km. 36.5, México 136 5, Montecillo, 56230 Montecillo, Texcoco, Estado de México, México

3 Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Igualdad 480, Col Unidad Veracruzana, 91710 Veracruz, Ver. México.


ABSTRACT

This work aimed to characterize the fermentation process and physicochemical and organic characteristics of bokashi made with ovine, bovine, and pork manure, and to assess its efficiency as an organic fertilizer in the production of green fodder and dry matter, dry matter yield, and stalk:leaf:grain ratio of corn for silage, and to compare such yield when adding chemical fertilizer and without adding chemical fertilizer. No differences were found in fermentation time between manure sources; however, bokashi made with sheep manure presented a greater number of desirable physicochemical and organic characteristics. Green and dry matter forage production and dry matter yield were similar between sheep bokashi and chemical fertilizer. Leaf and grain proportions were statistically higher in corn fertilized with sheep bokashi, compared to the rest of the treatments, so it is concluded that the use of bokashi made with sheep manure as fertilizer for the production of corn for silage, can be a viable option to replace the use of agrochemicals without affecting the yield, for its higher production of grain and leaf, it is suggested as a good forage to obtain high-quality silage.

KEY WORDS: Chemical análisis; Fermentation; Yield; Temperature

RESUMEN

El objetivo de este trabajo fue caracterizar el proceso de fermentación y características fisicoquímicas y orgánicas de bocashi elaborado con estiércol de ovino, bovino y porcino, además de evaluar su eficiencia como abono orgánico en la producción de forraje en verde y en materia seca, rendimiento en materia seca y proporción tallo:hoja:grano de maíz para ensilar y compararlo con fertilizante químico y sin fertilizar. No se encontraron diferencias en el tiempo de fermentación entre las fuentes de estiércol, sin embargo, el bocashi elaborado con estiércol de ovino presento mayor número de características fisicoquímicas y orgánicas deseables. La producción de forraje en verde y el rendimiento en materia seca fueron similares entre el bocashi de ovino el fertilizante químico. La proporción de hoja y grano fue mayor estadísticamente en el maíz fertilizado con bocashi de ovino, comparado con el resto de los tratamientos, por lo que se concluye que el uso de bocashi elaborado con estiércol de ovino como fertilizante para la producción de maíz para ensilar, puede ser una opción viable para sustituir el uso de agroquímicos sin afectar el rendimiento, por su mayor producción de grano y hoja, sugiere ser un buen forraje para obtener ensilados de alta calidad.

PALABRAS CLAVE: Análisis químico; Fermentación; Rendimiento; Temperatura

Introduction

The corn crop is considered basic for animal feed, it is a widely used ingredient in the diet of ruminants due to the contribution of nutrients and its digestibility because it allows for achieving better feed conversion rates and feed efficiency (Chaudhary et al., 2014; Loy and Lundy, 2019); In Mexico, between 2010 and 2019 an average of 13.9 million tons of forage corn were produced per year, which represented a 12.8 % share of the national production of forages (SIAP,2020). However, this crop is mostly developed using conventional production systems and technological sets, with a high demand for external inputs (Damian et al., 2010) such as fertilizers and agrochemicals, which, when used constantly and irrationally, besides being economically unsustainable due to their high prices, pollute the environment and can cause damage to human and animal health (Martínez-Viera et al., 2010). This is why it is necessary to look for ecological alternatives that allow us to sustain corn production and, at the same time, maintain soil fertility. Bokashi can be an option since it uses livestock excrement for its production, and by applying it to crops, it allows the recirculation of nutrients, mainly nitrogen, and protects the environment (Maeda et al., 2011). The objective of this work was to characterize the fermentation process of bokashi made from different manure sources and to evaluate its efficiency as an organic fertilizer in the production of corn for silage.

Materials and methods

Location

The experiment was established in a plot called "Seminario Mayor", located in San Luis Potosi municipality, at 22°07'11.0 "N 100°54'27.0 "W coordinates, with an altitude of 1810 masl. The predominant climate is BSk, with an average annual temperature of 16.8 °C and precipitation of 542 mm (García, 1973). The soil present at the site has a sandy loam texture, with a pH of 7.26, electrical conductivity of 0.67 dS m-1, organic matter of 0.5 %, cation exchange capacity of 1.28 cmol (+) kg-1, and total nitrogen content of 0.65 %. Laboratory analyses were performed at the Instituto de Investigación de Zonas Desérticas of the Universidad Autónoma de San Luis Potosí.

Bokashi preparation

The bokashi was prepared by adjusting the ingredients and technique described by Restrepo (2009) (Table 1), and following the recommendations described by García-Hernández et al., (2020) for the adequate mixing and fermentation process care, using sheep, cattle, and swine manure obtained from commercial productions which were dried in the shade, the particle size was homogenized to 5 mm with a hammer mill. Samples of manure from each species were collected for proximate chemical analysis.

Table 1 Ingredients used in the preparation of the bokashi-type manure. 

Ingredient Inclusión (%)
Wheat bran 1
Regiónal soil 70
Charcoal 2
Yeast (Saccharomyces cerevisiae) 1
Cane molasses 1
Ground sorghum stubble 23
Ovine, Bovine or Pork manure 2

Manure chemical analysis

Samples collected from the manure used for bokashi preparation were dried in a forced air oven to constant weight, mixed for each species to make a composite sample, and ground in a Willi mill with a 2 mm sieve diameter, for chemical analysis. Dry matter, moisture, nitrogen, ash, organic matter, pH, and neutral detergent fiber content were determined (AOAC, 2016).

Recording and temperature control of the bokashi

Daily, for 60 days the average temperatures were recorded, placing a thermometer in three random locations of the bokashi at three different depths (10, 20, and 30 cm), taking care that the first 20 days the temperature of the preparation did not exceed 60 °C, if the temperature recorded was close to this, with a shovel, manual turning was performed to decrease it (Restrepo, 2009).

Physical-chemical and organic analysis of the bokashi

Once the fermentation phase was finished, each bokashi was mixed with a shovel to homogenize it, then 3 samples were collected and mixed to make a composite sample, this procedure was repeated six times to collect six composite samples of each one. The physicochemical and organic analysis was performed according to the methodology described in the Mexican Official Standard NOM-021-RECNAT-2000.

Planting of corn for silage

In June 2021, the corn variety CAFIME (Semillas Iyadilpro y Ya S.A. de C.V. Jalisco, Mexico) was planted in 15 plots of 24 m long by 12 m wide, with 3 m spacing between plots. The planting density was 23,000 plants per ha, a distance between furrows of 0.8 m and 0.4 m between plants according to the technological package proposed by INIFAP (2013); The auxiliary irrigations were applied by sprinkling according to the water needs of the crop.

Application of bokashi and fertilizers

The experimental plots were randomly assigned a treatment (OM: bokashi made with ovine manure, BM: bokashi made with bovine manure, PM: bokashi made with pork manure, chemical fertilizer, and unfertilized), the bokashi dosage was 2 ton ha-1, chemical fertilization was 140-60-00, using urea (46-00-00-00) and diammonium phosphate DAP (16-46-00) (INIFAP, 2013), applying 50 % at pre-sowing and the rest was divided into three applications, at 15, 25 and 35 days post-emergence (Barrera-Violeth et al., 2017).

Corn harvest

Harvesting was performed when more than 50 % of the plants in each experimental unit were in the milky-messy stage (INIFAP, 2013).

Yield estimation

From each plot, 3 central furrows were harvested, in 30 randomly selected plants, standing, their height was measured from the ground to the end of the ear, they were cut, weighed green, subsequently, their components were divided into the stalk, leaf, and whole cob (grain) and weighed separately, the ears were considered part of the stalk, placed in paper bags and taken to drying until counterweight. These data were used to determine green yield, total dry matter, and yield by components.

Experimental design and statistical analysis

The data were analyzed in a completely randomized design, for the characterization of the bokashi fermentation, 3 treatments were used (sheep, bovine, or swine manure), 3 regions for measuring temperature, 3 depths, and 60 temperature records per treatment (n = 1620). For chemical analysis, 3 treatments were used (sheep, cattle, or swine manure) with 6 replicates per treatment (n = 18). For corn yield and by components, 5 treatments were used (bokashi made with sheep, cattle, or swine manure, chemical and unfertilized), 3 plots per treatment, 3 furrows per plot, and 30 plants per furrow (n = 1350). The analysis of variance and mean comparison test was performed using the PROC GLM procedure and Tukey's test with a significance of 0.05 for the SAS OnDemand for Academics Communities program (2021).

Results and discussion

Chemical analisys of manure used in bokashi processing

There was no significant statistical difference (p > 0.05) between dry matter, nitrogen, and neutral detergent fiber content among the three manure sources, however, the amount of nitrogen and ash was lower in swine manure (Table 2), this may be explained since, in recent decades, swine feed formulations are designed to cover the requirements of specific amino acids and decrease the nitrogen content in the diet (Millet et al., 2018).

Table 2 Chemical analisys of manure used in bokashi processing. 

Specie DM % pH N % OM % Ash % NDF %
OvinE 70 11.75 b 1.9ª 64.10ª 35.90b 62.00
BovinE 74 11.39 b 1.7ª 63.60a 36.40b 61.02
PorK 75 10.03ª 1.2b 59.30b 40.7a 60.89
SEM 0.34 0.26 0.09 2.05 5.05 0.65

DM = dry matter, pH = hydrogen potential, N = nitrogen, OM = organic matter, NDF = neutral detergent fiber. SEM = Standard error of the mean. a, b, c different literals in the column indicate significant statistical differences (Tukey, p < 0.05).

Bokashi characterization

The bokashi temperature, regardless of manure source, raised from 35° to 60° C in the first three weeks (mesophilic phase), from week three to week five, the average temperature remained at 60° C, and gradually decreased to 38° C (thermophilic phase) at the end of week six, and then maintained at room temperature (30 to 35° C) until day 60 (cooling and maturation phase) (Figure 1). The temperatures recorded suggest that the fermentation was correct, the first days favor the growth of mesophilic organisms, which degrade carbohydrates of the organic matter (Sanchez et al., 2017), during this fermentative phase, exothermic processes cause gradually increasing the temperature, thus promoting the growth of thermophilic microorganisms, initiating the thermophilic phase, degrading by enzymatic action compounds of complex structure such as proteins and eliminates pathogenic microorganisms (Neklyudov et al., 2008), as the amount of fermentable organic matter in the bokashi decreases, the temperature decreases, reducing the amount of thermophiles and increasing again the mesophilic population until the remaining fermentable carbohydrates are exhausted (Zeng et al., 2010) and the cooling and maturation phase begins; in this phase, the less degradable compounds are decomposed and the precursors of humic substances emerge (Vélez-Sánchez-Verín et al., 2008), resulting in a good quality bokashi.

Figure 1 Temperature changes in the bokashi prepared with different manure sources. 

OM compared to BM and PM, presented a higher number of desirable physicochemical and organic characteristics (Table 3), a lower amount of Na, and, therefore, lower electrical conductivity (p < 0.05). The optimal carbon:nitrogen ratio for a mature compost has been described since 1989 by Senesi, who mentions that a C:N ratio below 20 is indicative of an advanced degree of stabilization and maturity of the organic matter, so our results indicate that the three bokashi produced reached the stage of maturity.

Table 3 Physicochemical and organic characteristics of bokashi elaborated with different types of manure. 

Determinación/tratamiento OM BM PM SEM
pH (ratio 1:2.5 bokashi:water) 7.34a 7.45a 7.56 a 0.16
Electric conductivity dS/m 4.49 c 4.70 b 4.92 a 0.03
Organic matter (%) 18.64a 16.50 b 14.61 c 1.34
Organic charcoal (%) 15.44 a 12.15 b 8.65 a 0.97
Nitrogen (%) 0.98 a 0.95 a 0.78 b 0.04
C:N ratio 15.75 a 12.78 b 11.08 c 1.04
P2O5 Olsen (%) 1.37 a 1.30 b 1.28 b 0.15
K2O (ppm) 0.19 a 0.09 b 0.05 b 0.02
Ca+ disponible (ppm) 18,968a 18,823 a 18,898 a 10.20
Mg (ppm) 2,268 a 2,254 a 2,009 b 12.30
Cu (ppm) 26.70 a 25.80 a 25.90 a 0.09
Fe (ppm) 3,347 a 3,133 b 3,098 b 16.38
Zn (ppm) 182 a 178 b 165 c 2.34
Mn (ppm) 253 a 247 b 243 b 1.91
Na (ppm) 1,980 b 2,028 b 2,203 a 13.00
NO2 (µg/mL) 1,179 a 1187 a 1197 a 18.00
NH+ 4 (µg/mL) 158 a 156 a 152 a 8.0

OM: bokashi made from ovine manure, BM: bokashi made from bovine manure, PM: bokashi made from pork manure, SEM= Standard error of the mean. a, b, c different literals in the column indicate a statistically significant difference (Tukey, p<0.05).

Corn yield

Green forage yield, dry matter, dry matter yield (Table 4), and grain proportion (Figure 2), were similar (p > 0.05) in corn to which OM and chemical fertilizer were applied, however, leaf proportion was higher (p < 0.05) in corn to which BM was applied, compared to the rest of the treatments. The dry matter content is within the recommended by Filya (2004) for the successful ensiling of corn. Garcés et al. (2004) mention that, to achieve a quality silage, the material must contain a good supply of water-soluble carbohydrates, which will be fermented by epiphytic bacteria and transformed into lactic acid, being the corn grain the main source of these, followed by the leaves and finally the stalk, so that, with the forage produced, excellent quality silage could be obtained.

Table 4 Height, green forage, and dry matter production of corn for silage at 112 days after planting, fertilized with different treatments. 

Treatmen Heigth (cm) Green forage production (Ton ha-1) Green forage production (Ton ha-1) Green forage production (%)
OM 145ª 35.54ª 10.00a 28.13a
BM 146ª 30.58b 8.73b 28.54 a
PM 146ª 30.05b 8.20b 27.28 a
Químico 147ª 35.17a 9.84a 27.97 a
Sin fertilizar 135b 25.48c 6.69c 26.25 b
EEM 0.10 0.18 0.09 1.54

OM: bokashi made from ovine manure, BM: bokashi made from bovine manure, PM: bokashi made from pork manure, SEM= Standard error of the mean. a, b, c different literals in the column indicate a statistically significant difference (Tukey, p < 0.05).

Figura 2 Stem-Leaf-Grain Proportion (%) of foder corn at 112 days post-sowing fertilized with different types of fertilizer 

Conclusions

The use of bokashi made with sheep manure as fertilizer for corn silage production can be a viable option to substitute the use of agrochemicals without affecting yield, because of its higher grain and leaf production, it suggests to be a good forage to obtain high-quality silage.

Acknowledgments

We would like to express our profound gratitude to Dr. Juan Carlos García López and Dr. Juan Rogelio Aguirre Rivera from Instituto de Investigación de Zonas Deserticas of the UASLP for the use of the laboratory, and the “Seminario Guadalupano y Josefino A.R” for the facilities granted for the development of fieldwork.

References

Association of Official Analytical Chemists [AOAC]. (2016). Official Methods of Analysis of AOAC International. (20 Ed.). Gaithersburg, E.U.U. [ Links ]

Barrera-Violeth, J. L., Cabrales-Herrera, E. M., & Sáenz-Narváez, E. P. (2017). Respuesta del maíz híbrido 4028 a la aplicación de enmiendas orgánicas en un suelo de Córdoba - Colombia. Orinoquia, 21(2),38-45. https://doi.org/10.22579/20112629.416. [ Links ]

Chaudhary, D.P., Jat, S.L., Kumar, R., Kumar, A., & Kumar, B. (2014) Fodder Quality of Maize: Its Preservation. In: Chaudhary D., Kumar S., Langyan S. (eds) Maize: Nutrition Dynamics and Novel Uses. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1623-0_13 [ Links ]

Damián-Huato, M. A., Ramírez-Valverde, B., Aragón-García, A., Huerta-Lara, M., Sangerman-Jarquin, D. M de J., & Romero-Arenas, O. (2010). Manejo del maíz en el estado de Tlaxcala, México: entre lo convencional y lo agroecológico. Revista Latinoamericana de Recursos Naturales, 6(2), 67-76. https://revista.itson.edu.mx/index.php/rlrn/article/view/184Links ]

Filya, I. (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Animal Feed Science and Technology, 116(1-2),141-150. https://doi.org/10.1016/j.anifeedsci.2004.06.003 [ Links ]

Garcés, M. A. M., Berrio, R. L., Ruíz, A. S., Serna, D. J. G., & Builes, A, A. F. (2004). Ensilaje como fuente de alimentación para el ganado. Revista Lasallista de Investigación, 1(1),66-71. https://www.redalyc.org/pdf/695/69511010.pdfLinks ]

García E. (1973). Modificaciones al sistema de clasificación climática de Köppen. Editorial U.N.A.M, segunda edición México D.F. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1Links ]

García-Hernández, S. A., Marín-Sánchez, J., Romero-Méndez, M., Hernández-Pérez, C., & López-Aguirre, S. (2020). Productive and quality response of six varieties of bell pepper (Capsicum annuum L.) to organic fertilization in Guadalzacar, S.L.P. Revista Bio Ciencias 7, e743. https://doi.org/10.15741/revbio.07.e743 [ Links ]

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias [INIFAP]. (2013 )Tecnologías Generadas, Validadas o Transferidas en los Estados de Tamaulipas, San Luis Potosí, Coahuila y Nuevo León en el año de 2012 ISBN: 978-607-37-0141-9 Folleto Técnico No. MX-0-310301-52-0313-09-59 Clave: INIFAP/CIRNE/FAP-24 Primera Edición 2013 http://www.inifapcirne.gob.mx/Revistas/Archivos/FICHAS%20TECNOLOGICAS%202012.pdfLinks ]

Loy, D.D., & Lundy, E.L. (2019). Nutritional properties and feeding value of corn and its coproducts. In Corn (pp. 633-659). AACC International Press. https://doi.org/10.1016/B978-0-12-811971-6.00023-1 [ Links ]

Maeda, K. Hanajima, D. Toyoda, S. Yoshida, N. Morioka, R. & Osada, T. (2011). Microbiology of nitrogen cycle in animal manure compost. Minireview. Microbial Biotechnology. 6, 700-709. https://doi.org/10.1111/j.1751-7915.2010.00236.x [ Links ]

Martínez-Viera, R., Dibut, B., & Yoania, R. (2010). Efecto de la integración de aplicaciones agrícolas de biofertilizantes y fertilizantes minerales sobre las relaciones suelo-planta. Cultivos Tropicales, 31(3), 1-9. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362010000300009&lng=es&tlng=esLinks ]

Millet, A. S., Aluwé, M., Van den Broeke, A., Leen, F., De Boever, J. and De Campeneere, S. (2018) Review: Pork production with maximal nitrogen efficiency. Animal, 12(5),1060-1067. https://doi.org/10.1017/S1751731117002610. [ Links ]

Neklyudov, A. D., Fedotov, G. N., & Ivankin, A. N. (2008). Intensification of composting processes by aerobic microorganisms: a review. Applied Biochemistry and Microbiology, 44,6-18. https://doi.org/10.1134/S000368380801002X [ Links ]

Norma Oficial Mexicana [NOM-021-RECNAT-2000]. (2002). Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdfLinks ]

Restrepo, J. (2009). Las mazorcas de maíz eran tan largas, Preparados básicos en Agricultura Organica. El ABC de la Agricultura Orgánica. Yanhuitlán, Oaxaca. [ Links ]

Sánchez, Ó. J., Ospina, D. A., Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69, 136-153. https://doi.org/10.1016/j.wasman.2017.08.012 [ Links ]

SAS. (2021). Statistical Analysis System On Demand for Academics. Statistics Software. SAS Institute, Inc., Cary, NC, USA. [ Links ]

Senesi, N. (1989). Composted materials as organic fertilizers. Science of The Total Environment, 81-82, 521-542. https://doi.org/10.1016/0048-9697(89)90161-7 [ Links ]

Servicio de Información Agroalimentaria y Pesquera [SIAP]. (2022, enero 26) Avance de Siembras y Cosechas. http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenProducto.doLinks ]

Vélez-Sánchez, C., Pinedo-Álvarez, C., Viramontes-Oliva, O., Ortega, C., & Melgoza-Castillo, A. (2008) Bio-tecnologías ambientales para el tratamiento de residuos ganaderos. Tecnociencia Chihuahua, 2(2),131-144. https://doi.org/10.54167/tecnociencia.v2i2.75 [ Links ]

Zeng, G.Y., Chen, M., Huang, Y., Zhang, D., Huang, J., Jiang, H., & Yu, R. (2010). Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresource Technology, 101(1),222-227. https://doi.org/10.1016/j.biortech.2009.08.013 [ Links ]

Financiamiento Esta investigación fue financiada con fondos propios.

Received: May 24, 2022; Accepted: November 04, 2022; Published: November 17, 2022

*Corresponding Author: Samuel López Aguirre. Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Igualdad 480, Col Unidad Veracruzana, 91710 Veracruz, Ver. México. Phone +52 2299344053. E-mail: samuellopez@uv.mx

Contribución de los autores

Conceptualización del trabajo, SAGH, JERM, SLA, MJRM; desarrollo de la metodología, SAGH, JERM, SLA; manejo de software, GCH, SLA.; validación experimental, JERM, IDGL; análisis de resultados, JERM, SLA; Manejo de datos, MJRM, SLA; escritura y preparación del manuscrito, GCH, SLA; redacción, revisión y edición, IDGL, SLA; “Todos los autores de este manuscrito han leído y aceptado la versión publicada del mismo.”

Interest conflict

“The authors declare no conflict of interest”.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License