SciELO - Scientific Electronic Library Online

 
vol.27 número2Crecimiento y potencial hídrico en brinzales de Pinus patula Schltdl. & Cham. en el ejido Carbonero Jacales, Huayacocotla, Veracruz índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.27 no.2 Chapingo may./ago. 2021  Epub 26-Ene-2024

https://doi.org/10.5154/r.rchscfa.2020.04.032 

Scientific articles

Effect of land use change and agricultural management on physical and hydrological properties of an Andosol in Uruapan, Michoacán.

Silvia J. Béjar-Pulido1 

Israel Cantú-Silva*  1 

Humberto González-Rodríguez1 

José G. Marmolejo-Moncivais1 

María I. Yáñez-Díaz1 

Erik O. Luna-Robles1 

1 Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. Carretera Nacional núm. 85, km 145. C. P. 67700. Linares, Nuevo León, México.


Abstract

Introduction:

World agriculture is characterized by intensive land use, which causes variations in physical and hydrological properties, regarded as key for agricultural productivity.

Objective:

To study the effect of land use change from forest to agriculture land with organic and conventional management on the physical and hydrological properties of an Andosol.

Materials and methods:

Four land use scenarios were evaluated: a forest land use scenario, two with Persea americana Mill var. Hass with conventional and organic management, and one with Macadamia integrifolia Maiden & Betche. Physical properties (texture, bulk density [BD], mechanical resistance to penetration [MRP] and porosity) and hydrological properties (moisture, hydraulic conductivity, infiltration, permanent wilting point [PWP], field capacity and available water) were determined. These variables were analyzed by parametric (ANOVA) and non-parametric (Kruskal-Wallis) statistics to determine differences among land use scenarios and depths (0 to 20 cm and 20 to 40 cm).

Results and discussion:

The ANOVA showed significant differences (P ≤ 0.05) in physical and hydrological properties among land use scenarios; infiltrations decreased 40 to 70 % in agricultural systems with respect to forest use. For the depth factor, no differences were observed in the case of hydrological variables only in PWP and silt. Interaction was only significant for BD. Porosity, MRP, BD and clay defined the behavior of the hydrological variables.

Conclusions:

The change from forest to agricultural land use causes significant variations in the physical and hydrological properties of an Andosol soil. The infiltration process was the most affected.

Keywords: organic management; conventional agriculture; infiltration; Persea americana; Macadamia integrifolia

Resumen

Introducción:

La agricultura mundial se caracteriza por el uso intensivo del suelo, el cual genera variaciones en las propiedades físicas e hidrológicas, consideradas clave para la productividad agrícola.

Objetivo:

Estudiar los efectos del cambio de uso de suelo forestal al agrícola con enmiendas orgánicas y convencionales sobre las propiedades físicas e hidrológicas de un Andosol.

Materiales y métodos:

Se evaluaron cuatro usos de suelo: uno forestal, dos con cultivo de Persea americana Mill var. Hass con manejo convencional y orgánico, y uno con Macadamia integrifolia Maiden & Betche. Se determinaron propiedades físicas (textura, densidad aparente [DA], resistencia mecánica a la penetración [RMP] y porosidad) e hidrológicas (humedad, conductividad hidráulica, infiltración, punto de marchitez permanente [PMP], capacidad de campo y agua disponible). Dichas variables se analizaron por estadística paramétrica (ANOVA) y no paramétrica (Kruskal-Wallis) para determinar diferencias entre usos de suelo y profundidades (0 a 20 cm y 20 a 40 cm).

Resultados y discusión:

El ANOVA mostró diferencias significativas (P ≤ 0.05) en las propiedades físicas e hidrológicas entre usos de suelo; las infiltraciones disminuyeron 40 a 70 % en los sistemas agrícolas con respecto al uso forestal. Para el factor profundidad no se observaron diferencias en las variables hidrológicas solo en el PMP y limo. La interacción solo fue significativa para la DA. La porosidad, RMP, DA y arcilla definieron el comportamiento de las variables hidrológicas

Conclusiones:

El cambio de uso de suelo forestal al agrícola provoca variaciones significativas en las propiedades físicas e hidrológicas de un suelo Andosol. El proceso de infiltración fue el más afectado.

Palabras clave: enmiendas orgánicas; agricultura convencional; infiltración; Persea americana; Macadamia integrifolia

Highlights:

  • Land use scenarios evaluated: forest use, avocado with conventional use and organic management, and macadamia.

  • Physical and hydrological properties were evaluated at two depths (0 to 20 cm and 20 to 40 cm).

  • Physical and hydrological properties varied significantly among the four land use scenarios.

  • Infiltration decreased 40 to 70 % in agricultural systems with respect to forest use.

  • Land use and depth interaction was significant for bulk density.

Introduction

Global agriculture is characterized by intensive land use in conventional and organic management modalities, causing variations in physical and hydrological properties, regarded as key for agricultural productivity, thus deterioration involves soil chemical and biological activity (Babin et al., 2019; Di Prima et al., 2018; Sihi et al., 2017). About 37.4 % of the Earth's surface is used for agriculture (Centro de Estudios para el Desarrollo Rural Sustentables y la Soberanía Alimentaria [CEDRSSA, 2019]).

Mexico has 26 of the 32 soil groups recognized by the World Soil Resource Reference Base (IUSS Working Group WRB, 2006). This diversity can be explained by several factors such as geographic location, vegetation, topography and climate, which directly influence land use and management. Andosol soils derived from volcanic ash and are important for the development of agriculture, which has been one of the bases of economic growth, and a factor of social stability (IUSS Working Group WRB, 2016). Andosols have good aggregate stability and high permeability, which makes them resistant to erosion; however, under well hydrated conditions or subjected to drastic change they can be susceptible to damage (Meza-Pérez & Geissert-Kientz, 2006). Andosol cover about 0.7 % of the emerged land surface (IUSS Working Group WRB, 2016) worldwide; in Mexico, these soils cover less than 2 % of the continental surface (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2016) and, at the regional level, Michoacán accounts for 15.4 % (Bedolla-Ochoa, Bautista, Ihl, & Dubrovina, 2019).

In Mexico, avocado is grown in 28 states, but Michoacán is the main producer with 84 % of the national production with about 112 000 ha. The economic benefits of this crop make Michoacán a significant contributor to the regional economy, but the production model has a high impact on nature, due to land use change in forest lands and soil deterioration due to inadequate management practices and excessive use of agrochemicals. These factors point to Mexico as one of the countries most exposed to desertification; in particular, Michoacán has a severe problem of degradation and potential desertification due to crop expansion (Chávez-León et al., 2012; Villanueva & Zepeda, 2018).

The objective of this study was to evaluate the effect of the change from forest to agricultural land use on physical and hydrological properties of an Andosol. The hypothesis proposes that the change from a forest ecosystem to agricultural use, and agricultural management in relation to the application of organic and conventional management, causes alterations in soil properties.

Materials and Methods

Study area

The study area is located in the ejido of “Toreo El Alto” in Uruapan, Michoacán, located in the southern part of the Purépecha mountain range, between coordinates 19° 28’ 22.2’’ N and 102° 00’ 19.7’’ W. The area has an altitude of 1 890 m and belongs to the Balsas River region; the climate is temperate-humid with summer rains (Cw) (García, 2004), with an average annual temperature between 10 and 27 °C and average annual rainfall that exceeds 1 500 mm. The soil type is Andosol of volcanic origin (Alcalá, Ortiz, & Gutiérrez, 2001). Three main types of vegetation are identified: pine forest, pine-oak forest and mountain mesophyll forest (Bello & Madrigal, 1996).

In an Andosol soil, four experimental plots were selected: one for forest use and three for agricultural use. According to the classification of Rzedowski (2006), the forest plot has coniferous forest vegetation represented by a mixture of species of the genus Pinus and Quercus, which include: Pinus devoniana Lindley, Pinus pseudostrobus Brongn, P. lawsonii Roezl ex Gordon, P. leiophylla Schl. & Cham, Quercus rugosa Neé, Q. laurina Bonpl., Arbustus xalapensis Kunth and Fraxinus udheii (Wenz) Lingelsh, corresponding to an unmanaged and uneven-aged forest, with an average age of 80 years.

The agricultural plots correspond to two avocado orchards (Persea americana Mill var. Hass) with organic and conventional management and an organic macadamia nut orchard (Macadamia integrifolia Maiden & Betche) that uses the same management as the organic avocado orchard; the trees have an average age of 60 years in the three orchards.

Organic management consists of cattle compost, derived from cattle feces with a dose of 50 Mg∙ha-1 (N-P2O5-K2O [39-37-29] + S [18.4 %] + Mg [13.6] + Ca [74 %] and micronutrients), applied in partial shade for a period of three years. Conventional management includes chemical fertilizers such as copper sulfate pentahydrate (CuSO4·5H2O, 600 mL∙ha-1) used as a fungicide and bactericide for preventive use; CO (NH2)2 foliar fertilizer at a dose of 3 kg∙ha-1 (20-30-10) every two months; and an extended-release granules (15-00-00 + 26.6 [CaO]+ 0.3 [B]).

Sampling and soil analysis

A random sampling was carried out in each of the four experimental plots. Four composite samples were collected in each plot at two depths (0 to 20 and 20 to 40 cm). Samples were taken to the soil laboratory of the Faculty of Forestry Sciences of the Universidad Autónoma de Nuevo León (UANL) and were dried outdoors and sieved on a 2 mm sieve to determine texture and moisture content. Methods used for the analysis of soil physical and hydrological properties are shown in Table 1.

Table 1 Methods used for the evaluation of soil physical and hydrological properties. 

Properties Method Unit
Physical properties
Texture1,2 Method AS-09 of NOM-021-RECNAT-2000 (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2002). %
Bulk density1,2 Gravimetric method (Woerner, 1989). g∙cm-3
MRP1 Hardness meter/penetrometer (soil hardness tester Yamanaka) (Medina-Guillén et al., 2017). Kg∙cm-2
Porosity1,2 Estimation by means of bulk density and particle size. %
Hydrological properties
Moisture1 Thermogravimetric technique, NOM-021-RECNAT-2000. %
Ks1 Permeability analysis specified by Japanese Industrial Standards (Das, 2002). cm∙s-1
Fb 1, F0 1 and Fa 1 Double ring method (Zhang et al., 2017). mm∙h-1
Available water1,2, PWP1,2 (15 bar) and FC1,2 (0.3 bar) Pressure plate and membrane method (Soil Moisture Equipment Corp., Santa Barbara, CA) (Klute & Dirksen, 1986). %

MRP = mechanical penetration resistance, Ks = hydraulic conductivity, Fb = infiltration capacity, F0 = initial infiltration, Fa = cumulative infiltration, PWP = permanent wilting point and FC = field capacity. 1Depth from 0 to 20 cm and 2depth from 20 to 40 cm.

Statistical analysis

The variables were analyzed in a completely randomized experimental design with factorial arrangement to evaluate the effect of land use system and depth changes, and interaction. All variables were tested for normality and homogeneity (n = 32) and the following analyses were applied: Kruskal-Wallis nonparametric test for hydraulic conductivity (Ks), porosity, moisture and sand; one-factor ANOVA for infiltrations and mechanical resistance to penetration (MRP); and factorial ANOVA for available water (Aw), bulk density (BD), clay, silt, permanent wilting point (PWP) and field capacity (FC). Subsequently, a Tukey test was performed for the comparison of means. All variables were analyzed with Pearson's correlation coefficient at both depths (0 to 20 and 20 to 40 cm). Statistical analyses were performed using SPSS statistical package version 22.0 with a confidence level of P ≤ 0.05 (International Business Machines [IBM, 2013]).

Results

Land use effect on physical and hydrological properties at a depth of 0-20 cm

According to Table 2, ANOVA for surface variables such as infiltration (F0, Fb and Fa) and MRP showed significant differences (P ≤ 0.05) among land use scenarios.

Table 2 One-factor analysis of variance for infiltration and mechanical resistance to penetration (MRP) among land use scenarios, at a depth of 0 to 20 cm. 

Variables (0-20 cm) SM DF MS MSE F P R2
F0(mm∙h-1) 3 588 960 3 1 196 320 549 100 2.17** 0.005 0.52
Fb(mm∙h-1) 491 703 3 163 901 12 451 13.16* 0.042 0.86
Fa(mm) 2 566 634 3 855 544 100 865 8.48* 0.014 0.8
MRP (Kg∙cm-2) 36.43 3 12.14 1.05 11.53** 0.007 0.85

SM = sum of squares, DF = degrees of freedom, MS = mean square, MSE = mean square error, and R2 = adjusted r-squared. F0 = initial infiltration, Fb = basic infiltration and Fa = cumulative infiltration. **Highly significant differences (P ≤ 0.01); *significant differences (P ≤ 0.05).

Table 3 indicates that, according to Tukey's test, infiltration variables (F0, Fb and Fa) and MRP of agricultural land uses showed significant decreases (P ≤ 0.05) with respect to the forestry system. MRP of the forestry system had the lowest hardness in contrast to agricultural systems with avocado, which showed mean values of 4.5 Kg∙cm-2. Referring to the initial, basic, and cumulative infiltration variables, values were lower compared to those of the forestry system; on average, the three variables decreased 70, 43 and 40 % in conventional avocado, organic avocado and macadamia, respectively. Organic systems (avocado and macadamia) were similar, differing significantly from conventional management, which indicates that the use of organic amendments can be an alternative to improve these hydrological variables.

On the other hand, the Kruskal-Wallis test (Table 3) indicated that Ks and moisture content were significantly different (P ≤ 0.05) among land use scenarios. Ks showed average values from 0.002 to 0.060 cm∙s-1, the lowest value was for organic avocado and the highest value for macadamia. In general, moisture content ranged from 52.47 to 67.45 % in the macadamia crop and forest plot, respectively.

Table 3 Mean comparison for physical and hydrological variables in an Andosol with four land use scenarios, at a depth of 0 to 20 cm. 

Land use F0(mm∙h-1) Fb(mm∙h-1) Fa(mm) Ks (cm∙s-1) M (%) MRP (Kg∙cm-2)
Forest use 2 320 a 858.08 a 2 013.56 a 0.020* 67.45* 2.05 c
Conventional avocado 600 c 253.95 c 618.50 c 0.009* 57.54* 4.62 b
Organic avocado 1 470 b 448.74 b 1 103.50 b 0.002* 66.86* 4.37 ab
Macadamia 1 560 b 488.14 b 1 194.40 b 0.060* 52.47* 3.87 a

Values with different letter (Tukey) and with asterisk (Kruskal-Wallis) represent significant differences (P ≤ 0.05) among land use. F0, Fb and Fa = initial, basic, and cumulative infiltration, respectively; Ks = hydraulic conductivity; M = moisture; MRP = mechanical resistance to penetration.

Effect of land use and depth changes on physical and hydrological properties

Table 4 shows the factorial ANOVA, where the soil use factor led to highly significant differences (P ≤ 0.01) in the variables BD and silt and clay content, and significant (P ≤ 0.05) for the variables FC and PWP, while Aw showed no differences. In the case of the factor depth only PWP and silt content had highly significant differences, while the rest of the variables showed no differences (BD, Aw, FC and clay). In the case of the factor interaction, only BD showed significant differences.

Table 4 ANOVA of two factors for land use (forest, organic avocado, conventional avocado and macadamia) and depth (0 to 20 cm and 20 to 40 cm) and interaction on the physical and hydrological properties of an Andosol soil. 

Variables Land use Depth Interaction
F(3, 24) F(1, 24) F(3, 24)
BD (g∙cm-3) 11.21** 1.34ns 0.474**
0 -0.289 0
Aw (%) 2.72ns 2.51ns 0.727ns
-0.072 -0.107 -0.565
FC (%) 5.371* 3.178ns 1.871ns
-0.008 -0.126 -0.199
PWP (%) 6.766* 18.668** 1.707ns
-0.002 0 -0.262
Silt (%) 23.45** 17.38** 0.339ns
0 -0.001 -0.59
Clay (%) 12.13** 0.286ns 0.943ns
0 -0.601 -0.453

**Highly significant differences (P ≤ 0.01); *significant differences (P ≤ 0.05). P < 0.05 is indicated in parentheses. BD = bulk density, Aw = available water, FC = field capacity, PWP = permanent wilting point.

Table 5 indicates that sand and porosity had significant differences (P ≤ 0.05) among land use, for both depths, based on the Kruskal-Wallis test. Porosity was relatively high in all land uses, the systems with the highest and lowest percentages at both depths were forest use with 78.9 % and organic avocado with 69.2 %. In general, sand contents for both depths were high in all land uses with averages of 55 %, except for conventional use which had 35 %.

The comparison of means of physical and hydrological properties by depth (Table 5) indicates that soil BD had low values, typical of Andosols, although forest use had the lowest values (0.55 and 0.65 g∙cm-3), and the highest values were recorded in organic avocado (0.81 and 0.80 g∙cm-3) at both depths.

FC ranged from 55 (macadamia) to 68 % (conventional avocado) for the first depth (0 to 20 cm) and ranged from 55 (organic avocado) to 62 % (forest use) for the second depth (20 to 40 cm). PWP ranged from 34 % (organic avocado) to 45 % (conventional avocado) for the first 20 cm, and at a depth of 20 to 40 cm, it decreased from 23 (macadamia) to 37 % (forest use). Aw ranged between 15 % for forestry system and 23 % for conventional use for the first depth (0 to 20 cm), which can be associated with high sand contents of forestry system; at a depth of 20 to 40 cm it varied from 16 to 26 % for the macadamia and organic avocado systems, respectively.

Silt values ranged from 40 to 60 % for the first depth (0 to 20 cm) and from 30 to 50 % for the second depth (20 to 40 cm). In the case of clay, the four land uses showed low contents, ranging from 6 to 11 % for 0 to 20 cm depth and from 5 to 9 % for 20 to 40 cm depth. The textural class for forest and organic land uses (organic avocado and macadamia) was sandy loam, and for conventional avocado was silt loam.

Table 5 Comparison of means of physical and hydrological properties at depths of 0 to 20 cm and 20 to 40 cm in four soil uses in an Andosol. 

Variable Land use
Forest use Conventional avocado Organic avocado Macadamia
Depth from 0 to 20 cm
Sand (%) 48.60* 27.96* 51.10* 56.46*
Silt (%) 45.36 a 60.81 b 42.13 a 37.36 c
Clay (%) 6.06 a 11.23 b 6.77 a 6.18 a
BD (g∙cm-3) 0.55 a 0.57 a 0.81 b 0.69 b
Porosity (%) 78.93* 78.60* 69.19* 73.96*
FC (%) 58.14 a 68.73 b 56.94 a 55.95 a
PWP (%) 42.78 a 45.66 a 34.49 b 39.35 b
Aw (%) 15.35 a 23.06 a 22.44 a 16.59 a
Depth from 20 to 40 cm
Sand (%) 56.28* 37.05* 59.14* 67.82*
Silt (%) 37.66 a 53.22 b 32.91 a 27.00 a
Clay (%) 6.06 a 9.73 b 7.95 a 5.18 a
BD (g∙cm-3) 0.65 a 0.58 a 0.80 b 0.73 b
Porosity (%) 75.34* 77.80* 69.48* 72.42*
FC (%) 62.02 a 61.60 b 55.38 a 40.12 a
PWP (%) 37.80 a 36.89 a 28.43 b 23.27 c
Aw (%) 24.22 a 24.71 a 26.95 a 16.84 a

Values with different letter (Tukey) and with asterisk (Kruskal-Wallis) represent significant differences (P ≤ 0.05) among land uses by depth. BD = bulk density, FC = field capacity, PWP = permanent wilting point and Aw = Available water.

Correlation of physical and hydrological properties

According to Pearson's correlation results, at depth 0 to 20 cm, BD correlated negatively with porosity (-1), sand (-0.60), Ks (-0.82), F0 (-0.65), Fb (-0.83) and Fa (-0.76), and positively with clay (0.74), silt (0.53), FC (0.54) and MRP (0.83). There is a strong positive correlation among the variables Ks, porosity and BD. Infiltrations (F0, Fb, Fa) showed no correlation with any other variable except for the relationships between them (Table 6).

Table 6 Pearson's correlation coefficient for physical and hydrological properties in an Andosol with depth from 0 to 20 cm. 

BD Porosity Sand Clay Silt PWP FC Aw Ks MRP F0 Fb Fa M
BD 1
Porosity -1.000** 1
Sand -0.609* 0.608* 1
Clay 0.749** -0.747** -0.794** 1
Silt 0.535* -0.535* -0.988** 0.692** 1
PWP 0.283 -0.284 -0.388 0.15 0.423 1
FC 0.547* -0.547* -0.602* 0.600* 0.565* 0.720** 1
Aw 0.437 -0.436 -0.388 0.670** 0.293 -0.177 0.556* 1
Ks -0.824** 0.822** 0.272 -0.496 -0.199 0.15 -0.249 -0.533* 1
MRP 0.838** -0.835** -0.607* 0.649** 0.559* 0.224 0.535* 0.49 -0.809** 1
F0 -0.659* 0.656* 0.429 -0.577* -0.361 0.252 -0.259 -0.701* 0.780** -0.721** 1
Fb -0.832** 0.830** 0.452 -0.662* -0.366 0.247 -0.282 -0.732** 0.924** -0.781** 0.921** 1
Fa -0.760** 0.758** 0.405 -0.614* -0.321 0.325 -0.208 -0.704* 0.883** -0.742** 0.967** 0.982** 1
M -0.539 0.541 -0.042 -0.103 0.078 0.485 0.168 -0.294 0.825** -0.453 0.533 0.670* 0.647* 1

**highly significant correlations (P ≤ 0.01); *significant correlations (P ≤ 0.05). Bulk density (BD), porosity, sand, clay, silt, permanent wilting point (PWP), field capacity (FC), available water (Aw), hydraulic conductivity (Ks) and mechanical resistance to penetration (MRP): n = 16. Infiltrations F0, Fb, Fa and moisture (M): n = 12.

On the other hand, at depth 20 to 40 cm, BD correlated strongly with porosity, sand, clay and silt (-1, -0.90, 0.64 and 0.86, respectively). Similarly, porosity correlated strongly with sand, silt and clay with correlation coefficients of 0.90, -0.65 and -0.87, respectively.

Table 7 Pearson's correlation coefficient for physical and hydrological properties in an Andosol with depth from 20 to 40 cm (n = 16). 

BD Porosity Sand Clay Silt PWP FC Aw
BD 1
Porosity -1.000** 1
Sand -0.904** 0.908** 1
Clay 0.648** -0.650** -0.613* 1
Silt 0.869** -0.873** -0.984** 0.464 1
PWP 0.419 -0.426 -0.640** 0.469 0.613* 1
FC 0.373 -0.383 -0.560* 0.520* 0.512* 0.835** 1
Aw 0.19 -0.2 -0.275 0.387 0.222 0.362 0.815** 1

**Highly significant correlations (P ≤ 0.01); *significant correlations (P ≤ 0.05). Bulk density (DA), permanent wilting point (PWP), field capacity (FC), available water (Aw).

Discussion

On a historical basis, deforestation in the state of Michoacán is associated with changes in land use due to agricultural activities under different organic and conventional management (Chávez-León et al., 2012), causing changes in the physical, hydrological, chemical and biological properties of the land. This was observed in the results of the present research, where the variables showed differences compared to the forestry system. This has a direct impact on soil ecosystem services and, consequently, accelerates degradation processes, where agricultural and livestock activities represent the main causes in Mexico (35 % of the land), followed by loss of vegetation cover, urban and industrial development (Etchevers, Saynes, Sánchez, & Roosevelt, 2016). Krasilnikov, Jiménez, Reyna, and García (2011) indicate Mexico needs to take soil conservation measures, given its dominant role in food production, because 44 % of the area is under agricultural activity and indicate that since 2010 there has been greater pressure on soil resources.

Acosta (2007) indicates that physical properties influence soil water dynamics, mainly texture, BD and porosity. Clay content allows a diagnosis of the physical-hydrological interaction of the soil, since increases in these particles lead to physical degradation, mainly modifying hydrological variables (Jiménez-Heredia, Martínez-Bravo, & Mancera-Rodríguez, 2010). This was the case of the conventional avocado plot, where infiltration variables were modified mainly by texture, because it had greater amount of clay and less infiltration.

According to Neris, Jiménez, Fuentes, Morillas, and Tejedor (2012), under natural or unmanaged conditions, Andosols are soils known for high infiltration rates, due to good structural development and aggregate stability; however, these properties are vulnerable to degradation by land use changes. The results of the present study are consistent with the above, where the highest infiltration rates were found under natural (forest) land use. On the other hand, infiltration differences between organic and conventional agricultural uses are marked by the contents of organic matter, which improves chemical, biological, physical and hydrological properties (Williams, Blanco-Canqui, Francis, & Galusha, 2017), being the application of organic amendments a common practice for organic avocado and macadamia.

Narro (1994) points out that Ks values between 0.003 and 0.005 cm∙s-1 indicate high permeability. According to the results of the present study, only the organic avocado plot is outside the range of this assessment (medium permeability), which may be associated with bulk density and porosity values influenced by the degree of mechanization during crop harvesting. On the other hand, Di Prima et al. (2018) mention that sandy loam-textured soils with agricultural management have positive and highly significant correlation between Ks and porosity, having a similar trend in this research. Larios-González, Salmerón-Miranda, and García-Centeno (2014) and Zúñiga, Buenaño, and Risco (2018) report that in Andosols soils it is common to find low BD values (<0.90 g∙cm-3) and high porosity (>65 %) (Ibáñez & Manríquez, 2011), which also coincides with the values estimated in this study.

MRP results show correlation with BD, porosity and texture, which influence hydrological properties, coinciding with Shah et al. (2017), who indicate that high BD and low soil moisture content have a direct impact on the increase of MRP. Parker (2007) and Vásquez, Gómez, Velázquez, Aldrete, and Fierros-González (2011) mention that Andosols with high MRP values exceed the ideal conditions for root growth and development, making them more vulnerable to physical deterioration.

Two textural classes were found (sandy loam and silt loam) in the granulometric analysis of Andosol, which seems to have influenced the infiltration variables; in the case of conventional avocado these variables could have been negatively affected by the texture, because a greater amount of clay was observed (negatively correlated with the infiltration variables) and lower sand content. Even so, Jiménez-Heredia et al. (2010) state that, in general, this type of soil has good conditions for the development of vegetation, because it has optimal drainage characteristics, water storage capacity and aeration, characteristics of volcanic soils (Paz & Sánchez, 2007).

Moisture, FC, PWP and Aw are in the range reported for Andosols with low BD (0.90 g∙cm-3) (Paz & Sánchez, 2007). Soil moisture is mainly affected by altered texture, BD and porosity (Anaya, Mendoza, Rivera, Páez, & Olivares-Martínez, 2016). Ibáñez and Manríquez (2011) indicate that Andosols show high values of Aw and PWP. In this study, the results showed PWP values between 34 and 45 % and for Aw from 15 to 23 %, showing positive correlation of PWP with silt (0.613) and negative with sand (-0.640) at a depth of 20 to 40 cm. Texture is an important variable in water retention at high tensions, due to the influence of soil particle size on fluid absorption and retention (Chicas, Vanegas, & García, 2014; Saxton & Rawls, 2006).

Conclusions

Land use change to agricultural use caused significant variations in the physical and hydrological properties of Andosol. The infiltration process was the most affected; infiltrations decreased 40 to 70 % in agricultural systems compared to forest use. Bulk density, porosity, mechanical resistance to penetration and clay defined the behavior of hydrological variables. Organic agriculture showed minor negative effects compared to conventional agriculture however, both are important for the economy of Michoacán. Therefore, the results of this research can be used to establish criteria and make sustainable decisions on soil resources. This study evidences the consequences of land use change on the behavior of physical and hydrological variables, showing that the conversion from forest use to agricultural use (organic or conventional) generates a significant negative effect on the behavior of soil properties.

Acknowledgments

The authors would like to thank CONACYT for the support of the doctoral grant (737236) for carrying out this research. The authors also thank the ejido of "Toreo El Alto" for allowing access and collection of the information used in this research.

References

Acosta, C. (2007). El suelo agrícola, un ser vivo. Inventio, la génesis de la cultura universitaria en Morelos, 3(5), 55‒60. Retrieved from http://inventio.uaem.mx/index.php/inventio/article/view/219Links ]

Alcalá, D. J. M., Ortiz, S. A. C., & Gutiérrez, C. M. C. (2001). Clasificación de los suelos de la Meseta Tarasca, Michoacán. Terra Latinoamericana, 19(3), 227‒239. Retrieved from https://www.redalyc.org/pdf/573/57319304.pdfLinks ]

Anaya, C. A., Mendoza, M., Rivera, M., Páez, R., & Olivares-Martínez, L. D. (2016). Contenido de carbono orgánico y retención de agua en suelos de un bosque de niebla en Michoacán, México. Agrociencia, 50(2), 251‒269. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S1405-31952016000200251&script=sci_arttextLinks ]

Babin, D., Deubel, A., Jacquiod, S., Sørensen, S. J., Geistlinger, J., Grosch, R., & Smalla, K. (2019). Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biology and Biochemistry, 129, 17‒28. doi: 10.1016/j.soilbio.2018.11.002 [ Links ]

Bedolla-Ochoa, C., Bautista, F., Ihl, T., & Dubrovina, I. (2019). Diversidad de suelos y su distribución espacial. In A. Cruz, C. Nájera, & E. Melgarejo (Eds.), La biodiversidad en Michoacán. Estudio de Estado. (pp. 51‒59). México: CONABIO. [ Links ]

Bello, G. M. A., & Madrigal, S. X. (1996). Estudio florístico del Campo Experimental “Barranca del Cupatitzio”, Uruapan, Michoacán. Retrieved from https://www.worldcat.org/title/estudio-floristico-del-campo-experimental-barranca-del-cupatitzio-uruapan-michoacan/oclc/651484543Links ]

Centro de Estudios para el Desarrollo Rural Sustentables y la Soberanía Alimentaria (CEDRSSA). (2019). El suelo, un recurso invaluable para la producción de alimentos. Retrieved from http://www.cedrssa.gob.mx/files/b/13/49Suelo_recurso_invaluable.pdfLinks ]

Chávez-León, G., Tapia-Vargas, L. M., Bravo-Espinoza, M., Sáenz-Reyes, J., Muñoz-Flores, H. J., Vidales-Fernández, I., & Mendoza-Cantú, M. (2012). Impacto de cambio de uso de suelo forestal a huertos de aguacate. México: INIFAP. Retrieved from https://www.researchgate.net/publication/265125083_Impacto_del_cambio_de_uso_del_suelo_forestal_a_huertos_de_aguacate_IMPACT_OF_FOREST_LAND_USE_CHANGE_TO_AVOCADO_ORCHARDSLinks ]

Chicas, S. R. A., Vanegas, C. E. A., & García, A. N. (2014). Determinación indirecta de la capacidad de retención de humedad en suelos de la subcuenca del Río Torjá, Chiquimula, Guatemala. Revista Ciencias Técnicas Agropecuarias, 23(1), 41‒46. Retrieved from http://scielo.sld.cu/scielo.php?pid=S2071-00542014000100007&script=sci_arttext&tlng=enLinks ]

Das, B. (2002). Soil mechanics laboratory manual. USA: Oxford University Press. [ Links ]

Di Prima, S., Rodrigo-Comino, J., Novara, A., Iovino, M., Pirastru, M., Keesstra, S., & Cerdà, A. (2018). Soil physical quality of citrus orchards under tillage, herbicide, and organic managements. Pedosphere, 28(3), 463‒477. doi: 10.1016/S1002-0160(18)60025-6 [ Links ]

Etchevers, J., Saynes, V., Sánchez, M., & Roosevelt, F. (2016). Manejo sustentable del suelo para la producción agrícola. In D. Carrera-Martínez, & J. Ramírez (Eds.), Ciencia, tecnología e innovación en el sistema agroalimentario de México (pp. 63‒79). México: Colegio de Postgraduados. Retrieved from https://www.researchgate.net/profile/J_Etchevers/publication/304581117_Capitulo_4_Manejo_sustentable_del_suelo_para_la_produccion_agricola_A_nation_that_destroys_its_soil_destroys_itself/links/57741f7608ae4645d60a0d90.pdfLinks ]

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. México: UNAM. Retrieved from http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1Links ]

International Business Machines (IBM). (2013). IBM SPSS Statistics for Windows, version 22.0. Armonk, NY, USA: Author. [ Links ]

IUSS Working Group WRB. (2006). World reference base for soil resources 2006: A framework for international classification, correlation and communication. Roma: FAO. Retrieved from http://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdfLinks ]

IUSS Working Group WRB (2016). Base referencial mundial del recurso suelo. 2014, Actualización 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos 106. Roma: FAO . Retrieved from http://www.fao.org/3/i3794es/I3794ES.pdfLinks ]

Jiménez-Heredia, Y., Martínez-Bravo, C. M., & Mancera-Rodríguez, N. J. (2010). Características físicas y químicas del suelo en diferentes sistemas de uso y manejo en el centro agropecuario Cotové, Santa Fé de Antioquia. Colombia. Suelos Ecuatoriales, 40(2), 176‒188. Retrieved from https://www.researchgate.net/publication/296662433_Caracteristicas_Fisicas_y_Quimicas_del_Suelo_en_Diferentes_Sistemas_de_Uso_y_Manejo_en_el_Centro_Agropecuario_Cotove_Santa_Fe_de_Antioquia_ColombiaLinks ]

Klute, A., & Dirksen, C. (1986). Conductividad y difusividad hidráulica: métodos de laboratorio. In A. Klute (Ed.), Métodos de análisis de suelos: Parte 1 Métodos físicos y mineralógicos. USA: American Society of Agronomy, Inc.-Soil Science Society of America, Inc. doi: 10.2136/sssabookser5.1.2ed.c28 [ Links ]

Krasilnikov, P., Jiménez, F. J., Reyna, T., & García, N. E. (2011). Geografía de suelos de México. México: UNAM . Retrieved from https://rde.inegi.org.mx/RDE_08/Doctos/RDE_08_opt.pdfLinks ]

Larios-González, R. C., Salmerón-Miranda, F., & García-Centeno, L. (2014). Fertilidad del suelo con prácticas agroecológicas y manejo convencional en el cultivo de café. La Calera, 14(23), 67‒75. doi: 10.5377/calera.v14i23.2660 [ Links ]

Medina-Guillén, R., Cantú-Silva, I., Gonzales-Rodríguez, H., Pando-Moreno, M., Kubota, T., & Gómez-Meza, M. V. (2017) Efectos del rodillo aireador y el fuego en las propiedades físicas e hidrológicas del suelo en Matorrales de Coahuila, México. Agrociencia, 51(5), 471‒485. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S1405-31952017000500471&script=sci_arttextLinks ]

Meza-Pérez, E., & Geissert-Kientz, D. (2006). Estabilidad de estructura en andisoles de uso forestal y cultivados. Terra Latinoamericana, 24(2), 163─170. Retrieved from https://www.redalyc.org/pdf/573/57311108002.pdfLinks ]

Narro, F. E. (1994). Física de suelos: con enfoque agrícola. México: Trillas. [ Links ]

Neris, J., Jiménez, C., Fuentes, J., Morillas, G., & Tejedor, M. (2012). Vegetation and land-use effects on soil properties and water infiltration of Andosols in Tenerife (Canary Islands, Spain). CATENA, 98, 55‒62. doi: 10.1016/j.catena.2012.06.006 [ Links ]

Parker, R. T. (2007). Monitoring soil strength conditions resulting from mechanical harvesting in volcanic ash soils of central Oregon. Western Journal of Applied Forestry, 22(4), 261-268. doi: 10.1093/wjaf/22.4.261 [ Links ]

Paz, I. E., & Sánchez, M. (2007). Relación entre dos sistemas de sombrío de café y algunas propiedades físicas del suelo en la meseta de Popayán. Revista Facultad de Ciencias Agropecuarias, 5(2), 39‒43. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=6117963Links ]

Rzedowski, J. (2006). Vegetación de México. México: Limusa, Noriega Editores. [ Links ]

Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70(5), 1569-1578. doi: 10.2136/sssaj2005.0117 [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2002). Norma oficial mexicana, NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. México: Diario Oficial de la Federación. Retrieved from http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdfLinks ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2016). Informe de la situación del medio ambiente en México 2015. Compendio de estadísticas ambientales, indicadores clave, de desempeño ambiental y crecimiento verde. México: Author. Retrieved from https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdfLinks ]

Shah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Muhammad, A. B., … Souliyanonh, B. (2017). Efectos de la compactación del suelo sobre la salud y la productividad del suelo: una descripción general. Environmental Science Pollution Restoration, 24, 10056-10067. doi: 10.1007/s11356-017-8421-y [ Links ]

Sihi, D., Dari, B., Sharma, D. K., Pathak, H., Nain, L., & Sharma, O. P. (2017). Evaluation of soil health in organic vs. conventional farming of basmati rice in North India. Journal of Plant Nutrition and Soil Science, 180(3), 389‒406. doi: 10.1002/jpln.201700128 [ Links ]

Vásquez, G. I., Gómez, G. A., Velázquez, M. A., Aldrete, A., & Fierros-González, A. M. (2011). Un penetrómetro dinámico para evaluar la resistencia mecánica en suelos forestales. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(2), 292‒302. doi: 10.5154/r.rchscfa.2010.04.017 [ Links ]

Villanueva, T. L., & Zepeda, A. J. (2018). La producción de aguacate en el estado de Michoacán y sus efectos en los índices de pobreza, el cambio del uso de suelo y la migración. Revista Mexicana Sobre Desarrollo Local, 2(1), 1‒12. Retrieved from http://rmdl.uan.edu.mx/index.php/RMDL/article/view/41/17Links ]

Williams, D. M., Blanco-Canqui, H., Francis, C. A., & Galusha, T. D. (2017). Organic farming and soil physical properties: An assessment after 40 years. Agronomy Journal, 109(2), 600‒609. doi: 10.2134/agronj2016.06.0372 [ Links ]

Woerner, M. (1989). Métodos químicos para el análisis de suelos calizos de zonas áridas y semiáridas. México: Universidad Autónoma de Nuevo León. [ Links ]

Zhang, J., Lei, T., Qu, L., Chen, P., Gao, X., Chen, C., & Su, G. (2017). Method to measure soil matrix infiltration in forest soil. Journal of Hydrology, 552, 241-248. doi: 10.1016/j.jhydrol.2017.06.032 [ Links ]

Zúñiga, F., Buenaño, M., & Risco, D. (2018). Caracterización física y química de suelos de origen volcánico con actividad agrícola, próximos al volcán Tungurahua. Revista Ecuatoriana de Investigaciones Agropecuarias, 1(1), 5‒10. doi: 10.31164/reiagro.v1n1.2 [ Links ]

Received: April 25, 2020; Accepted: April 06, 2021

*Corresponding author: icantu59@gmail.com; tel.: +52 821 212 4895.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License