SciELO - Scientific Electronic Library Online

 
vol.61 número2Optical, structural and morphological properties of CdS-CdCO3 films índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.2 México mar./abr. 2015

 

Investigación

 

Shape transformation from silver triangular nanoprisms to nanodisks: Raman characterization and sculpturing mechanism

 

I.A. Lópeza, M. Ceballosa, G. Hernándezb, L. Acostac, and I. Gómeza

 

a Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México.

b Deparamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla No. 3001, 76230, Juriquilla, Querétaro, México. e-mail: genoveva@unam.mx.

c Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Unidad León, Boulevard UNAM No. 2011 Predio el Saucillo y el Potrero 36969, León, Guanajuato, México.

 

Received 12 September 2014;
accepted 13 January 2015

 

Abstract

The sculpturing action of chloride ions on silver nanoplates is investigated. Recent reports show that the shape transformation from silver triangular nanoprisms to nanodisks by addition of chloride ion occurs after a threshold concentration. In this work, a chemical study of this threshold concentration is presented. There is theoretical and experimental evidence that the morphological change only depends on the chloride ion concentration and not on the Cl-/Ag molar ratio. Besides, the chloride ion etching ability is attributed to the (AgCl)° complex, which controls the morphology change through a stepwise process where a silver atom is removed from the (110) plane, and is subsequently deposited on the (111) plane (i.e. from the nanoplate vertex to the basal plane). The threshold chloride ion concentration in the shape transformation coincides with the point where Ag+ ion and (AgCl)° concentrations are the same. On the other hand, the quantitative formation of AgCl-2 avoids the stepwise process, and then the colloidal system is destabilized. Furthermore, the analysis of the Raman spectra supports the transformation mechanisms.

Keywords: Silver triangular nanoprisms; silver nanodisks; Raman spectroscopy.

 

PACS: 81.07.-b

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B110 (2006) 15666.         [ Links ]

2. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, Nano Lett. 6 (2006) 1822.         [ Links ]

3. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 6 (2006) 2060.         [ Links ]

4. O. L. Muskens, G. Bachelier, N. Del Fatti, F. Vallee, A. Brioude, X. Jiang, and M. P. Pileni, J. Phys. Chem. C 112 (2008) 8917.         [ Links ]

5. Y. Huang, M. C. Pitter, and M. G. Somekh, Langmuir 27 (2011) 13950.         [ Links ]

6. P. E. Batson, Science 335 (2012) 47.         [ Links ]

7. W. P. Hall, S. N. Ngatia, and R. P. Van Duyne, J. Phys. Chem. C115 (2011) 1410.         [ Links ]

8. L. Feuz, M. P. Jonsson, and F. Höök, Nano Lett. 12 (2012) 873.         [ Links ]

9. E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, Thin Solid Films 516 (2008) 6813.         [ Links ]

10. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, ACS Nano 4 (2010) 2955.         [ Links ]

11. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, J. Am. Chem. Soc. 130 (2008) 1676.         [ Links ]

12. P. Liu, and M. Zhao, Applied Surface Science 255 (2009) 3989.         [ Links ]

13. Y. W. Cao, R. Jin, and C. A. Mirkin, Science 297 (2002) 1536.         [ Links ]

14. W. Li, P. H. Camargo, X. Lu, and Y. Xia, Nano Lett. 9 (2009) 485.         [ Links ]

15. M. Rycenga, P. H. Camargo, W. Li, C. H. Moran, and Y. Xia, J. Phys. Chem. Lett. 1 (2010) 696.         [ Links ]

16. W. J. Cho, Y. Kim, and J. K. Kim, ACS Nano 6 (2012) 249.         [ Links ]

17. A. Tang, S. Qu, Y. Hou, F. Teng, Y. Wang, and Z. J. Wang, Solid State Chem. 184 (2011) 1956.         [ Links ]

18. A. Jakab, C. Rosman, Y. Khalavka, J. Becker, A. Trügler, U. Hohenester, and C. Sönnichsen, ACS Nano 5 (2011) 6880.         [ Links ]

19. L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P Van Duyne, Nano Lett. 5 (2005) 2034.         [ Links ]

20. C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6 (2006) 683.         [ Links ]

21. K. G. Stamplecoskie, and J. C. Scaiano, J. Am. Chem. Soc. 132 (2010) 1825.         [ Links ]

22. B. Tang, J. An, X. Zheng, S. Xu, D. Li, J. Zhou, B. Zhao, and W. Xu, J. Phys. Chem. C112 (2008) 18361.         [ Links ]

23. S. Chen, and D. L. Carroll, Nano Lett. 2 (2002) 1003.         [ Links ]

24. J. Roh, J. Yi, and Y. Kim, Langmuir 26 (2010) 11621.         [ Links ]

25. Y. Chen, C. Wang, Z. Ma, and Z. Su, Nanotechnology 18 (2007) 325602.         [ Links ]

26. B. H. Lee, M. S. Hsu, Y. C. Hsu, C. W. Lo, and C. L. Huang, J. Phys. Chem. C114 (2010) 6222.         [ Links ]

27. J. An, B. Tang, X. Zheng, J. Zhou, F. Dong, S. Xu, Y. Wang, B. Zhao, and W. Xu, J. Phys. Chem. C 112 (2008) 15176.         [ Links ]

28. B. Tang, S. Xu, J. An, B. Zhao, W. Xu, and J. R. Lombardi, Phys. Chem. Chem. Phys. 11 (2009) 10286.         [ Links ]

29. M. S. Hsu, Y. W. Cao, H. W. Wang, Y. S. Pan, B. H. Lee, and C. L. Huang, ChemPhysChem 11 (2010) 1742.         [ Links ]

30. I. A. Lopez, and I. Gomez, Rev. Mex. Fis. 58 (2012) 289.         [ Links ]

31. R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, Science 294 (2001) 1901.         [ Links ]

32. G. Mie, Ann. Phys. 25 (1908) 377.         [ Links ]

33. P. Yu, J. Huang, C. T. Yuan, and J. Tang, J. Chin. Chem. Soc. 57 (2010) 528.         [ Links ]

34. I. A. López, and I. Gómez, Mater. Res. Soc. Symp. Proc. 1371 (2012)81.         [ Links ]

35. J. J. Fritz, J. Solution Chem. 14 (1985) 865.         [ Links ]

36. R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, and C. A. Mirkin, Nature 425 (2003) 487.         [ Links ]

37. H. Matsuta, and K. Hirokawa, Appl. Spectrosc. 43 (1989) 239.         [ Links ]

38. T. H. Wood, M. V. Klein, and D. A. Zwemer, Surf. Sci. 107 (1981) 625.         [ Links ]

39. T. M. Herne, and R. L. Garrell, Anal. Chem. 63 (1991) 2290.         [ Links ]

40. N. Peica, C. Lehene, N. Leopold, O. Cozar, and W. Keifer, J. Optoelectron. Adv. M. 9 (2007) 2943.         [ Links ]

41. D. S. Kilin, O. V. Prezhdo, and Y. Xia, Chem. Phys. Lett. 458 (2008) 113.         [ Links ]

42. S. Kruszewski, and M. Cyrankiewicz, Acta Phys. Pol. A 119 (2011) 1018.         [ Links ]

43. A. Falamas, C. Dehelean, N. Leopold, C. Lehene, V. Chiş, and S. Cintă Pânzaru, Studia UBB Physica 55 (2010) 25.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons