SciELO - Scientific Electronic Library Online

 
vol.25 número2Análisis espacial de las variables fenotípicas en un huerto clonal de Pinus arizonica Engelm. en el norte de MéxicoInfluencia del método de árboles padres en la diversidad de la regeneración de bosques mixtos de Durango, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.25 no.2 Chapingo may./ago. 2019  Epub 19-Feb-2021

https://doi.org/10.5154/r.rchscfa.2018.10.076 

Scientific article

Historical and current spatial modeling of the sacred fir (Abies religiosa [Kunth] Schltdl. & Cham.) in the Trans-Mexican Volcanic Belt

Ulises Manzanilla-Quiñones1  * 

Cristian A. Martínez-Adriano1 

Óscar A. Aguirre-Calderón1 

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. Carretera Nacional kilómetro 145. C. P. 67700. Linares, Nuevo León, México.


Abstract

Introduction:

Climatic conditions in the Trans-Mexican Volcanic Belt during the middle Holocene were different from today's conditions, which may have an effect on the historical distribution areas of the sacred fir (Abies religiosa [Kunth] Schltdl. & Cham.).

Objective:

To determine whether the environmental requirements that delimit the current distribution of the sacred fir in the Trans-Mexican Volcanic Belt have changed since 6 000 years ago.

Materials and methods:

A. religiosa records were obtained from the Niche Toolbox platform. The WorldClim version 2.0 variables for the current (1970-2000) and middle Holocene (CNRMCM5 and MIROC_ESM models) periods were downloaded. The distribution models were generated in MaxEnt using 75 % of the data for training and 25 % for validation. The most important variables of each period were determined with the Jackknife test.

Results and discussion:

The estimated sacred fir areas were similar in both periods. Approximately 86.5 % of the sacred fir distribution is found in protected natural areas of the zone. The limiting environmental variables of its distribution are: elevation, annual precipitation, summer precipitation, annual mean temperature and diurnal temperature oscillation. Nevado de Toluca and Mexico City had larger sacred fir areas (+2 658.4 ha and +20 129.7 ha, respectively) during the Middle Holocene. Annual precipitation was 80 to 224 mm higher than the current level and the temperature was 1 °C colder.

Conclusion:

The most important environmental variables for sacred fir distribution are similar to those reported in the literature, indicating similarity between the current and historical ecological niche of A. religiosa.

Keywords: Ecological niche; environmental variables; fir; Middle Holocene; potential distribution

Resumen

Introducción:

Las condiciones climáticas en la Faja Volcánica Transmexicana durante el Holoceno medio fueron diferentes de las actuales, lo que pudo tener un efecto en las áreas de distribución histórica del oyamel (Abies religiosa [Kunth] Schltdl. & Cham.).

Objetivo:

Determinar si los requerimientos ambientales que delimitan la distribución actual del oyamel en la Faja Volcánica Transmexicana han cambiado desde hace 6 000 años.

Materiales y métodos:

Los registros de A. religiosa se obtuvieron de la plataforma Niche Toolbox. Se descargaron las variables WorldClim versión 2.0 para los periodos actual (1970-2000) y Holoceno medio (modelos CNRMCM5 y MIROC_ESM). Los modelos de distribución se generaron en MaxEnt utilizando 75 % de los datos para entrenamiento y 25 % para validación. Las variables más importantes de cada periodo se determinaron con la prueba de Jackknife.

Resultados y discusión:

Las superficies estimadas de oyamel fueron similares en ambos periodos. Aproximadamente, 86.5 % de la distribución del oyamel se encuentra en áreas naturales protegidas de la zona. Las variables ambientales limitantes de la distribución son la altitud, precipitación anual, precipitación de verano, temperatura media anual y oscilación diurna en temperatura. El Nevado de Toluca y la Ciudad de México presentaron superficies mayores de oyamel (+2 658.4 ha y +20 129.7 ha, respectivamente) durante el Holoceno medio. La precipitación anual era 80 a 224 mm mayor que la actual y la temperatura era 1 °C más fría.

Conclusión:

Las variables ambientales de mayor importancia para la distribución del oyamel son similares a las reportadas en la literatura, lo que indica similitud entre el nicho ecológico actual e histórico de A. religiosa.

Palabras clave: Nicho ecológico; variables ambientales; abeto; Holoceno medio; distribución potencial

Introduction

Today, species distribution models have become a useful tool for biodiversity management and conservation that, when integrated with geographic information systems, enable the construction of potential distribution models. With these models it is possible to delimit, estimate, and predict whether the distribution of species changes or remains the same in an environmental geographic space (Manzanilla et al., 2019; Martínez-Méndez, Aguirre-Planter, Eguiarte, & Jaramillo-Correa, 2016; Monterrubio-Rico et al., 2016). In addition, these models allow us to anticipate possible effects of climate change on the distribution of species (Gutiérrez & Trejo, 2014; Peterson, 2011a; Sáenz-Romero, Rehfeldt, Ortega-Rodríguez, Marín-Togo, & Madrigal-Sánchez, 2015).

Climate changes during the past have modified the distribution and abundance of plant species (Caballero, Lozano-García, Vázquez-Selem, & Ortega, 2010). Since the last glacial maximum (21 000 years ago), the planet's climate has varied from very cold periods (glacial -8 °C) to warm periods (interglacial), where the temperature was 2 to 3 °C warmer than today (Svensson et al., 2008). It is estimated that the climatic conditions in the Trans-Mexican Volcanic Belt during the Middle Holocene (6,000 years ago) were 2 °C warmer than today (Ferrusquía-Villafranca, 1998; Svensson et al., 2008). These climate changes modified the composition and structure of vegetation in temperate and cold zones (Lozano-García & Vázquez-Selem, 2005), including the distribution of coniferous forests (Caballero et al., 2010).

Potential distribution modeling has been used to delimit and predict the current and future distribution of coniferous species (Pinaceae) in Mexico (Manzanilla et al., 2019; Martínez-Méndez et al., 2016; Moreno-Letelier, Ortíz-Medrano, & Pinero, 2013; Sáenz-Romero et al., 2015; Sáenz-Romero, Rehfeldt, Duval, & Lindig-Cisneros, 2012). However, it has been little used to reconstruct historical distributions of species of this family (Moreno-Letelier et al., 2013), including the genus Abies Mill. According to fossil record data, the genus Abies originated between the late Cretaceous period and the early Eocene (Xiang, Wei, Shao, Wang, & Zhang, 2015). At present, there are species of the genus with boreal and temperate affinity, distributed in North America and Eurasia, although some taxa are found in the mountainous and humid areas of Mesoamerica (Farjon & Filer, 2013; Madrigal, 1967; Rzedowski, 2006).

In Mexico, the genus Abies is represented by 10 species (Martínez-Méndez et al., 2016) delimited by morphological characters and with a disjunct and restricted distribution towards the high and humid parts of the main mountain ranges (Madrigal, 1967; Martínez-Méndez et al., 2016; Rzedowski, 2006). Sacred fir forests occupy about 144 000 ha (0.5 % of the national area) and constitute the fourth largest timber resource in Mexico (Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO], 2010; Secretaría del Medio Ambiente y Recursos Naturales [SEMARNAT], 2007). Of the 10 species reported, Abies religiosa (Kunth) Schltdl. & Cham. is the most widely distributed fir (Martínez-Méndez et al., 2016). The populations of this species are small and isolated, located mainly in the high and humid areas of central Mexico. Despite that, it is thought that during the Middle Holocene these forests occupied a larger area than today. Against this background, the following research question was posed: Have the environmental requirements that delimit the current distribution of sacred fir in the Trans-Mexican Volcanic Belt changed in 6 000 years? In order to answer this question, the following particular objectives were formulated: 1) to delimit and compare the historical and current distribution of A. religiosa forest in the Trans-Mexican Volcanic Belt using potential distribution modeling, 2) to determine and compare the environmental variables that delimit the ecological niche of the species in both periods, and 3) to estimate the historical and current sacred fir forest area in the protected natural areas of the study area.

Based on the climatic changes that occurred between the current and historical (middle Holocene) periods, and according to the ecological niche conservatism theory (Peterson, 2011b), it could be predicted that the potential distribution of A. religiosa in the Trans-Mexican Volcanic Belt is similar for both periods.

Materials and methods

Study area

The Trans-Mexican Volcanic Belt is located at coordinates 17° 30’ and 20° 25’ N, and 96° 20’ and 105° 20’ W (Ferrusquía-Villafranca, 1998) (Figure 1); it has elevations ranging from 256 to 5 650 m (Instituto Nacional de Estadística y Geografía [INEGI], 2018). The area’s topography is rugged and steep in the mountains (Ferrusquía-Villafranca, 1998). The dominant climate is temperate (humid and sub-humid) with an annual mean temperature of 12 to 18 °C and annual precipitation of 600 to 1 500 mm (García, 1998).

Figure 1 Geographic location of the Trans-Mexican Volcanic Belt. 

Species description

Abies religiosa is a monoecious, evergreen tree, with a height of up to 60 m and maximum diameters of 1.80 m. The tree has the following characteristics: greyish, rough and cracked bark 18-25 mm thick; cross-shaped branches; simple and alternate leaves 15-35 mm long by 1.5 mm wide; and solitary cones 8-16 cm long and 4-6 cm wide (Protectora de Bosques [PROBOSQUE], 2007; Rzedowski, 2006).

In Mexico, the species is located in Morelos, Estado de Mexico, Hidalgo, Puebla, Michoacán, Jalisco, Colima, Guerrero, Tlaxcala, Veracruz and Mexico City (Martínez-Méndez et al., 2016) (Figure 2). In the Trans-Mexican Volcanic Belt, A. religiosa is distributed in an altitudinal gradient from 2 400 to 3 500 m and is the dominant species of the vegetation type known in Mexico as oyamel (sacred fir) forest (Madrigal, 1967; Rzedowski, 2006).

Figure 2 Natural distribution of Abies religiosa in Mexico. 

Abies religiosa records

A total of 1 042 A. religiosa records were downloaded from the Niche Toolbox platform (Osorio-Olvera, Vijay, Narayani, Soberón, & Falconi, 2017). In order to avoid spatial autocorrelation and overfitting of the models (Monterrubio-Rico et al., 2016; Peterson & Nakazawa, 2008), duplicate, poorly georeferenced, and close coordinates (distance >1 km) were removed, leaving one record for each cell of 1 km2. At the end of the depuration process, 341 records of A. religiosa distributed in the study area were obtained. These were used to generate the potential distribution models for the current and historical periods.

Current and historical bioclimatic information

Table 1 shows the 19 bioclimatic variables available in WorldClim version 2.0 for the current period (1970-2000) (Fick & Hijmans, 2017) and the global circulation models (GCMs) CNRMCM5 (National Center for Meteorological Research of France) and MIROC_ESM (Institute of Oceanic and Atmospheric Research, National Institute of Environmental Studies and the Japanese Agency for Marine-Earth Science and Technology) for the Middle Holocene. The latter were generated from the CMIP5 (Coupled Model Intercomparison Project Phase 5, 2013) Regional Models of the Intergovernmental Panel on Climate Change (IPCC). All variables had a spatial resolution of 1 km2 and were in Geotiff (TIF) format. In addition, the variables soil type (SUE; scale 1: 250 000) and elevation (DEM; digital elevation model, 90-m resolution) were included, which were downloaded in vector and raster format from the INEGI platform (INEGI, 2014, 2018). At the end, all variables were homogenized to ASCII format with a scale of 1 km2.

Table 1 Bioclimatic variables used in the generation of current and historical potential distribution models of Abies religiosa in the Trans-Mexican Volcanic Belt. 

Bioclimatic variables Key
Annual mean temperature (°C) BIO1
Diurnal temperature oscillation (°C) BIO2
Isothermality [(BIO2/BIO7)*100] BIO3
Temperature seasonality (coefficient of variation, %) BIO4
Mean maximum temperature of warmest period (°C) BIO5
Mean minimum temperature of coldest period (°C) BIO6
Temperature annual oscillation (°C) BIO7
Mean temperature of wettest quarter (°C) BIO8
Mean temperature of driest quarter (°C) BIO9
Mean temperature of warmest quarter (°C) BIO10
Mean temperature of coldest quarter (°C) BIO11
Cumulative annual precipitation (mm) BIO12
Precipitation of wettest period (mm) BIO13
Precipitation of driest period (mm) BIO14
Precipitation seasonality (coefficient of variation, %) BIO15
Precipitation of wettest quarter (mm) BIO16
Precipitation of driest quarter (mm) BIO17
Precipitation of warmest quarter (mm) BIO18
Precipitation of coldest quarter (mm) BIO19

Selection of variables

Spatial autocorrelation was eliminated through a multicollinearity analysis (Monterrubio-Rico et al., 2016; Peterson & Nakazawa, 2008), where those variables with a correlation coefficient ?#8805;0.85 (Manzanilla et al., 2019; Monterrubio-Rico et al., 2016) were discarded to maximize the contribution of variables in the distribution models (Martínez-Méndez et al., 2016; Monterrubio-Rico et al., 2016; Peterson & Nakazawa, 2008).

Delimitation of area M

Modeling area M is the environmental geographic space where a species has been reported or where it is supposed to be in accordance with the available biological knowledge (Martínez-Méndez et al., 2016; Soberón & Peterson, 2005). To delimit area M, the physiographic subprovinces were used where A. religiosa records were located: Plains and Sierras of Querétaro and Hidalgo, Chapala, Mil Cumbres, Lakes and Volcanoes of Anáhuac, Neovolcanica Tarasca and Volcanoes of Colima (INEGI, 2001). Area M was used to cut the variables to the same size and thus avoid the generation of overestimated distribution areas (Monterrubio-Rico et al., 2016).

Generation of distribution models

The distribution models were generated with the presence records of A. religiosa in CSV format and with the variables BIO1, BIO2, BIO3, BIO4, BIO12, BIO14, BIO15, BIO18, BIO19 in ASCII format (Table 1), soil type (SUE), and elevation (DEM).

The variables were introduced into the maximum entropy program (MaxEnt), where 75 % of the species records were used to perform the training test and the remaining 25 % for the validation test of the models (Martínez-Méndez et al., 2016; Monterrubio-Rico et al., 2016; Phillips, Anderson, & Schaphire, 2006). An internal replication was applied by cross validation and the Extrapolate and Do clamping boxes were disabled to avoid overfitting of the models (Elith et al., 2011). The outputs of the models were of the logistic type, which represents an environmental probability index with values from 0 to 1. Values close to 0 indicate unsuitable environmental conditions, while values close to 1 suggest excellent environmental conditions for the growth and development of the species (Coitiño, Montenegro, Fallabrino, González, & Hernández, 2013; Phillips et al., 2006).

Five distribution models were generated and tested, in order to determine by means of ROC (analysis of the performance characteristics of the receiver of the area under the curve [AUC]), Partial Roc and Z tests, which model fitted the current distribution of the species (Table 2). The model with best statistical performance was overlapped on the federal protected natural areas shapefile decreed for the region (Comisión Nacional de Áreas Naturales Protegidas [CONANP], 2017). The current sacred fir area within the polygonal of the protected natural areas was estimated with ArcGIS 10.3 software (Environmental Systems Research Institute [ESRI], 2014).

The parameters of the current distribution model with the best statistical fit (Morrone & Escalante, 2016) were transferred to the maximum entropy (MaxEnt) program to generate distribution models in the past.

Table 2 Parameters used in the generation of potential distribution models of Abies religiosa in the Trans-Mexican Volcanic Belt. 

Model Internal replication Threshold application rule Replicates
M1 Cross validation Equal training sensitivity and specificity 1 000
M2 Cross validation Maximum training sensitivity plus specificity 1 000
M3 Cross validation Test of equal sensitivity and specificity 1 000
M4 Cross validation Maximum test sensitivity plus specificity 1 000
M5 Cross validation No application of threshold rule 500

Validation of the models

Models were evaluated using the AUC values of the ROC, where values between 0.7 to 0.9 are considered good and those greater than 0.9 are considered excellent (Coitiño et al., 2013; Peterson et al., 2011). Nevertheless, this type of validation has been questioned for not considering true absences (Lobo, Jiménez, & Real, 2008; Peterson, Papes, & Soberón, 2008), so it was necessary to perform a Partial Roc analysis in the Tool for Partial Roc version 1.0 software (Narayani, 2008) to counteract AUC shortcomings (Peterson et al., 2008).

The recommendations of Peterson et al. (2008) were followed by using 1 000 replicates per bootstrap between presence and habitat suitability files and establishing a 5 % omission error. The test generates values from 1 to 2, where a value with an average radius of 1.0 is equivalent to a random model (Garza-López et al., 2016; Lobo et al., 2008; Peterson et al., 2008). To determine whether the models were statistically valid, a Z test was performed between the AUC ratios of Partial ROC (Martínez-Méndez et al., 2016). The best model was chosen based on the highest value of the Partial ROC tests, lowest standard deviation, and a reliable Z value (P < 0.01).

The logistic output values of the models were reclassified into three habitat quality categories with equal intervals (low, moderate, and high), with the ArcMap 10.3 program reclassify tool (ESRI, 2014). The values of the high habitat quality category were used to transform the continuous models to binary models (suitable-unsuitable). Based on the reclassification, the potential distribution area of A. religiosa in the Trans-Mexican Volcanic Belt was estimated for both analyzed periods.

Projections of the models with the best statistical performance for each period were visualized and drawn in potential distribution maps with the ArcMap 10.3 program (ESRI, 2014). Finally, the most important variables of each analyzed period were determined with the Jackknife test, which allowed quantifying the contribution of the environmental variables in the distribution models (Phillips et al., 2006).

Results and discussion

The AUC results from the ROC test of the current models obtained values greater than 0.9 (training and validation data) for both tests, like the models for the middle Holocene. These values indicate that the performance of the models generated for both periods was excellent (>0.9; Coitiño et al., 2013; Monterrubio-Rico et al., 2016; Peterson et al., 2011); therefore, the distribution models were considered reliable.

The performance of the five models was similar for the ROC test; however, when applying the Partial Roc test, the model with the best statistical fit and lowest standard deviation was model 2 (Table 3).

Table 3 Partial ROC and Z results of the historical and current potential distribution models of Abies religiosa in the Trans-Mexican Volcanic Belt. 

Period analyzed Model Partial ROC average ratios Standard deviation Z test
Current M1 1.494 0.129 P < 0.01
M2 1.500 0.123 P < 0.01
M3 1.494 0.128 P < 0.01
M4 1.492 0.130 P < 0.01
M5 1.475 0.134 P < 0.01
Historical CRNMCM5 1.551 0.114 P < 0.01
MIROC-ESM 1.496 0.138 P < 0.01

The models indicated that the current potential distribution (1970-2000) of A. religiosa in the Trans-Mexican Volcanic Belt is 194 387.3 ha. FAO (2010) and SEMARNAT (2007) report 144 000 ha, which indicates that, after 2000, there was a reduction of 50 387.3 ha of sacred fir forest area. In addition, it was found that 86.5 % (168 148 ha) of the current potential distribution of sacred fir is within protected natural areas of the Trans-Mexican Volcanic Belt. This result coincides with what was mentioned by Rzedowski (2006) and Martínez-Méndez et al. (2016), who suggest that A. religiosa is the only Mexican fir species that presents most of its distribution in the high and humid zones within natural areas of the Trans-Mexican Volcanic Belt, which has provided (in some measure) the legal protection to this species.

According to the results of the historical models, the estimated forest area of A. religiosa was 190 466.2 ha (CNRMCM5) to 193 563.2 ha (MIROC_ESM), which translates into 49 563.2 to 46 466.2 ha more than the current area reported by SEMANART (2007) and FAO (2010), respectively, but 824.1 ha (MIROC_ESM) and 3 921.1 ha (CNRMCM5) less than estimated in the present study (Figures 3 and 4). Based on the results of the binomial ROC, Partial ROC and Z tests (P < 0.01), we selected the CRNMCM5 model, which presented the best fit (Table 3), where values close to 2 indicated that the statistical fit of the model was reliable as mentioned by Garza-López et al. (2016), Narayani (2008) and Peterson et al. (2008).

Figure 3 Current (1970-2000) and historical potential distribution of the sacred fir (Abies religiosa) in the Trans-Mexican Volcanic Belt: West zone (A) and Center I zone (B). 

Figure 4 Current (1970-2000) and historical potential distribution of the sacred fir (Abies religiosa) in the Trans-Mexican Volcanic Belt: Center II zone (C) and East zone (D). 

Historical and current potential distribution

Given the recent diversification of the genus Abies in the world (Xiang et al., 2015), it is very likely that climatic conditions of 6 000 to 12 000 years ago were warmer (+2 °C) in North America’s temperate and cold areas (Caballero et al., 2010; Svensson et al., 2008). This possibly delimited the distribution of coniferous forests to the temperate and cold zones of the Trans-Mexican Volcanic Belt (Caballero et al., 2010; Madrigal, 1967; Martínez-Méndez et al., 2016; Rzedowski, 2006).

According to the Jackknife test, the most important limiting environmental variables in the distribution of A. religiosa in the Trans-Mexican Volcanic Belt were the elevation (DEM with 56.5 %), cumulative annual precipitation (BIO12 with 18.4 %) and precipitation of the warmest quarter (BIO18 with 8.3 %). These three variables explained 83.2 % of the model variability. These results are similar to those found by Farjon and Filer (2013), Madrigal (1967), and Rzedowski (2006), who indicate that constant annual humidity and abundant rainfall in summer are essential for the distribution of this fir. The present study found that the ideal altitudinal gradient for the growth and development of A. religiosa was from 2 129 to 3 687 m. These results are similar to those reported in the literature, since previous studies mention that the distribution of A. religiosa ranges from 2 400 to 3 660 m (Calderón de Rzedowski & Rzedowski, 2001; Madrigal, 1967; Nieto de Pascual-Pola, 1995, Rzedowski, 2006). It should be noted that, according to the results of this study, the distribution of the sacred fir forest can be found 271 m below the minimum elevation and 27 m above the maximum elevation reported in the literature. Regarding cumulative annual precipitation, the current models estimated an average of 1 125 mm. This value was slightly higher than that reported by Madrigal (1967) and similar to that mentioned by Rzedowski (2006) (1 000 mm and >1 000 mm, respectively). Martínez-Méndez et al. (2016) and Sáenz-Romero et al. (2012) mention that precipitation during the summer months is a determining factor in the distribution of the species, which agrees with what was obtained in the present study. However, dendrochronological studies carried out for the species within the study area indicate that winter-spring precipitation is of high relevance for the growth of A. religiosa (Cerano-Paredes et al., 2014; Huante, Rincón, & Swetnam, 1991). This differs from what was obtained in this study, since the evaluated models did not consider the winter-spring precipitation as a key factor in sacred fir distribution. However, this variable could be of greater relevance than precipitation in the summer months during the radial growth stage of the species.

On the other hand, the most important variables in the prediction of historical distribution (MIROC_ESM model) were annual mean temperature (BIO1 with 65.9 %), cumulative annual precipitation (BIO12 with 18.6 %), and diurnal temperature oscillation (BIO2 with 4.6 %); these three variables accounted for 89.1 % of the model’s variation. For the CNRMCM5 model, the most important variables were annual mean temperature (BIO1 with 62.4 %), cumulative annual precipitation (BIO12 with 16.2 %), and diurnal temperature range (BIO2 with 6.5 %), which contributed with 85.1 % of the model. The results of the present study agree with those of Madrigal (1967) and Rzedowski (2006), who mention that diurnal temperature range (11 to 16 °C) is a determining factor for the growth of A. religiosa. Therefore, it was corroborated that this variable has been a limiting factor for 6 000 years (10.6 to 17.2 °C) in the distribution of sacred fir in the Trans-Mexican Volcanic Belt. With respect to the annual mean temperature, the values between 4.6 and 15.7 °C are congruent with those reported by Rzedowski (2006), who mentions that they fluctuate between 7 and 15 °C. Otherwise, according to the climatic conditions estimated by the global circulation models, annual precipitation during the middle Holocene was 80 to 224 mm higher than today’s and the annual mean temperature was 1 °C colder and not warmer as mentioned by Svensson et al. (2008) and Caballero et al. (2010).

Because the estimated areas and environmental conditions described in the literature and in this study showed similarities, it can be assumed that the potential distribution of A. religiosa has remained stable over time (according to the theory of ecological niche conservatism; Peterson, 2011b). Thus, the evidence found in this study seems to indicate that the distribution of the species in the Trans-Mexican Volcanic Belt has not changed in 6,000 years. This would prove (with the limitation that there are no palynological records) that the ecological niche of A. religiosa has been maintained during the evaluated periods. It should be noted that, added to the fact that the current and historical distribution did not change significantly, it was possible to determine that sites such as Nevado de Toluca and Mexico City had larger sacred fir areas during the past: +2 658.4 ha and +20 129.7 ha, respectively (Table 4; Figure 5A). Consequently, it can be inferred that the climatic conditions of 6,000 years ago were colder and wetter in the temperate and cold mountainous areas of the Trans-Mexican Volcanic Belt, which caused the sacred fir distribution to remain there until the present (Madrigal, 1967; Martínez-Méndez et al., 2016; Ramírez-Barahona & Eguiarte, 2013; Rzedowski, 2006).

Table 4 Sites with the greatest historical potential distribution of A. religiosa forest in the Trans-Mexican Volcanic Belt. 

Site Current potential distribution (ha) Past potential distribution (ha) Change (%)
Nevado de Toluca 6 847.8 9 506.2 -28
Mexico City 19 340.9 39 470.6 -51

Figure 5 Potential distribution (current and historical) of the sacred fir (Abies religiosa) in Nevado de Toluca (A) and Mexico City (B). 

Conclusions

This study represents a first attempt at estimating the potential distribution of Abies religiosa 6 000 years ago in the Trans-Mexican Volcanic Belt. These results provide valuable information on the environmental variables (elevation, annual precipitation, summer precipitation, annual mean temperature, and diurnal temperature oscillation) that have limited the distribution of this species. Six thousand years ago, the climatic conditions corresponding to the distribution of the sacred fir within the Trans-Mexican Volcanic Belt were colder and wetter than today. Approximately 86.5 % of the distribution of A. religiosa is found within protected natural areas of the zone; however, this protection does not make it immune to natural and anthropogenic disturbances. Although the historical and current distribution of sacred fir in the Trans-Mexican Volcanic Belt was similar, sites such as Nevado de Toluca and Mexico City were found to have wider areas in the past.

Acknowledgments

The authors wish to thank the Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales and the Consejo Nacional de Ciencia y Tecnología (CONACYT) for supporting the first author with a postgraduate scholarship. Additionally, the anonymous reviewers are thanked for their comments and suggestions which helped improve the quality of this manuscript.

References

Caballero, M., Lozano-García, S., Vázquez-Selem, L., & Ortega, B. (2010). Evidencias de cambio climático y ambiental en registros glaciales y en cuencas lacustres del centro de México durante el último máximo glacial. Boletín de la Sociedad Geológica Méxicana, 62(3), 359-377. Retrieved from http://www.redalyc.org/articulo.oa?id=94319371005Links ]

Calderón de Rzedowski, G., & Rzedowski, J. (2001). Flora fanerogámica del Valle de México (2.ª ed.). Michoacán, México: Instituto de Ecología A. C. & Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. [ Links ]

Cerano-Paredes, J., Villanueva-Díaz, J., Cervantes-Martínez, R., Vázquez-Selem, L., Trucios-Caciano, R., & Guerra de la Cruz, V. (2014). Reconstrucción de precipitación invierno-primavera para el Parque Nacional Pico de Tancítaro, Michoacán. Boletín Investigaciones Geográficas, 83, 42-55. doi: 10.14350/rig.35190 [ Links ]

Coitiño, H. I., Montenegro, F., Fallabrino, A., González, E. M., & Hernández, D. (2013). Distribución actual y potencial de Cabassous tatouay y Tamandua tetradactyla en el límite sur de su distribución: implicancias para su conservación en Uruguay. Edentata, 14(1), 23-34. doi: 10.5537/020.014.0104 [ Links ]

Comisión Nacional de Áreas Naturales Protegidas (CONANP). (2017). Áreas Naturales Protegidas Federales de México. Archivo vectorial shapefile. Retrieved November 11, 2017 from http://www.conabio.gob.mx/informacion/metadata/gis/anpmay17gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=noLinks ]

Coupled Model Intercomparison Project Phase 5 (CMIP5). (2013). Retrieved January 15, 2017 from http://www.worldclim.org/paleo-climate1Links ]

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57. doi: 10.1111/j.1472-4642.2010.00725.x [ Links ]

Environmental Systems Research Institute (ESRI). (2014). ArcGIS desktop, version 10.3. Redlands, California, Virginia, USA: Author. [ Links ]

Farjon, A., & Filer, D (2013). An atlas of the world´s conifers: An analysis of their distribution, biogeography, diversity, and conservation status. Netherlands: Brill Academic Publishers. [ Links ]

Ferrusquía-Villafranca, I. (1998). Geología de México: una sinopsis. In T. P. Ramamoorthy, R. Bye, A. Lot, & J. Fa. (Eds.), Diversidad biológica de México (pp. 3-108). México: Universidad Nacional Autónoma de México. [ Links ]

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4317. doi: 10.1002/joc.5086 [ Links ]

García, E. (1998). Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). México: Instituto de Geografía, Universidad Nacional Autónoma de México. [ Links ]

Garza-López, M., Ortega-Rodríguez, J. M., Zamudio-Sánchez, F. J., López-Toledo, J. F., Domínguez-Álvarez, F. A., & Sáenz-Romero, C. (2016). Calakmul como refugio de Swietenia macrophylla King ante el cambio climático. Botanical Sciences, 94(1), 43-50. doi: 10.17129/botsci.500 [ Links ]

Gutiérrez, E., & Trejo, I. (2014). Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad, 85(1), 179-188. doi: 10.7550/rmb.37737 [ Links ]

Huante, P., Rincón, E., & Swetnam, T. W. (1991). Dendrochronology of Abies religiosa in Michoacan, Mexico. Tree-Ring Bulletin, 51, 15-28. Retrieved from https://www.researchgate.net/publication/228116883_Dendrochronology_of_Abies_religiosa_in_Michoacan_MexicoLinks ]

Instituto Nacional de Estadística y Geografía (INEGI). (2001). Conjunto de datos vectoriales fisiográficos. Continuo Nacional. Escala 1:1 000 000. Serie I. Subprovincias Fisiográficas de México. Archivo vectorial shapefile. Retrieved November 11, 2017 from http://www.beta.inegi.org.mx/temas/mapas/fisiografia/Links ]

Instituto Nacional de Estadística y Geografía (INEGI). (2014). Conjunto de datos vectoriales edafológicos. Continuo Nacional. Escala 1: 250 000. Serie II. Archivo vectorial shapefile. Retrieved November 11, 2017 from http://www.conabio.gob.mx/informacion/metadata/gis/eda250s2gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=noLinks ]

Instituto Nacional de Estadística y Geografía (INEGI). (2018). Continuo de Elevaciones Mexicano. Archivo ráster. Retrieved September 8, 2018 from http://www.beta.inegi.org.mx/app/geo2/elevacionesmex/index.jspLinks ]

Lobo, J. M., Jiménez, V. A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145-151. doi: 10.1111/j.1466-8238.2007.00358.x [ Links ]

Lozano-García, M. S., & Vázquez-Selem, L. (2005). A high-elevation Holocene pollen record from Iztaccihuatl volcano, central Mexico. The Holocene, 15(3), 329-338. doi: 10.1191/0959683605hl814rp [ Links ]

Madrigal, S. X. (1967). Contribución al conocimiento de la ecología de los bosques de oyamel (Abies religiosa (HBK) Schl. & Cham.) en el Valle de México. México: Instituto Nacional de Investigaciones Forestales. [ Links ]

Manzanilla, Q. U., Delgado, V. P., Hernández, R. J., Molina, S. A., García, M. J. J., & Rocha, G. M. del C. (2019). Similaridad del nicho ecológico de Pinus montezumae y P. pseudostrobus (Pinaceae) en México: implicaciones para la selección de áreas productoras de semillas y de conservación. Acta Botánica Mexicana, 126, e1398. doi: 10.21829/abm126.2019.1398 [ Links ]

Martínez-Méndez, N., Aguirre-Planter, E., Eguiarte, E. L., & Jaramillo-Correa, J. P. (2016). Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: algunas implicaciones taxonómicas y para la conservación. Botanical Sciences, 94(1), 5-24. doi: 10.17129/botsci.508 [ Links ]

Monterrubio-Rico, T. C., Charre-Medellín, J. F., Pacheco-Figueroa, C., Arriaga-Weiss, S., Valdez-Leal, J. D., Cancino-Murillo, R., …Rubio-Rocha, A. (2016). Distribución potencial histórica y contemporánea de la familia Psittacidae en México. Revista Mexicana de Biodiversidad, 87(3), 1103-1117. doi: 10.1016/j.rmb.2016.06.004 [ Links ]

Moreno-Letelier, A., Ortíz-Medrano, A., & Pinero, D. (2013). Niche divergence versus neutral processes: Combined environmental and genetic analyses identify contrasting patterns of differentiation in recently diverged pine species. PLoS ONE, 8(10), e78228. doi: 10.1371/journal.pone.0078228 [ Links ]

Morrone, J. J., & Escalante, T. (2016). Introducción a la biogeografía (1.a ed.). México: Universidad Nacional Autónoma de México . [ Links ]

Narayani, B. (2008). Tool for Partial ROC version 1.0. Lawrence, KS, USA: University of Kansas-CONABIO. Retrieved January 7, 2018 from http://nicho.conabio.gob.mx/home/proposito-y-guia-del-usuario/validacion-del-modeloLinks ]

Nieto de Pascual-Pola, M. C. (1995). Estudio sinecológico del bosque de oyamel de la cañada de Contreras, Distrito Federal. Revista Ciencia Forestal en México, 20, 3-34. [ Links ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2010). Evaluación de los recursos forestales mundiales 2010: Informe nacional, México. Roma, Italia: Author. Retrieved from https://www.researchgate.net/publication/263274117_Evaluacion_De_Los_Recursos_Forestales_Mundiales_2010_Informe_Nacional_MexicoLinks ]

Osorio-Olvera, L., Vijay, B., Narayani, B., Soberón, J., & Falconi, M. (2017). Ntbox: From getting biodiversity data to evaluating species distributions models in a friendly GUI environment. R package version 0.2.5.4. Retrieved January 15, 2017 from https://github.com/luismurao/ntboxLinks ]

Peterson, A. T. (2011a). Paleoclimates: Understanding climate change past and present. Quarterly Review of Biology, 86(4), 342-343. doi: 10.1086/662496 [ Links ]

Peterson, A. T. (2011b). Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography, 38(5), 817-827. doi: 10.1111/j.1365-2699,2010.02456.x [ Links ]

Peterson, A. T., & Nakazawa, Y. (2008). Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17(1), 135-144. doi: 10.1111/j.1466-8238.2007.00347.x [ Links ]

Peterson, A. T., Papes, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63-72. doi: 10.1016/j.ecolmodel.2007.11.008 [ Links ]

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martinez-Meyer, E., Nakamura, M., & Araujo, M. B. (2011). Ecological niches and geographic distributions. USA: Princeton University Press. [ Links ]

Phillips, S. J., Anderson, R. P., & Schaphire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. doi: 10.1016/j.ecolmodel.2005.03.026 [ Links ]

Protectora de Bosques (PROBOSQUE). (2007). Manual de producción de planta forestal. Clima templado frío. Retrieved from http://www.earthgonomic.com/biblioteca/2007_SEDAGRO_Manual_de_Produccion_Forestal.pdfLinks ]

Ramírez-Barahona, S., & Eguiarte, F. L. E. (2013). The role of glacial cycles in promoting genetic diversity in the Neotropics. The case of cloud forests during the Last Glacial Maximum. Ecology and Evolution, 3(3), 725-738. doi: 10.1002/ece3.483 [ Links ]

Rzedowski, J. (2006). Vegetación de México (1.a ed. digital). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). [ Links ]

Sáenz-Romero, C., Rehfeldt, G. E., Duval, P., & Lindig-Cisneros, R. A. (2012). Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecology and Management, 275, 98-106. doi: 10.1016/j.foreco.2012.03.004 [ Links ]

Sáenz-Romero, C., Rehfeldt, G. E., Ortega-Rodríguez, J. M., Marín-Togo, M. C., & Madrigal-Sánchez, X. (2015). Pinus leiophylla suitable habitat for 1961-1990 and future climate. Botanical Sciences, 93(4), 709-718. doi: 10.17129/botsci.86 [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2007). Anuario estadístico de la producción forestal. México: Autor. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/282952/2007.pdfLinks ]

Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species distribution areas. Biodiversity Information, 2, 1-10. doi: 10.17161/bi.v2i0.4 [ Links ]

Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., …Vinter, B. M. (2008). A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past, 4, 47-57. doi: 10.5194/cp-4-47-2008 [ Links ]

Xiang, Q. P., Wei, R., Shao, Z. Y., Wang, X. Q., & Zhang, X. C. (2015). Phylogenetic relationships, possible ancient hybridization and biogeography history of Abies (Pinaceae) based on data from nuclear, plastid and mitochondrial genomes. Molecular Phylogenetics and Evolution, 82(A), 1-14. doi: 10.1016/j.ympev.2014.10.008 [ Links ]

Received: October 30, 2018; Accepted: February 28, 2019

*Corresponding author: ulisesmanza@gmail.com, tel.: +52 (997) 111 5223

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License