SciELO - Scientific Electronic Library Online

 
vol.61 número4La extinción primaria y el factor estático de Debye-Waller en la caracterización de níquel con textura mediante difracción de rayos XAnomalous photon emission from a solid índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.4 México jul./ago. 2015

 

Investigación

 

Simple algebraic method to study the effects of hydrostatic pressure on the fundamental parameters of a Schottky barrier of metal/n-GaAs

 

O. Oubram* L.M. Gaggero-Sager** y I. Rodríguez-Vargas***

 

* Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México.

** Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos 62210, México.

*** Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina con Paseo la Bufa S/N, Zacatecas, Zac., 98060, México, e-mail: isaac@fisica.uaz.edu.mx

 

Received 10 February 2015.
Accepted 18 May 2015.

 

Abstract

The effects of hydrostatic pressure on the fundamental parameters of a Schottky barrier diode of metal/n-GaAs are studied using a simple algebraic method. The method relies on the dependence of the parameters of the semiconductor (effective mass, dielectric constant and band gap) with the hydrostatic pressure. We obtain simple expressions for the Schottky Barrier Height, Background Density and Differential Capacity that account of the hydrostatic pressure readily. In particular, the Schottky Barrier Height expression agrees qualitatively with the experimental results available. The Differential Capacity expression depends directly on the effective mass, opening the possibility of determined the effective mass through capacitance measurements. Due to its simplicity the algebraic method could be useful in the design of devices that exploit hydrostatic pressure effects.

Keywords: Hydrostatic pressure; Schottky barrier height; differential capacitance; algebraic method.

PACS: 73.30+y; 73.40.Ns; 74.62.F

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

O.O. acknowledges the financial support of PROMEP through grant NPTC-2013.

 

References

1. D. M. Moss, A. V. Akimov, B.A. Glavin, M. Henini, and A. J. Kent, Phys. Rev. Lett. 106 (2011) 066602.         [ Links ]

2. H. Saito, Y. Mineno, S. Yuasa, and K. Ando, J. Appl. Phys. 109 (2011) 07C701.         [ Links ]

3. S. Averine, Y. C. Chan, and Y. L. Lam, Appl. Phys. Lett. 77 (2000) 274.         [ Links ]

4. S. Y. Cheng, Mater. Chem. Phys. 78 (2003) 525.         [ Links ]

5. J. Y. Park and G. A. Somorjai, J. Vac. Sci. Technol. B 24 (2006) 1967.         [ Links ]

6. O. E. Tereshchenko et al., J. Appl. Phys. 109 (2011) 113708.         [ Links ]

7. S. J. Young, IEEE Sens. J. 11 (2011) 1129.         [ Links ]

8. S. Tripathi and S. Jit, J. Appl. Phys. 109 (2011) 053102.         [ Links ]

9. Y. Xie, H. Huang, W. Yang, and Z. Wu , J. Appl. Phys. 109 (2011) 023114.         [ Links ]

10. D. Li, X. Sun, H. Song, Z. Li, Y. Chen, G. Miao, and H. Jiang, Appl. Phys. Lett. 98 (2011) 011108.         [ Links ]

11. G. Y. Robinson, In Physics and Chemistry of III-V Compund Semiconductor Interfaces, edited by C.W. Wilmsen-Plenum, (New York 1985).         [ Links ]

12. R. Zucca and E.J. Wood, J. Appl. Phys. 46 (1975) 3.         [ Links ]

13. S. Mangal and P. Banerji, J. Appl. Phys. 105 (2009) 083709.         [ Links ]

14. A. Keffous, M. Zitouni, Y. Belkacem, H. Menari, and W. Chergui, Appl. Surf. Sci. 199 (2002) 22.         [ Links ]

15. R. T. Tung, Appl. Phys. Rev. 1 (2014) 011304.         [ Links ]

16. E. H. Rhoderick, R. H. Williams, Metal-semiconductor Contacts, Clarendon Press, (Oxford 1988).         [ Links ]

17. C. Tejedor, F. Flores and E. Louis, J. Phys. C: Solid State Phys. 10 (1977) 2163.         [ Links ]

18. J. Tersoff, Phys. Rev. B 30 (1984) 4874.         [ Links ]

19. J. Tersoff, Phys. Rev. B 32 (1985) 6968.         [ Links ]

20. W. E. Spicer, I. Lindau, P. Skeath, C. Su, and P. Chye, J. Vac. Sci. Technol. 17 (1979) 1019.         [ Links ]

21. W. Walukiewicz, J. Vac. Sci. Technol. B 5 (1987) 1062.         [ Links ]

22. W. E. Spicer et al., J. Vac. Sci. Technol. B 6 (1988) 1245.         [ Links ]

23. F. Dybala, A. Bercha, M. Klimczak, B. Piechal, Y. Ivonyak, W. A. Trzeciakowski, physica status solidi (b) 250 (2013) 703.         [ Links ]

24. A. Bercha et al., physica status solidi (b) 250 (2013) 769.         [ Links ]

25 . A. Patane and N. Balkan, Semiconductor Research: Experimental Techniques, (Springer Series in Materials Sciences, 2012).         [ Links ]

26. E. P. O'Reilly, G. Jones, M. Silver and A. R. Adams, physica status solidi (b) 198 (1996) 363.         [ Links ]

27. S. Fiat and G. Cankaya, Mat. Sci. Semicon. Proc. 15 (2012) 461.         [ Links ]

28. N. Ucar, A.F. Ozdemir, A. Calik and A. Kokce, Superlattice. Microst. 49 (2011) 124.         [ Links ]

29. N. Ucar, A.F. Ozdemir, D. A. Aldemir, S. Cakmak, A. Calik, H. Yildiz and F. Cimilli, Superlattice. Microst. 47 (2010) 586.         [ Links ]

30. S. Sönmezoğlu, F. Bayansal and G. Çankaya, Physica B 405 (2010) 287.         [ Links ]

31. G. Çankaya and B. Abay, Semicond. Sci. Tech. 21 (2006) 124.         [ Links ]

32. K. Akkiliç, A. Türüt, G. Çankaya, T. Kiliçoğlu, Solid State Commun. 125 (2003) 551.         [ Links ]

33. M. Çakarl, C. Temirci, A. Türüt and G Çankaya, Physica Scripta 68 (2003) 70.         [ Links ]

34. G. Cankaya and N. Ucar, Indian J. Pure Ap. Phys. 41 (2003) 36.         [ Links ]

35. G. Cankaya and N. Ucar, Int. J. Electron. 89 (2002) 745.         [ Links ]

36. G. Cankaya and N. Ucar, Physica Scripta 65 (2002) 454.         [ Links ]

37. C. S. Gworker, P. Phatak, B. T. Jonker, E. R. Weber and N. Newman, Phys. Rev. B 64 (2001) 045322.         [ Links ]

38. E. M. Dizhur, A. Y. Shulman, I. N. Kotelnikov and A. N. Voronovsky, Phys. Staus Solidi b 223 (2001) 129.         [ Links ]

39. G. Cankaya, N. Ucar and A. Turut, Int. J. Electron. 87 (2000) 1171.         [ Links ]

40. G. Cancaya, N. Ucar and A. Türüt, Phys. Status Solidi a 179 (2000) 479.         [ Links ]

41. G. Çankaya et al., Phys. Rev. B 60 (1999) 15944.         [ Links ]

42. P. Phatak, N. Newman, P. Dreszer and E.R. Weber, Phys. Rev. B 51 (1995) 18003.         [ Links ]

43. M. J. Peanasky and H. G. Drickamer, J. Appl. Phys. 56 (1984) 3471.         [ Links ]

44. O. Oubram, M. E. Mora-Ramos and L. M. Gaggero-Sager, J. Phys. Conf. Ser. 167 (2009) 1.         [ Links ]

45. O. Oubram, M. E. Mora-Ramos and L. M. Gaggero-Sager, Eur. Phys. J. B. 71 (2009) 233.         [ Links ]

46. F. J. Culchac, N. Porras-Montonegro and A Latge, J. Appl. Phys. 105 (2009) 094324.         [ Links ]

47. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors 2nd ed., Springer, (Berlin 1999).         [ Links ]

48. S. T. Pérez-Merchancano, R. Franco, J. Silva-Valencia, Microelectron. J. 39 (2008) 383.         [ Links ]

49. M.G. Barseghyan, Alireza Hakimyfard, S.Y. López, C.A. Duque and A.A. Kirokosyan, Physica E 42 (2010) 1618.         [ Links ]

50. E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, Physica E 42 (2010) 1623.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons