SciELO - Scientific Electronic Library Online

 
vol.28 número3Costo-beneficio del trampeo y fluctuación poblacional de Rhynchophorus palmarum L. en genotipos de coco (Cocos nucifera L.)Almacenamiento de carbono en etapas de crecimiento de Pinus patula Schiede ex Schltdl. & Cham. en la Sierra Alta Hidalguense índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.28 no.3 Chapingo sep./dic. 2022  Epub 08-Mar-2024

https://doi.org/10.5154/r.rchscfa.2022.01.001 

Scientific articles

Vegetation cover and land use change (1947-2019) in the region of Los Ríos, Tabasco, México

Alex R. Ramírez-García1 

Joel Zavala-Cruz1  * 

Joaquín A. Rincón-Ramírez1 

Armando Guerrero-Peña1 

Eustolia García-López1 

Rufo Sánchez-Hernández2 

Ofelia Castillo-Acosta3 

Gloria Alfaro-Sánchez4 

Mario A. Ortiz-Pérez4 

1Colegio de Postgraduados, Campus Tabasco. Periférico Carlos A. Molina s/n km 3. C. P. 86500. Cárdenas, Tabasco, México.

2Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Agropecuarias. Carretera Villahermosa-Teapa km 25 + 2, ranchería La Huasteca 2.a Sección. C. P. 86298. Villahermosa, Tabasco, México.

3División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Carretera Villahermosa-Cárdenas km 0.5, entronque a Bosques de Saloya. C. P. 86150. Villahermosa, Tabasco, México.

4Universidad Nacional Autónoma de México (UNAM), Instituto de Geografía. Av. Universidad 3000. C. P. 04510. Coyoacán, Ciudad de México, México.


Abstract

Introduction:

The spread of agricultural use leads to changes in vegetation cover, loss of biodiversity and ecosystem services.

Objective:

To analyze land use change and its effect on natural vegetation in the region of Los Ríos, Tabasco, Mexico, during the period 1947-2019.

Materials and methods:

A total of 14 land use and vegetation classes were identified using aerial photographs from 1947 and supervised classification of satellite images, verifying those from 1947 to 2000 with published cartography and those from 2019 (Landsat 8) in the field. Land use and vegetation cover change was analyzed by overlaying and comparing the maps with the Land Change Modeler module integrated in the TerrSet program.

Results and discussion:

In 72 years, natural vegetation was mostly replaced by crops, grassland and forest plantations, followed by human settlements. These uses, together, represented 14.2 % of the region's surface and increased to 61.8 %; that is, an increase of 435 %. These uses replaced areas of rainforest, secondary vegetation and hydrophytes, which went from 82.3 % to 29.7 %, representing a loss of 64 % of these coverages. Between 1947 and 1984, natural vegetation suffered the greatest loss of area (53.7 %).

Conclusions:

The loss of natural vegetation in the region occurred because of the increase in agricultural land and human settlements. The increase in agricultural land was driven by government programs without considering the environmental factor.

Keywords: tropical rainforest; vegetation cover; agricultural crops; grassland; human settlements

Resumen

Introducción:

La expansión del uso agropecuario genera cambios de cobertura vegetal, pérdida de biodiversidad y servicios ecosistémicos.

Objetivo:

Analizar el cambio de uso agrícola y su efecto en la vegetación natural en la región de Los Ríos, Tabasco, México, durante el periodo 1947-2019.

Materiales y métodos:

Se identificaron 14 clases de uso de suelo y vegetación mediante fotografías aéreas de 1947 y clasificación supervisada de imágenes de satélite, verificando las de 1947 al 2000 con cartografía publicada y las de 2019 (Landsat 8) en campo. El cambio de uso de suelo y vegetación se analizó mediante superposición y comparación de los mapas con el módulo Land Change Modeler integrado en el programa TerrSet.

Resultados y discusión:

En 72 años, la vegetación natural fue sustituida mayormente por cultivos, pastizales y plantaciones forestales, seguidos de asentamientos humanos. Estos usos, en conjunto, representaban 14.2 % de la superficie de la región y aumentaron a 61.8 %; es decir, un incremento de 435 %. Dichos usos sustituyeron áreas de selva, vegetación secundaria e hidrófita, las cuales pasaron de 82.3 a 29.7 %, representando una pérdida de 64 % de estas coberturas. Entre 1947 y 1984, la vegetación natural sufrió la mayor pérdida de área (53.7 %).

Conclusiones:

La pérdida de vegetación natural en la región se dio a causa del incremento en la superficie de uso agrícola y asentamientos humanos. La ampliación de la superficie agropecuaria fue impulsada por programas gubernamentales sin considerar el factor ambiental.

Palabras clave: selva tropical; cobertura vegetal; cultivo agrícola; pastizal; asentamientos humanos

Highlights

  • The agricultural area in the region of Los Ríos of Tabasco increased 435 % in 72 years.

  • Natural vegetation suffered the greatest loss of area (53.7 %) between 1947 and 1984.

  • Between 1947 and 2019, 64 % of the region's natural vegetation was lost.

  • The expansion of agricultural land was driven without considering the environmental factor.

Introduction

The interaction of humans with the biophysical elements of a territory generates structural changes at the landscape-ecosystem level (Sewnet & Abebe, 2018). The expansion of the agricultural frontier, extensive livestock farming and population growth have caused the loss of 73 % of tropical forests worldwide (Food and Agriculture Organization of the United Nations [FAO], & United Nations Environment Programme [UNEP], 2020; Rojas et al., 2020). This has resulted in increased pressure on other land, water and nutrient uses (Dhar, Chakraborty, Chattopadhyay, & Sikdar, 2019; Lone & Mayer, 2019); loss of biodiversity, ecosystem services, habitat for wildlife species (Liu et al., 2019; Hasan, Zhen, Miah, Ahamed, & Samie, 2020); and soil degradation through erosion and desertification processes (Obade & Lal, 2013).

In Mexico, crop and grassland areas increased 21 % (Velázquez et al., 2002), parallel to deforestation of 8.3 % of forests and rainforests between 1976 and 2007 (Rosete-Vergés et al., 2014). In Tabasco, agricultural use deforested 63.4 % of rainforests in the period 1940-2006 (Zavala-Cruz & Castillo-Acosta, 2007). The agricultural projects Plan Chontalpa and Plan Balancán-Tenosique deforested 245 000 ha of rainforests and secondary vegetation between 1960 and 2000 (Geissen et al., 2009; Isaac-Márquez et al., 2008). In recent decades, land-use change in Tabasco has been associated with the establishment of grassland and crops, timber extraction, oil industry, roads, human settlements and forest fires, which have affected forests, mangroves and secondary vegetation (Geissen et al., 2009; Ramos-Reyes, Palomeque de la Cruz, Núñez, & Sánchez-Hernández, 2019).

Changes in land cover and land use, and their environmental and social repercussions, require the development of procedures for their quantification at low cost and with greater precision over large geographic areas (Yulianto, Prasasti, Pasaribu, Fitriana, & Zylshal-Haryani, 2016). The analysis of remotely sensed materials (aerial photographs, satellite imagery and drones), using efficient and reliable Geographic Information Systems (GIS) to handle large volumes of information (Chuvieco, 2002), has boosted thematic coverage mapping (Yulianto et al., 2016). Thus, the multitemporal study of land use and vegetation contributes to the understanding of land cover variations and trend prediction, with useful information for planners and decision makers to propose actions for sustainable development, land management and mitigation of environmental problems and climate change (Hasan et al., 2020; Tahmasebi, Karami, & Keshavarz, 2020). The objective of this study was to analyze land use change and its effect on natural vegetation in the region of Los Ríos, Tabasco, Mexico, for the period 1947-2019.

Materials and Methods

The study was carried out in the region of Los Ríos, municipalities of Balancán, Emiliano Zapata and Tenosique in the east part of Tabasco (Figure 1), in an area of 6 234.2 km2 (24.7 % of the state). The region is bordered to the north and west by the states of Campeche and Chiapas, and to the east and south by the Republic of Guatemala. From north to south, the climates are warm sub-humid with summer rainfall (Aw), warm humid with abundant summer rainfall (Am) and warm humid with abundant rainfall all year round (Af); mean annual precipitation ranges from 1 600 to 2 000 mm and mean annual temperature from 26 to 28 °C (Aceves-Navarro & Rivera-Hernández, 2019). The region has geoforms of plains, hills and mountains drained by the Usumacinta and San Pedro rivers (Salgado-García et al., 2017).

Figure 1 Location of the region of Los Ríos in Tabasco, Mexico. 

Data sources for land use and vegetation cover mapping

Aerial photographs from 1947 at a scale of 1:20 000 were taken from Aerofoto. For 1984, 2000 and 2019, satellite images with pixel size of 30 x 30 m were downloaded from the United States Geological Survey portal (Landsat collection 1 level-2,- on-demand) (Table 1) with atmospheric and geographic correction (United States Geological Survey [USGS], 2019). The images had low percentage of cloud cover, except for the July 2019 image in the south part, which was resolved by generating a cloud layer from that month and cropping the cloud-free image from March of the same year; this image complemented the July image. A similar procedure was performed by Lin, Tsai, Lai, and Chen (2013) in areas with cloud cover.

Table 1 Characteristics of the satellite images used in the land use change analysis of the Los Ríos region, Tabasco, Mexico. 

Date of purchase Satellite Sensor identifier Resolution (m) Path Row Cloud cover (%)
November 25, 1984 Landsat 5 TM 30 x 30 21 48 0
December 5, 1999 Landsat 5 TM 30 x 30 21 48 2
March 31, 2019 Landsat 8 OLI_TIRS 30 x 30 21 48 1
July 5, 2019 Landsat 8 OLI_TIRS 30 x 30 21 48 0.94

Source: United States Geological Survey (USGS, 2019).

Classification of aerial photographs and satellite images

Aerial photographs from 1947 were georeferenced and photointerpreted based on tone and texture criteria to generate a vector layer of land use and vegetation cover (Chuvieco, 2002). In the preprocessing of these images, band stacking was used to convert them into a single layer, the area of interest of each image was cropped and the natural color band combinations 3-2-1 (red: 3, green: 2, blue: 1) and 4-3-2 for near infrared (red: 4, green: 3, blue: 2) were made (Chuvieco, 2002; Congedo, 2016).

Literature and cartography on land use and vegetation types of the Los Ríos region were reviewed (Instituto Nacional de Estadística y Geografía [INEGI], 1984, 2017; López-Mendoza, 1980; Vázquez-Negrín, Castillo-Acosta, Valdez-Hernández, Zavala-Cruz, & Martínez-Sánchez, 2011) (Table 2). Subsequently, satellite images were visually interpreted by comparing mapping information with spectral signatures of the RGB band combination (3-2-1 and 4-3-2) at each date; hue variations were associated with land use classes and vegetation types (Tarawally, Wenbo, Weiming, Mushore, & Kursa, 2019) found in the literature review. Regions of interest were then created for each land use and vegetation class (Congedo, 2016) and proceeded to supervised classification (Obodaia, Adjei, Odaia, & Lumor, 2019). The satellite images were analyzed with the Semi-Automatic Classification Plugin (SCP) extension which is a free and open-source add-on to QGIS 3.8.3 software (Congedo, 2016; Dhar et al., 2019).

The accuracy of the land use and vegetation map from 2019 was evaluated using Google Earth Pro version 7.3.4 software and a random sampling of sites with land uses, vegetation, water bodies and human settlements; geographic coordinates were stored in a Garmin eTrex GPS; and 644 points were validated in the field. Classification efficiency was achieved by overlaying the validated site information on the use and vegetation cover map, a confusion matrix was determined, and the Kappa index was estimated (Dhar et al., 2019; Obodaia et al., 2019).

Table 2 Land uses and vegetation types of the Los Ríos region, Tabasco, Mexico. 

Cover Key Uses
Temporary crop TC Maize (Zea mays L.), sorgum (Sorghum bicolor L. Moench), rice (Oryza sativa L.), beans (Phaseolus vulgaris L.), squash (Cucurbita argyrosperma H.)
Annual crop AC Papaya (Carica papaya L.), sugar cane (Saccharum officinarum L.)
Permanent crop PC Oil palm (Elaeis guineensis Jacq.)
Forest plantations PF Eucalyptus (Eucalyptus grandis W.), teak (Tectona grandis L.), gmelina (Gmelina arborea Roxb.), cedar (Cedrela odorata L.)
Grassland G Pennisetum purpureum A., Paspalum dilatatum P., Panicum maximum Jacq.
Evergreen rainforest EF Guatteria anomala R. E., Dialium guianense L., Calophyllum brasiliense L., Brosimum alicastrum Sw.
Rainforest and semi-evergreen seasonal forest RF Bucida buceras L., Cedrela odorata L., Piscidia piscipula L., Tabebuia rosea Bertol.
Flooded forest FF Pachira aquatica Aubl., Annona glabra L., Haematoxylum campechianum L.
Savanna S Curatella americana L., Byrsonima crassifolia L., Crescentia alata K., Crescentia cujete L.
Secondary vegetation SV Plants from native vegetation affected by human activities
Hydrophytic vegetation HV Thalia geniculata L., Typha domingensis Pers., Cladium jamaicense L. (Crantz)
Human settlement HS Urban demographic conglomerate
Bare soil BS Vegetation-free area
Water bodies Ca River and lagoon

The accuracy of the maps from 1947, 1984, and 2000 was evaluated with cartography and information from regional land use and vegetation cover studies (Estrada-Loreto, Barba-Macias, & Ramos-Reyes, 2013; Hernández-Rojas, López-Barrera, & Bonilla-Moheno, 2018; López-Mendoza, 1980; INEGI, 1984, 2001). For each year, cartography was georeferenced and overlaid on the land use and vegetation cover maps of the classified satellite images, geographically referenced points were generated, and confusion matrices and Kappa indices were developed (Dhar et al., 2019; Obodaia et al., 2019; Tarawally et al., 2019).

Land use change and vegetation cover analysis

Land use and vegetation change was analyzed by superimposing and comparing the maps using the Land Change Modeler module integrated in the TerrSet program, which provides land use change maps and graphs of gains and losses, net change and persistence of specific transitions (Clark Labs, 2009; Tarawally et al., 2019).

Results

Land use and vegetations for the period 1947-2019

Land use and vegetation maps from 1947, 1984, 2000 and 2019 had an accuracy of 75.8 %, 72.7 %, 75.2 % and 71.1 % respectively, and Kappa indices were 0.72, 0.69, 0.73 and 0.68 for those years. Table 3 and Figure 2 show the areas by land use for the period 1947-2019.

By 1947, agricultural areas and grasslands were distributed over 14.1 % of the Los Ríos region. Natural vegetation occupied the largest area (82.3 %), dominated by rainforests (evergreen rainforest [EF], rainforest and semi-evergreen seasonal forest [RF] and flooded forest [FF]) with 61.5 %, followed by savanna, secondary and hydrophytic vegetation. Human settlements, bare soil and water bodies occupied small areas.

The largest area of the region (54.3 %) was occupied by agricultural uses in 1984, with a greater coverage of grasslands and lesser coverage of crops. Vegetation areas had different trends; rainforests reduced their surface area to 12.9 %, savanna disappeared and secondary and hydrophytic vegetation increased (26.1 %). Human settlements, bare soil and water bodies increased their area.

Agricultural uses occupied 52.7 % of the land in 2000, with a predominance of grasslands over crops. Forest plantations appeared in a minimal area. The area covered by rainforests remained the same (13 %), secondary vegetation decreased and hydrophytic vegetation increased slightly. Human settlements, bare soil and water bodies continued to grow (11.7 %).

By 2019, agricultural uses reached the largest area (60.5 %) with increases in grasslands and temporary and permanent crops. Forest plantations expanded their area. Forest vegetation decreased to 10 %, secondary vegetation remained the same and hydrophytic vegetation decreased. Human settlements and bare soil continued to grow and water bodies lost surface area.

Table 3 Land use areas and vegetation types for the period 1947-2019 in the Los Ríos region, Tabasco, Mexico. 

Cover 1947 1984 2000 2019
Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)
Temporary crop 140.8 2.6 358.1 6.6 300.6 5.5 864.2 15.8
Annual crop - - 548.9 10.1 884.2 16.2 357.3 6.5
Permanent crop - - - - - - 94.7 1.7
Forest plantations - - - - 6.3 0.1 241.4 4.4
Grassland 628.4 11.5 2 051.4 37.6 1 689.8 30.9 1 753.6 32.1
Evergreen rainforest 1 782.9 32.7 338.3 6.2 314.5 5.8 275 5
Rainforest and semi-evergreen seasonal forest 1 296.3 23.7 94.6 1.7 70.6 1.3 131.7 2.4
Flooded forest 280.5 5.1 272.8 5 323.5 5.9 141 2.6
Savanna 310.2 5.7 - - - - - -
Secondary vegetation 473.8 8.7 1 044.1 19.1 823.4 15.1 812 14.9
Hydrophytic vegetation 348.6 6.4 382.4 7 402.7 7.4 263.9 4.8
Human settlement 3.2 0.1 41.1 0.8 51.3 0.9 64 1.2
Bare soil 3.9 0.1 56.5 1 262.9 4.8 291.8 5.3
Water bodies 191.6 3.5 271.8 5 330.1 6 169.3 3.1
Total 5 459.9 100 5 459.9 100 5 459.9 100 5 459.9 100

Figure 2 Land use and vegetation cover (L&V) for the period 1947-2019 in the region of Los Ríos, Tabasco, Mexico. TC = temporary crop, AC = annual crop, PC = permanent crop, FP = forest plantations, G = grassland, EF = evergreen forest, RF = rainforest and semi-evergreen seasonal forest, FF= flooded forest, S = savanna, SV = secondary vegetation, HV = hydrophytic vegetation, HS = human settlement, BS = bare soil, Wb = water bodies. 

Land use and vegetation cover dynamics for the period 1947-2019

Table 4 shows the balance between losses, gains and net change of agricultural land use, vegetation cover and others, between 1947 and 2019; the data show different dynamics in the Los Ríos region. Crops and grasslands had the greatest positive net change with 2 185.7 km2 for the period 1947-1984. Between 1984 and 2000, only annual crops showed a positive net change, and the introduction of forest plantations began. For the period 2000-2019, a positive net change was observed in grasslands and crops, except for annual crops. Temporary crops stand out with the highest net favorable change in 72 years, as well as forest plantations and permanent crops that covered 329.5 km2.

Rainforest and savanna vegetation showed negative net changes in all periods, being greater between 1947 and 1984 with 1 622.9 km2. Secondary and hydrophytic vegetation showed positive net changes between 1947 and 1984, and negative between 1984 and 2019.

Human settlements and bare soil showed positive net changes in all three assessment periods, while water bodies showed positive net changes between 1947 and 2000, and negative between 2000 and 2019.

Transition of vegetation cover and land use change

Based on Figure 3, between 1947 and 1984, the main change from rainforest, savanna and secondary vegetation was to grassland, followed by annual and temporary crops. Some areas of grassland and temporary crops changed to other agricultural use. For the periods 1984-2000 and 2000-2019, the biggest changes occurred in the agricultural use zone. The alternation was from grassland to crops, forest plantations and secondary vegetation, and from crops to grassland and secondary vegetation. Secondary and hydrophytic vegetation changed to grassland and crops, and rainforest to secondary vegetation.

Table 4 Land use and vegetation cover (L&V) dynamics in the region of Los Ríos, Tabasco, Mexico, for the period 1947-2019. 

1947-1984 1984-2000 2000-2019
L&V Loss (km2) Gain (km2) Change (km2) Persistency (km2) Loss (km2) Gain (km2) Change (km2) Persistency (km2) Loss (km2) Gain (km2) Change (km2) Persistency (km2)
TC -124.9 342.2 217.2 15.7 -293.1 -235.6 -57.5 65 -252.9 816.3 563.4 47.7
AC 0 548.3 548.3 0 -400 735.3 335.3 148.9 -800.4 273.7 -526.7 83.6
PC - - - - - - - - 0 94.7 94.7 0
FP - - - - 0 6.3 6.3 0 -6.2 241 234.8 0.1
G -360 1 780.1 1 420.1 269.8 -961.9 600.3 -361.6 1 089.5 -868.7 932.5 63.9 821.2
EF -1 530.7 74.8 -1455.9 256.8 -148.7 125 -23.7 190. 2 -180.6 141.3 -39.4 133.6
RF -1 270.9 81.3 -1 189.6 13.3 -88.5 64.6 -23.9 6 -62.2 123.3 61.1 8.4
FF -240.2 232.6 -7.5 40.1 -154.8 205.5 50.7 118 -281.2 98.7 -182.4 42.2
S 310.2 0 -310.2 0 - - - - - - - -
SV -359.8 934.9 575.1 106.4 -673.8 453.1 -220.7 30.3 -630.3 618.9 -11.4 193
HV -228.8 261.9 33.1 119.1 -200 220.3 20.2 182.4 -288.3 149.4 -138.9 144.1
HS -3.2 41 37.9 0 -26.7 36.9 10.2 14.4 -26 38.7 12.7 25.3
BS -3.9 56.4 52.5 0 -47.6 254 206.4 8.9 -245.8 274.7 28.9 17.1
Wb -49.3 125.3 76 142.8 -46.2 104.5 58.3 225.6 -190.8 30.4 -160.4 138.9

TC = temporary crop, AC = annual crop, PC = permanent crop, FP forest plantations, P = grassland, EF = evergreen rainforest, RF = rainforest and semi-evergreen seasonal forest, FF = Flooded forest, S = savanna, SV = secondary vegetation, HV = Hydrophytic vegetation, HS = human settlement, BS = bare soil, Wb = water bodies.

Figure 3 Land areas of the main vegetation transitions and agricultural use change in the region of Los Ríos, Tabasco, Mexico. TC = temporary crop, AC = annual crop, PC = permanent crop, FP = forest plantations, G = pasture, EF = evergreen rainforest, RF = rainforest and semi-evergreen seasonal forest, FF = flooded forest, S = savanna, SV = secondary vegetation, HV = Hydrophytic vegetation, HS = human settlement, BS = bare soil. 

Discussion

Accuracy values suggest that land use and vegetation maps from 1947, 1984, 2000 and 2019 are acceptable (Dhar et al., 2019) and Kappa (K) indices show that the land use classification is good (Satya, Shashi, & Deva, 2020; Sewnet & Abebe, 2018).

Land use data in the Los Ríos region for the period 1947-2019, with 72-year interval, reveal drastic changes in vegetation. The loss of natural vegetation stands out, since in 1947 it covered 82.3 %, when the largest area corresponded to EF, RF and FF; in 2019, vegetation reached its smallest area with 29.7 %. The most notable loss occurred in rainforest, which decreased from 61.5 % to 10 %. On the contrary, in the same period, agricultural use represented by crops and grassland grew from 14.1 % to 61.8 %; these uses, together with urban use, changed the original ecosystems by deforestation. Vegetation damage in the region is consistent with the increase in agricultural land, grassland and human settlements leading to the destruction of 63.4 % of Tabasco's forests between 1940 and 2006 (Zavala-Cruz & Castillo-Acosta, 2007) and the loss of 8.3 to 13.6 % of Mexico's forests and rainforest between 1976 and 2000 (Rosete-Vergés et al., 2014; Velázquez et al., 2002). Similar changes associated with increased agricultural use and urban settlements have resulted in the loss of natural vegetation (Liu et al., 2019; Mwampamba & Schwartz, 2011; Tarawally et al., 2019), degradation of 73 to 83 % of tropical forests worldwide (FAO & UNEP, 2020; Hamunyela et al., 2020; Rojas et al., 2020) and decrease of biodiversity and environmental services (Bonanomi et al., 2019; Liu et al., 2019).

Between 1947 and 1984, natural vegetation in the Los Ríos region suffered the greatest loss of 53.7 % of the area; in contrast, grassland and agricultural uses increased by 385 %. The expansion of grasslands corresponded to the boost of extensive livestock farming (Estrada-Loreto et al., 2013; Isaac-Márquez et al., 2008) and agricultural expansion was reflected in the increase of staple crops (Chowdhury, Emran-Hasan, & Abdullah-Al-Mamuna, 2020; Rojas et al., 2020), especially between the 1940s and 1960s when rural development policy in the region encouraged the production of maize (Zea mays L.), beans (Phaseolus vulgaris L.), rice (Oryza sativa L.), pepper (Capsicum spp.), squash (Cucurbita argyrosperma H.) and watermelon (Citrullus lanatus Thunb.) (Isaac-Márquez et al., 2008; Reyes Grande, 2015). The implementation of the Balancán-Tenosique plan in 1972 accelerated land use change due to the expansion of grasslands and crops over rainforest (San-Pallo, Ramos-Muñoz, Mesa-Jurado, & Díaz-Perera, 2019).

From 1984-2000, agricultural use continued to predominate in the Los Ríos region (17.4 km2∙yr-1), based on basic temporary crops for self-consumption, including land use with steep slopes and thin soils unsuitable for agriculture (Isaac-Márquez et al., 2008). The opening of croplands was based on the slash-and-burn system and, together with forest fires, reduced vegetation remnants (3 km2∙yr-1), mainly rainforests (Reyes Grande, 2015) and secondary vegetation. The displacement of vegetation surfaces by agricultural uses was comparable to that recorded in tropical areas of Tanzania (Mwampamba & Schwartz, 2011).

Between 1984-2000, annual sugarcane growing expanded, driven by the sugar mill Azsuremex S. A. de C. V., replacing areas of grasslands, crops and vegetation (García-Ortega, 2013); a similar change was observed in a watershed in Sao Paulo, Brazil (Couto-Júnior et al., 2019). Grasslands increased their area by the introduction of brizantha (Urochloa brizantha Hochst. ex A. Rich.) and humidicola (Urochloa humidicola R.) species, to improve livestock production, which contributed to remove remnants of forest, secondary and hydrophytic vegetation. On the other hand, eucalyptus (Eucalyptus) forest plantations were established on small areas (Trujillo-Ubaldo, Álvarez-López, Valdovinos Chavez, Benítez Molina, & Rodríguez Gonzales, 2018). These changes in use agree with that reported by Estrada-Loreto et al. (2013) and Palomeque-De la Cruz, Ruiz-Acosta, Galindo-Alcántara, & Ramos-Reyes (2019) in the study region.

For the period 2000-2019, changes in agricultural uses were dynamic. Temporary crops increased 29.6 km2∙yr-1, perhaps in response to support granted to ejidatarios for staple crops through the ‘Sembrando vida’ program in 2019 (San-Pallo et al., 2019). Inversely, annual crops decreased by a similar area, due to the loss of the 2018-2019 sugarcane harvest at the Azsuremex sugar mill. Permanent oil palm cultivation increased and mostly displaced grassland areas; this crop detonated in 2000 as one of the main crops in Tabasco with support from the federal program ‘Alianza para el Campo’ (Hernández-Rojas et al., 2018; Servicio de Información Agroalimentaria y Pesquera [SIAP], 2018), to increase the production of vegetable fat and agri-diesel (Rodríguez Wallenius, 2017). Grasslands increased sparsely but continued as the main use as forage provider for extensive livestock farming (Geissen et al., 2009; Palomeque-De la Cruz et al., 2019). Forest plantations increased their area with support from the Programa Especial Desarrollo Forestal (PEDF) 2013-2018, supported by native and introduced species such as mahogany (Swietenia macrophylla K.), cedar (Cedrela odorata L.), macuilis (Tabebuia rosea Bertol.), gmelina (Gmelina arborea Roxb.), teak (Tectona grandis L.), African mahogany (Khaya ivorensis A. Chev.), Australian cedar (Toona ciliata M. Roem.) and eucalyptus (Eucalyptus grandis W.). These species have been promoted by the companies Proteak, Agropecuaria Santa Genoveva and Grupo Forestal de México, due to their rapid growth and high commercial value (Comisión Estatal Forestal [COMESFOR], 2015), with the aim of producing timber and pulp for paper (Rodríguez Wallenius, 2017). Along with the growth of agricultural use, rainforest relicts lost surface area, being also affected by the extraction of firewood, poles and timber (Hamunyela et al., 2020; Villanueva-Partida et al., 2019).

Hydrophytic vegetation increased in the period prior to 2000 and then had losses due to the advance of grasslands. The recent deterioration of hydrophytic vegetation surfaces is consistent with the impulse of colonization activities, opening of roads and new agricultural and livestock areas in the Los Ríos region (Estrada-Loreto et al., 2013; Isaac-Márquez et al., 2008) and with the decrease of wetland areas due to the introduction of grasslands for livestock (Ramos-Reyes Palomeque-De la Cruz, Megía-Vera, & Landeros-Pascual, 2021).

Water bodies increased in area between 1984 and 2000 and decreased between 2000 and 2019. The loss of area can be attributed to changes in land use in the upper Usumacinta River basin, decreasing annual precipitation, rising temperatures in recent years, and the moderate to extreme drought that Tabasco experienced in 2019 (Aceves Navarro et al., 2017; Comisión Nacional del Agua [CONAGUA], 2019).

Conclusions

Land use change in the Los Ríos region, for the period 1947-2019, meant the increase of crops, grasslands, forest plantations and urban areas, which together represented 14.2 % and then increased to 61.8 %, i.e., an increase of 535 %. These uses occupied areas of rainforest, savanna and hydrophytic vegetation, which went from 82.3 % to 29.7%, representing a loss of 64 %. Agricultural and forestry uses were promoted by federal government programs in synergy with the demand for basic foodstuffs by the region's inhabitants. The massive loss of natural vegetation in 72 years shows little or no consideration of the environmental in these programs. To mitigate this problem, the information provided can contribute to the implementation of ecological and territorial planning programs; specific activities for the conservation and restoration of forests in mountain landscapes and karstic hills, and wetlands in swamps whose soils lack agricultural capacity; and actions for the sustainable management of agricultural and forestry zones, based on the suitability of soils and environment.

Acknowledgments

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship granted (CVU: 664717) during the doctoral program in science at the Tabasco Campus of the Colegio de Postgraduados. To M. C. Alberto Córdova Sánchez and Ing. Edgar Shirma Torres for their support provided in the field work.

References

Aceves-Navarro, L. A., & Rivera-Hernández, B. (2019). La biodiversidad en Tabasco. Estudio de estado (vol. I). México: CONABIO. Retrieved from https://bioteca.biodiversidad.gob.mx/janium/Documentos/14868.pdfLinks ]

Aceves Navarro, L. A., Rivera Hernández, H. B., Arrieta Rivera, A., Juárez López, J. F, Méndez Adorno, M. J., & Ramos Álvarez, C. (2017). Tendencias de cambio climático en los municipios de Tabasco que integran la subcuenca Usumacinta del río Usumacinta. In D. Soares-Moraes, & A. García-García (Eds.), La cuenca del río Usumacinta desde la perspectiva del cambio climático (pp. 74‒96). México: Instituto Mexicano de Tecnología del Agua. Retrieved from http://repositorio.imta.mx/handle/20.500.12013/1771Links ]

Bonanomi, J., Tortato, F. R., Gomes, R. S. R., Penha, J. M., Bueno, S. A., & Peres, C. P. (2019). Protecting forests at the expense of native grasslands: Land-use policy encourages open-habitat loss in the Brazilian cerrado biome. Perspectives in Ecology and Conservation, 17(1), 26‒31. doi: 10.1016/j.pecon.2018.12.002 [ Links ]

Chowdhury, M., Emran-Hasan, M., & Abdullah-Al-Mamuna, M. M. (2020). Land use/land cover change assessment of Halda watershed using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Sciences, 23(1), 63‒75. doi: 10.1016/j.ejrs.2018.11.003 [ Links ]

Chuvieco, E. (2002). Teledetección ambiental (3.a ed.). Barcelona, España: Ediciones Ariel. [ Links ]

Clark Labs. (2009). The land-change modeler for ecological sustainability (IDRISI). Retrieved from https://docplayer.es/48852006-Land-change-modeler-for-ecological-sustainability.htmlLinks ]

Comisión Estatal Forestal (COMESFOR) (2015). Programa Especial de Desarrollo Forestal 2013-2018. Retrieved from https://tabasco.gob.mx/sites/default/files/09_Programa_especial_df.pdfLinks ]

Comisión Nacional del Agua (CONAGUA). (2019). Monitor de sequía de América del Norte. Retrieved from https://smn.conagua.gob.mx/tools/DATA/Climatolog%C3%ADa/Sequ%C3%ADa/Monitor%20de%20sequ%C3%ADa%20en%20America%20del%20Norte/sequia0219.pdfLinks ]

Congedo, L. (2016). Semi-automatic classification plugin documentation. doi: 10.13140/RG.2.2.29474.02242/1 [ Links ]

Couto-Júnior, A. A., Conceição, T. F., Fernandes, M. A., Spatti, J. P. E., Lupinacci, C. M., & Braga, M. R. (2019). Land use changes associated with the expansion of sugar cane crops and their influences on soil removal in a tropical watershed in São Paulo State (Brazil). CATENA, 172, 313‒323. doi: 10.1016/j.catena.2018.09.001 [ Links ]

Dhar, R. B., Chakraborty, S., Chattopadhyay, R., & Sikdar, P. K. (2019). Impact of land-use/land-cover change on land surface temperature using satellite data: a case study of Rajarhat Block, North 24-Parganas District, West Bengal. Journal of the Indian Society of Remote Sensing, 47, 331‒348. doi: 10.1007/s12524-019-00939-1 [ Links ]

Estrada-Loreto, F., Barba-Macias, E., & Ramos-Reyes, R. (2013). Cobertura temporal de los humedales en la cuenca del Usumacinta, Balancán, Tabasco, México. Universidad y Ciencia, 29(2), 141‒151. Retrieved from http://www.scielo.org.mx/pdf/uc/v29n2/v29n2a4.pdfLinks ]

García-Ortega, M. (2013). Migraciones laborales, derechos humanos y cooperación internacional: Cortadores de caña centroamericanos en la frontera México-Belice. Trace, 63, 07‒23. Retrieved from http://www.scielo.org.mx/pdf/trace/n63/n63a2.pdfLinks ]

Geissen, V. R., Sánchez-Hernández, R., Kampichler, C., Ramos-Reyes, R., Sepulveda, L. A., Ochoa-Goana, S., … Hernández, D. S. (2009). Effects of land-use change on some properties of tropical soils: an example from Southeast Mexico. Geoderma, 151(3-4), 87‒97. doi: 10.1016/j.geoderma.2009.03.011 [ Links ]

Hamunyela, E., Brandt, P., Shirima, D., Thanh Do H. T., Herold M., & Roman-Cuesta, R. M. (2020). Space-time detection of deforestation, forest degradation and regeneration in montane forests of Eastern Tanzania. International Journal of Applied Earth Observation and Geoinformation, 88, 102063. doi: 10.1016/j.jag.2020.102063 [ Links ]

Hasan, S. S., Zhen, L., Miah, M. G., Ahamed, T., & Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environment, Development and Sustainability, 34, 100527. doi: 10.1016/j.envdev.2020.100527 [ Links ]

Hernández-Rojas, D. A., López-Barrera, F., & Bonilla-Moheno, M. (2018). Análisis preliminar de la dinámica de uso del suelo asociada al cultivo palma de aceite (Elaeis guineensis) en México. Agrociencia, 52(6), 875‒893. Retrieved from http://www.scielo.org.mx/pdf/agro/v52n6/2521-9766-agro-52-06-875.pdfLinks ]

Instituto Nacional de Estadística y Geografía (INEGI). (1984). Carta de uso de suelo y vegetación de Tenosique, Tabasco, escala 1:250 000. Retrieved from https://www.inegi.org.mx/temas/usosuelo/#DescargasLinks ]

Instituto Nacional de Estadística y Geografía (INEGI). (2001). Carta de uso de suelo y vegetación de Tenosique, Tabasco, escala 1:250000. Retrieved from https://www.inegi.org.mx/temas/usosuelo/#DescargasLinks ]

Instituto Nacional de Estadística y Geografía (INEGI). (2017). Anuario estadístico y geográfico de Tabasco. Retrieved from https://www.inegi.org.mx/contenido/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825095123.pdfLinks ]

Isaac-Márquez, R., Bernardus, J., Amarella, E., Ochoa-Gaona, S., Hernández, S., & Sandoval, J. L. (2008). Programas gubernamentales y respuestas campesinas en el uso del suelo: el caso de la zona oriente de Tabasco, México. Región y Sociedad, 20(43), 99‒129. Retrieved from http://www.scielo.org.mx/pdf/regsoc/v20n43/v20n43a4.pdfLinks ]

Lin, C. H., Tsai, P. H., Lai, K. H., & Chen, J. Y. (2013). Cloud removal from multitemporal satellite images using information cloning. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 232‒241. doi: 10.1109/TGRS.2012.2197682 [ Links ]

Liu, W., Zhan, J., Zhao, F., Yan, H., Zhang, F., & Wei, X. (2019). Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecological Indicators, 98, 228. doi: 10.1016/j.ecolind.2018.10.054 [ Links ]

Lone, S. A., & Mayer, I. A. (2019). Geo-spatial analysis of land use/land cover change and its impact on the food security in District Anantnag of Kashmir Valley. GeoJournal, 84, 785‒794. doi: 10.1007/s10708-018-9891-2 [ Links ]

López-Mendoza, R. (1980). Tipos de vegetación y su distribución en el estado de Tabasco y norte de Chiapas. Texcoco, México: Universidad Autónoma Chapingo. [ Links ]

Mwampamba, T. H., & Schwartz, M. W. (2011). The effects of cultivation history on forest recovery in fallows in the Eastern Arc Mountain, Tanzania. Forest Ecology and Management, 261(6), 1042‒1052. doi: 10.1016/j.foreco.2010.12.026 [ Links ]

Obade, V. D. P., & Lal, R. (2013). Catena assessing land cover and soil quality by remote sensing and geographical information systems (GIS). CATENA, 104, 77‒92. doi: 10.1016/j.catena.2012.10.014. [ Links ]

Obodaia, J., Adjei, A. K., Odaia, N. S., & Lumor, M. (2019). Land use/land cover dynamics using landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sensing Applications: Society and Environment, 13, 247‒256. doi: 10.1016/j.rsase.2018.10.007 [ Links ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), & Programa de las Naciones Unidas para el Medio Ambiente (PNUMA). (2020). El estado de los bosques del mundo 2020. Los bosques, la biodiversidad y las personas. Roma, Italia: Author. doi: 10.4060/ca8642es [ Links ]

Palomeque-De la Cruz, M. A., Ruiz-Acosta, S. C., Galindo-Alcántara, A., & Ramos-Reyes, R. (2019). Caracterización de la ganadería bovina en el área de protección de flora y fauna cañón del Usumacinta, Tenosique, Tabasco, México. Agro Productividad, 12(6), 75‒81. doi: 10.32854/agrop.v0i0.1403 [ Links ]

Ramos-Reyes, R., Palomeque-De la Cruz, M. A., Megía-Vera, H. J., & Landeros-Pascual, D. (2021). Modelo del cambio de uso de suelo en el sistema lagunar Carmen-Pajonal-Machona, México. Terra Latinoamericana, 39, e587. doi: 10.28940/terra.v39i0.587 [ Links ]

Ramos-Reyes, R., Palomeque de la Cruz, M. A., Núñez, J. C., & Sánchez-Hernández, R. (2019). Análisis geomático espacial del cambio de uso del suelo en Huimanguillo, Tabasco (2000-2010-2030). Revista Mexicana de Ciencias Forestales, 10(53), 118‒139. doi: 10.29298/rmcf.v10i53.555 [ Links ]

Reyes Grande, F. (2015). ¿Sustentabilidad versus subsistencia? Un estudio de caso dentro del Área Natural Protegida Cañón del Usumacinta. Relaciones. Estudios de Historia y Sociedad, 36(142), 261‒305. Retrieved from https://www.scielo.org.mx/pdf/rz/v36n142/0185-3929-rz-36-142-00261.pdfLinks ]

Rodríguez Wallenius, C. A. (2017). Disputas territoriales en torno a las plantaciones forestales y de agrocombustibles en el sureste de México. El Cotidiano, 201, 59‒66. Retrieved from https://www.redalyc.org/pdf/325/32549629007.pdfLinks ]

Rojas, F., Rubio, C., Rizzo, M., Bernabeu, M., Akil, N., & Martin, F. (2020). Land use and land cover in irrigated drylands: a long-term analysis of changes in the Mendoza and Tunuyán river basins, Argentina (1986-2018). Applied Spatial Analysis and Policy, 13, 875‒899. doi: 10.1007/s12061-020-09335-6 [ Links ]

Rosete-Vergés, F. A., Pérez-Damián, J. L., Villalobos-Delgado, M., Navarro-Salas, E. N., Salinas-Chávez, E., & Remond-Noa, R. (2014). El avance de la deforestación en México 1976-2007. Madera y Bosques, 20(1), 21‒35. Retrieved from http://www.scielo.org.mx/pdf/mb/v20n1/v20n1a3.pdfLinks ]

Salgado-García, S., Palma-López, D. J., Zavala-Cruz, J., Lagunes-Espinoza, L. C., Córdova-Sánchez, S., Castelán-Estrada, M., …Martínez-Becerra, A. (2017). Recomendaciones de fertilizantes en palma de aceite en la Región de los Ríos de Tabasco. Cárdenas, Tabasco, México: Colegio de Postgraduados. [ Links ]

San-Pallo, M. G., Ramos-Muñoz, D. E., Mesa-Jurado, M. A., & Díaz-Perera, M. A. (2019). Informes de gobierno y paisaje forestal en Tabasco y Chiapas de 1947 a 1982. Entre Diversidades, 2(13), 233‒262. doi: 10.31644/ED.V6.N2.2019.A08 [ Links ]

Satya, A., Shashi, M., & Deva, P. (2020). Future land use land cover scenario simulation using open source GIS for the city of Warangal, Telangana. India. Applied Geomatics, 12, 281‒290. doi: 10.1007/s12518-020-00298-4 [ Links ]

Servicio de Información Agroalimentaria y Pesquera (SIAP). (2018). Informe final. La palma de aceite en el estado de Tabasco. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/503575/Publicaci_n_21_-_Octubre_2019_-_Utilidad_de_la_Frontera_Agr_cola_en_el_estado_Tabasco.pdfLinks ]

Sewnet, A., & Abebe, G. (2018). Land use and land cover change and implication to watershed degradation by using GIS and remote sensing in the Koga watershed, North Western Ethiopia. Earth Science Informatics, 11, 99‒108. doi: 10.1007/s12145-017-0323-5 [ Links ]

Tahmasebi, T., Karami, E., & Keshavarz, M., (2020). Agricultural land use change under climate variability and change: Drivers and impacts. Journal of Arid Environments, 180, 104202. doi: 10.1016/j.jaridenv.2020.104202 [ Links ]

Tarawally, M., Wenbo, X., Weiming, H., Mushore, D. T., & Kursa, M. B. (2019). Land use/land cover change evaluation using land change modeller: A comparative analysis between two main cities in Sierra Leone. Remote Sensing Applications: Society and Environment, 16, 100262. doi: 10.1016/j.rsase.2019.100262 [ Links ]

Trujillo-Ubaldo, E., Álvarez-López, P. S., Valdovinos Chavez, V. R., Benítez Molina, G., & Rodríguez Gonzales, L. O. (2018). Turnos forestales en plantaciones maderables de Eucalyptus grandis Hill ex Maiden, en Balancán, Tabasco. Revista Mexicana de Ciencias Forestales, 9(48), 27‒45. doi: 10.29298/rmcf.v8i48.130 [ Links ]

United States Geological Survey (USGS). (2019). EarthExplorer. Retrieved February 20, 2019, from https://earthexplorer.usgs.gov/Links ]

Vázquez-Negrín, I., Castillo-Acosta, O., Valdez-Hernández, J. I., Zavala-Cruz, J., & Martínez-Sánchez, J. L. (2011). Estructura y composición florística de la selva alta perennifolia en el ejido Niños Héroes Tenosique, Tabasco, México. Polibotánica, 32, 41‒61. Retrieved from http://www.scielo.org.mx/pdf/polib/n32/n32a3.pdfLinks ]

Velázquez, A., Mas, J. F., Díaz-Gallegos, J. R., Mayorga-Saucedo, R., Alcántara, P. C., Castro, R., …Palacio, J. L. (2002). Patrones y tasas de cambio de uso del suelo en México. Gaceta Ecológica, (62), 21‒37. Retrieved from https://www.redalyc.org/articulo.oa?id=53906202Links ]

Villanueva-Partida, C. R., Casanova-Lugo, F., González-Valdivia, N. A., Villanueva-López, G., Oros-Ortega, I., Cetzal-Ix, W., & Basu, K. S. (2019). Traditional uses of dispersed trees in the pastures of the mountainous region of Tabasco, Mexico. Agroforestry Systems, 93, 383‒394. doi: 10.1007/s10457-017-0125-2 [ Links ]

Yulianto, F., Prasasti, I., Pasaribu, J. M., Fitriana, H. L., & Zylshal-Haryani, N. S. (2016). The dynamics of land use/land cover change modeling and their implication for the flood damage assessment in the Tondano watershed, North Sulawesi, Indonesia. Modeling Earth Systems and Environment, 2, 47. doi: 10.1007/s40808-016-0100-3 [ Links ]

Zavala-Cruz, J., & Castillo-Acosta, O. (2007). Cambios de uso de la tierra en el estado de Tabasco. In D. J. Palma-López & A. Triano-Sánchez (Eds.), Plan de uso sustentable de los suelos de Tabasco (vol. II, pp. 38‒56). Villahermosa Tabasco, México: Ed. COLEGIO DE POSTGRADUADOSISPROTAB. [ Links ]

Received: January 03, 2022; Accepted: August 10, 2022

*Corresponding author: zavala_cruz@colpos.mx; tel.: +52 993 286 4255.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License