SciELO - Scientific Electronic Library Online

 
vol.10Optimización de la hidrólisis enzimática del almidón en el jugo de caña de azúcar (Saccharum spp híbrido)Análisis de línea X probador para estimar la aptitud combinatoria en sorgo dulce índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.10  Tepic  2023  Epub 12-Abr-2024

https://doi.org/10.15741/revbio.10.e1517 

Original articles

Parasitism in the Ringtail cat (Bassariscus astutus): a systematic review

El parasitismo en el Cacomixtle (Bassariscus astutus): una revisión sistemática

M.G. Duran-Irigoyen1  * 
http://orcid.org/0009-0003-7904-4857

J.M. Martínez-Calderas2 
http://orcid.org/0000-0001-6343-5851

1Universidad Autónoma de Ciudad Juárez. Departamento de Ciencias Químico-Biológicas: Programa de Biología;

2 Universidad Autónoma de Ciudad Juárez. Departamento de Ciencias Veterinarias: Programa de Maestría en Ciencia Animal. Av. Benjamín Franklin no. 4650, Zona PRONAF, C. P. 33315, Ciudad Juárez, Chihuahua, México.


ABSTRACT

The ringtail cat (Bassariscus astutus) is a small mammal native to North America, whose role as a host for parasites is poorly understood. The present study aimed to use the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist to systematically collect and analyze the species that parasitize B. astutus. 55 species were identified from 23 scientific studies published between 1945 and 2021. 83.3 % of these were arthropod ectoparasites, mainly from the Ixodidae and Pulicidae families. It was identified that the louse Neotrichodectes thoracicus and the cestode Taenia pencei could present some type of specificity towards B. astutus. On the other hand, the Chao1, Chao2, Jack1, Jack2, and Bootstrap estimators were used to estimate parasite richness, which showed that the species inventory is still incomplete. We expect our results to be helpful in exposing the lack of information about the species that parasitize B. astutus, especially endoparasites.

KEY WORDS: Bassariscus astutus; Ringtail cat; Parasites; Endoparasites; Ectoparasites

RESUMEN

El cacomixtle (Bassariscus astutus) es un pequeño mamífero nativo de Norteamérica, cuyo rol como hospedero de parásitos es poco conocido. El presente estudio tuvo como objetivo utilizar la lista de verificación PRISMA para recopilar de manera sistemática y analizar a las especies que parasitan B. astutus. Se identificaron a 55 especies provenientes de 23 estudios científicos publicados entre 1945 al 2021. El 83.3 % de estas fueron ectoparásitos artrópodos, principalmente de las familias Ixodidae y Pulicidae. Se identificó que el piojo Neotrichodectes thoracicus y el cestodo Taenia pencei podrían presentar algún tipo de especificidad hacia B. astutus. Por otro lado, se utilizaron los estimadores Chao1, Chao2, Jack1, Jack2 y Bootstrap para estimar la riqueza de parásitos, los cuales mostraron que el inventario de especies continúa incompleto. Se espera que estos resultados sean útiles para exponer la falta de información sobre las especies que parasitan a B. astutus, en especial de los endoparásitos.

PALABRAS CLAVE: Bassariscus astutus; Cacomixtle; Parásitos; Ectoparásitos; Endoparásitos

Introduction

Altered ecosystem dynamics and the increasing interaction between humans, domestic animals, and wildlife are an important source of zoonotic diseases (Bengis et al., 2004; Polley, 2005, Myers et al., 2013; Rizzoli et al., 2019; Magouras et al., 2020). These are defined as those infectious illnesses of animal origin that can affect humans. Worldwide, parasites serve as transmission vectors for 35 % of these afflictions (Vélez-Hernández et al., 2014), where the probability of acquisition is defined by ecological (Gibb et al., 2020) and biological factors of humans, the disease, the vector, and its host (Polley, 2005; Rizzoli et al., 2019; Sooksawasdi Na Ayudhya & Kuiken, 2021).

Among mammals, the order Carnivora harbors the largest number of zoonotic pathogens and parasites. Especially the taxonomic family of procyonids, which has been recognized for its role in the transmission of various pathogens of parasitic origin to humans (Han et al., 2021). There is information about the coati Nasua narica (Linnaeus, 1766) and the raccoon Procyon lotor (Linnaeus, 1758), whose wide distribution, proximity to human settlements, omnivorous diet, dispersal capacity over long distances, and the use of latrines, contribute to the health hazard. However, there are few reports of zoonoses by other procyonid species, such as the ringtail cat Bassariscus astutus (Lichtenstein, 1830), despite having a similar life history and behavior. There is little information on the ecology and biology of this species, as well as its role as a vector or reservoir of parasites. For this reason, this study aimed to compile and synthesize the available information on the species that parasitize the ringtail cat. This information will make it possible to identify areas of opportunity for future studies on the species, its parasites, and the interactions they have with other organisms, including humans.

Material and Methods

A systemic review of the metazoan species that parasitize B. astutus was carried out based on the PRISMA checklist (Preferred Reporting Items for Systematic Reviews and Meta-Analyses; Page et al., 2021). The registered parasites were divided into two categories: ectoparasites and endoparasites. For the former, the arthropod phylum was investigated, which includes most of the organisms that infect mammals (Balashov, 2006). While for endoparasites, various taxonomic groups were included, such as helminths (Acanthocephali, cestodes, trematodes, nematodes, etc.) and protists (Apicomplexa, Euglenozoa, etc.).

The data search was carried out in scientific journals, university newsletters, documents of scientific societies, technical reports, and books published between 1900 and 2021. Initially, it was carried out in the databases of Google Scholar, EBSCOhost, JSTOR, ScienceDirect, PubMed, and Scielo Scientific Library. In which, the following keywords were entered in independent searches: “Bassariscus astutus”, “ringtail cat”, “cacomixtle” “cacomiztle”, “mammals”, “carnivores”, “wildlife” and “parasites”, “host - parasites”, “ectoparasites”, “endoparasites”, “Ixodes”, “ticks”, “fleas”, “Helminths”, “infectious disease”, “T. cruzi”, “Toxoplasmosis” and “Mexico”, “Arizona, “New Mexico”, “Texas”, “California”, “Nevada”, “Utah, “Colorado”. The same keywords were translated and used in Spanish.

The information on the parasite species reported and cited within the studies was used to build a table, which included the following qualitative variables: year of publication, study area, phylum, type of parasite (endoparasites/ectoparasites), habitat (tract gastrointestinal, lungs, heart, blood, epidermis, etc.) and if it acts as the causative agent or vector of any disease of medical interest considered by the Pan American Health Organization (PAHO, 2003). Once the information was collected, a map and a line graph were used to evaluate the trend in the location and number of documents published every five years since 1900 and to identify the most studied parasite phyla in B. astutus. The relative frequency for the type of habitat was calculated and a Chi-square test was performed to analyze if there were significant differences between ectoparasites and endoparasites. Additionally, a species accumulation curve was built considering each publication as a sampling unit; The EstimateS program (version 9.1.0) was used to randomize the information and calculate the biodiversity estimators Chao1, Chao2, Jack1, Jack2, and Bootstrap, and R (R Core Team 2019) to build a curve for each estimator.

Results and Discussion

A total of 23 publications about the species that parasitize Bassaricus astutus were identified and included in the present review ( Appendix 1). Of the evaluated literature, four texts explicitly contained the name of B. astutus or its common name within the title; 14 alluded to ectoparasites, specifically ticks, the genus Ixodes, and/or their hosts; and five to T. cruzi and diseases in wild mammals. However, at least one species of parasite present in B. astutus was mentioned. The results presented a bias towards more recent studies, some works published at the beginning of the 20th century were not possible to find and include in the present review (i.e., Neumann (1911) cited by Cooley & Kohls (1945); Mac-Callum (1921), and Price (1928) cited by Pence & Willis (1978)). Thus, the information corresponded to a period of 76 years, with an average of 1.5 publications every 5 years, with an increase in number between 1970-1975 and 2000-2005 (Figure 1). Regarding their origin, they came mainly from the United States (n=17; 70 % in Texas, 15 % in Nevada, Arizona, and New Mexico, and 11 % without a specific location within the country), followed by Mexico (n=7; 28 % in Nuevo León, 28 % in Mexico City and the rest in Baja California Sur, Guanajuato and Guerrero) as can be seen in Figure 2.

Figure 1 Publications related to B. astutus parasites from different phyla from 1945 to 2021. 

Figure 2 Origin of published papers on B. astutus parasites. 

Data was gathered on the occurrence of 55 parasite species belonging to the following phylum: Acanthocephala (1), Apicomplexa (1), Arthropoda (46), Euglenozoa (1), Nematoda (3) and Platyhelminthes (3); with a significant difference between the studies of ectoparasites and endoparasites (χ 2(22, N=23) = 59.08, p > 0.05), where 83 % of the species were arthropod ectoparasites present in the epidermis and fur of B. astutus, with few others distributed in other body areas (Figure 3). This bias could be since most of the reports came mainly from ectoparasite-host lists, where B. astutus was not usually the study subject (for example: Beck et al., 1963; Montiel-Parra et al., 2007 and Guzmán-Cornejo et al., 2007). Furthermore, the limited number of publications on endoparasites, which account for only 16 % of the species, may be attributed to the challenges associated with accessing samples. This difficulty arises due to the non-random distribution of B. astutus latrines, which are typically found in hard-to-reach locations with steep slopes or elevated positions (Barja & List, 2006). Additionally, the activity patterns and habitat preference of B. astutus can make it difficult to capture for biopsies (Ryser-Degiorgis, 2013). The reduced number of publications, added to the few places where they were made, leave aside species of parasites that could be associated with a particular ecoregion (Kresta et al., 2009), and do not show the temporal and spatial fluctuation that could exist among parasitic communities. Therefore, it is highly probable that there are more than 55 species of parasites in B. astutus (Appendix 1).

Figure 3 Body distribution of the parasites present in B. astutus

Of the reported parasites, the most cited taxonomic families were Ixodidae and Pulicidae. This could be partially explained because they have complex life cycles that require different hosts and that generally do not present specificity when infecting other species (Cañizales & Guerrero, 2017). The presence of the Ctenocephalides felis flea could be considered anomalous in B. astutus since this species usually resides in the domestic cat, although it has also been found in other mammals (Durden & Traub, 2002). In contrast, the louse Neotrichodectes thoracicus and the cestode Taenia pencei have only been reported on B. astutus so far (Osborn, 1902; Ewing, 1936; Emerson & Roger, 1985; Rausch, 2003; Kelley & Horner, 2008), which could indicate some level of specificity of both parasites.

In relation to the diversity of parasite species, it was determined that, both in the observed and estimated species, the asymptotic number was not reached (Figure 4). Hence, the parasite inventory of this work can be considered incomplete. The Jack1, Jack2 and Chao2 estimators overestimated species richness and presented greater bias. For example, Chao2 predicts that more than 70 species remain to be reported to reach the total asymptote of the curve. On the other hand, the Chao1 and Bootstrap estimators presented less bias and were more precise. Both estimators predict that around 20 species remain to be inventoried for the census to be complete. The behavior of the estimators coincides with that reported by Poulin (1998), Romero-Tejeda et al. (2008) and Bautista-Hernández et al. (2013); who, for parasitology studies, mention that the most recommended wealth estimator is Bootstrap.

Figure 4 Observed and estimated parasite species accumulation curve of B. astutus

Eight parasite species were identified in B. astutus, which cause or serve as a vector for 14 zoonoses considered by PAHO (2003). 14.28 % of them are caused by protists, 28.57 % by cestodes, and 57.14 % by ticks of the Ixodidae family. The reported seroprevalence for Toxoplasma gondii in B. astutus in suburban environments was 20 % (Suzán & Ceballos, 2005) and in South Texas for Chagas disease 100 % (Kramm et al., 2019). However, B. astutus is not considered to be a reservoir for either of these two protozoa since the reports are scarce and come from few samples. In relation to helminthiasis, the most noteworthy are coenurosis, taeniasis, and mesocestoidiasis, caused mainly by the genera Taenia and Mesocestoides. The prevalence of Mesocestoides of 20 % found by Pence & Willis (1978) could indicate that B. astutus serves as the definitive host for these organisms, since according to Chelladurai & Brewer (2021) the prevalence of Mesocestoides in intermediate hosts is 7.09 % and in definitive hosts 21.72 %. Regarding pathologies caused by arthropods, to date it has not been investigated whether B. astutus plays any role in the natural history of these pathogens. However, it is important to highlight that ticks of the genera Haemaphysalis, Dermacentor, Ixodes, and Amblyomma (all identified in B. astutus) are responsible for the storage and transmission of most zoonoses among arthropods (Sosa-Gutierrez et al., 2016; Rizzoli et al., 2019). Although the dynamics between B. astutus and zoonoses remain unknown, the species could be considered as an indicator of the parasites present in an ecosystem (Han et al., 2021). This is important as, among wildlife-transmitted zoonoses, the discovery rate of new parasites is low relative to bacteria and viruses (Polley, 2005).

Conclusions

Information was collected on 55 species that parasitize B. astutus from 23 scientific articles published for more than 76 years. The collected data showed a bias towards ectoparasites, which means that greater research effort towards endoparasites is required. We identified that the louse Neotrichodectes thoracicus and the cestode Taenia pencei may present some type of specificity towards B. astutus. The species accumulation curve showed that more than 20 taxa still need to be identified to complete the inventory of parasites of the species. Finally, more information is needed to identify temporal and spatial patterns between B. astutus and its parasites as well as to recognize whether B. astutus plays a role as a reservoir or vector of zoonotic diseases.

Acknowledgments

We thank M.C. Isaac Morales Yáñez for his technical support.

References

Bautista-Hernández, C. E., Monks, S., & Pulido-Flores, G. (2013). Los parásitos y el estudio de su biodiversidad: un enfoque sobre los estimadores de la riqueza de especies. Estudios científicos en el estado de Hidalgo y zonas aledañas, 4. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1003&context=hidalgoLinks ]

Balashov, Y. S. (2006). Types of parasitism of acarines and insects on terrestrial vertebrates. Entomological Review, 86(8), 957-971. https://doi.org/10.1134/s0013873806080112 [ Links ]

Barja, I., & List, R. (2006). Faecal marking behaviour in ringtails (Bassariscus astutus) during the non-breeding period: Spatial characteristics of latrines and single faeces.Chemoecology, 16(4), 219-222. https://doi.org/10.1007/s00049-006-0352-x [ Links ]

Beck, D. E., Dorald, A. M., & Brinton, E. P. (1963). Ticks of the Nevada Test Site. Brigham Young University Science Bulletin, Biological Series, 4(1). https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1013&context=byuscib Links ]

Bengis, R. G., Leighton, F. A., Fischer, J. R., Artois, M., Morner, T., & Tate, C. M. (2004). The role of wildlife in emerging and re-emerging zoonoses. Revue scientifique et technique-office international des epizooties, 23(2), 497-512. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1de835d8169d6954d39e7888d92856343e47c568 Links ]

Bishopp, F. C., & Trembley, H. L. (1945). Distribution and Hosts of Certain North American Ticks. The Journal of Parasitology, 31(1), 1-54. https://doi.org/10.2307/3273061 [ Links ]

Brennan, J. M. (1945). Field investigations pertinent to Bullis fever. Preliminary report on the species of ticks and vertebrates occurring at Camp Bullis, Texas. Texas Reports on Biology and Medicine, 3,112-121. [ Links ]

Brown, E. L., Roellig, D. M., Gompper, M. E., Monello, R. J., Wenning, K. M., Gabriel, M. W., & Yabsley, M. J. (2010). Seroprevalence of Trypanosoma cruzi Among Eleven Potential Reservoir Species from Six States Across the Southern United States. Vector-Borne and Zoonotic Disease, 10(8), 757-763. https://doi.org/10.1089/vbz.2009.0009 [ Links ]

Cañizales, I., & Guerrero, R. (2017). Artrópodos y helmintos parásitos de mamíferos silvestres (Mammalia) de Venezuela: Carnivoros (Carnivora). Boletín del Centro de Investigaciones Biológicas, 51(3), 162-184. https://www.researchgate.net/profile/Ricardo-Guerrero-15/publication/329254386_ARTROPODOS_Y_HELMINTOS_PARASITOS_DE_MAMIFEROS_SILVESTRES_MAMMALIA_DE_VENEZUELA_CARNIVOROS/links/5d373706a6fdcc370a59bf05/ARTROPODOS-Y-HELMINTOS-PARASITOS-DE-MAMIFEROS-SILVESTRES-MAMMALIA-DE-VENEZUELA-CARNIVOROS.pdf Links ]

Chelladurai, J. R. J., & Brewer, M. T. (2021). Global prevalence of Mesocestoides infections in animals-A systematic review and meta-analysis. Veterinary Parasitology, 298, 109537. https://doi.org/10.1016/j.vetpar.2021.109537 [ Links ]

Cooley, R. A., & Kohls, G. M. (1945). The genus Ixodes in North America. National Institute of Health Bulletin, No. 184. [ Links ]

Curtis-Robles, R., Meyers, A. C., Auckland, L. D., Zecca, I. B., Skiles, R., & Hamer, S. A. (2018). Parasitic interactions among Trypanosoma cruzi, triatomine vectors, domestic animals, and wildlife in Big Bend National Park along the Texas-Mexico border. Acta Tropica, 188, 225-233. https://doi.org/10.1016/j.actatropica.2018.09.002 [ Links ]

Custer, J. W., & Pence, D. B. (1979). Ectoparasites of the ringtail, Bassariscus astutus, from West Texas. Journal of Medical Entomology, 15(2), 132-133. https://doi.org/10.1093/jmedent/15.2.132 [ Links ]

Durden, L. A., & Traub, R. (2002). Fleas (Siphonaptera). Medical and Veterinary Entomology. Academic Press. 103-125. https://doi.org/10.1016/B978-012510451-7/50009-8 [ Links ]

Eads, R. E., Campos, E. G., & Barnes, A. M. (1979). New records for several flea (Siphonaptera) species in the United States, with observations on species parasitizing carnivores in the Rocky Mountain region. Proceedings of the Entomological Society of Washington, 81(1), 38-42. https://ia800200.us.archive.org/22/items/biostor-75987/biostor-75987.pdf Links ]

Emerson, K. C. & Roger, D. P. (1985). Evolution of Mallophaga on Mammals. Offprints from coevolution of parasitic arthropods and mammals. John Wiley & Sons, inc. [ Links ]

Ewing, H. E. (1936). The Taxonomy of the Mallophagan Family Trichodectidae, with Special Reference to the New World Fauna. The Journal of Parasitology , 22(3), 233-246. https://doi.org/10.2307/3271530 [ Links ]

Gibb, R., Redding, D. W., Chin, K. Q., Donnelly, C. A., Blackburn, T. M., Newbold, T., & Jones, K. E. (2020). Zoonotic host diversity increases in human-dominated ecosystems. Nature, 584(7821), 398-402. https://doi.org/10.1038/s41586-020-2562-8 [ Links ]

Gordillo-Perez, G., Vargas, M., Solorzano-Santos, F., Rivera, A., Polaco, O.J., Alvarado, L., Munñoz, O., & Torres, J. (2009). Demonstration of Borrelia burgdorferi sensu stricto infection in ticks from the northeast of Mexico. Clinical Microbiology and Infection, 15(5), 496-498. https://doi.org/10.1111/j.1469-0691.2009.02776.x [ Links ]

Guzmán-Cornejo, G., Robbins, R. G., & Pérez, T. M. (2007). The Ixodes (Acari: Ixodidae) of Mexico: parasite-host and host-parasite checklists. Zootaxa, 1553, 47-58. https://doi.org/10.11646/zootaxa.1553.1.2 [ Links ]

Han, B. A., Castellanos, A. A., Schmidt, J. P., Fischhoff, I. R., & Drake, J. M. (2021). The ecology of zoonotic parasites in the Carnivora. Trends in Parasitology, 37(12), 1096-1110. https://doi.org/10.1016/j.pt.2021.08.006 [ Links ]

Kelley, S. W. & Horner, N. V., (2008). The prevalence of cestodes in raccoons (Procyon lotor) from North-Central Texas. Comparative Parasitology, 75(2), 292-298. https://doi.org/10.1654/4342.1 [ Links ]

Kramm III, M. M., Montalvo, A. E., Parker, I. D., Lopez, R. R., Gorchakov, R., & Nolan, M. S. (2019). Immunochromatographic antibody screening for diagnosis of Trypanosoma cruzi in South Texas meso‐mammals. Wildlife Society Bulletin, 43(4), 678-682. https://doi.org/10.1002/wsb.1030 [ Links ]

Kresta, A. E., Henke, S. E., & Pence, D. B. (2009). Gastrointestinal helminths in raccoons in Texas. Journal of Wildlife Diseases, 45(1), 1-13. https://doi.org/10.7589/0090-3558-45.1.1 [ Links ]

Magouras, I., Brookes, V. J., Jori, F., Martin, A., Pfeiffer, D. U., & Dürr, S. (2020). Emerging zoonotic diseases: Should we rethink the animal-human interface?. Frontiers in veterinary science, 7, 582743. https://doi.org/10.3389/fvets.2020.582743 [ Links ]

Mayberry, L. F., Canaris, A. G., Bristol, J. R., & Gardner, S. L. (2000). Bibliography of Parasites and Vertebrate Hosts in Arizona, New Mexico, and Texas (1893-1984). Faculty Publications from the Harold W. Manter Laboratory of Parasitology, 2. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1002&context=parasitologyfacpubs Links ]

Montiel-Parra, G., Fuentes-Moreno, H., & Vargas, M. (2007). Primer registro de Ixodes cookei (Acari: Ixodidae) para México. Revista Mexicana de Biodiversidad, 78, 205-206. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-34532007000100020&lng=es Links ]

Myers, S. S., Gaffikin, L., Golden, C. D., Ostfeld, R. S., Redford, K. H., Ricketts, T. H., Osofsky, S. A. (2013). Human health impacts of ecosystem alteration. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 18753-18760. https://doi.org/10.1073/pnas.1218656110 [ Links ]

Osborn, H. (1902). Mallophagan records and descriptions. Ohio Naturalist, 2(3), 175 - 178. [ Links ]

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & . Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International journal of surgery, 88, 105906. https://doi.org/10.1136/bmj.n71 [ Links ]

PAHO. (2003). Zoonosis y enfermedades transmisibles comunes al hombre: Parasitosis. (O. Barriga, Ed.), Publicación Científica y Técnica (3rd ed.). Washington, D.C: Organización Panamericana de la Salud. https://iris.paho.org/bitstream/handle/10665.2/711/9275119936.pdf Links ]

Pence, D. B., & Stone, J. E. (1977). Lungworms (Nematoda: Pneumospiruridae) from West Texas carnivores. Journal of Parasitology, 63,979-991. https://doi.org/10.2307/3279830 [ Links ]

Pence, D.B., & Willis, K. D. (1978). Helminths of the Ringtail, Bassariscus astutus, from West Texas. The Journal of Parasitology , 64(3), 568-569. https://doi.org/10.2307/3279820 [ Links ]

Polley, L. (2005). Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin. International Journal for Parasitology, 35(11-12), 1279-1294. https://doi.org/10.1016/j.ijpara.2005.07.003 [ Links ]

Poulin, R. (1998). Comparison of three estimators of species richness in parasite component communities. Journal of Parasitology , 84(3), 485-490. https://doi.org/10.2307/3284710 [ Links ]

Rausch, R. R. (2003). Taenia penci n. sp. From the ringtail Bassariscus astutus (Carnivora: Procyonidae) in Texas, U.S.A. Comparative Parasitology , 70,1-10. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1350&context=parasitologyfacpubs Links ]

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Consultado el 20 de diciembre de 2021, de: Consultado el 20 de diciembre de 2021, de: https://www.r-project.org Links ]

Richerson, J. V., Scudday, J. F. y Tabor, S. P. (1992). An ectoparasite survey of mammals in Brewster County, Texas, 1982-1985. Southwestern Entomologist, 17,7-15. [ Links ]

Rizzoli, A., Tagliapietra, V., Cagnacci, F., Marini, G., Arnoldi, D., Rosso, F., & Rosà, R. (2019). Parasites and wildlife in a changing world: The vector-host-pathogen interaction as a learning case. International Journal for Parasitology: Parasites and Wildlife, 9, 394-401. https://doi.org/10.1016/j.ijppaw.2019.05.011 [ Links ]

Romero-Tejeda, M. L., García-Prieto, L., Garrido-Olvera, L., & Pérez-Ponce de León, G. (2008). Estimation of the endohelminth parasite species richness in freshwater fishes from La Mintzita reservoir, Michoacán, Mexico. Journal of Parasitology , 94(1), 288-292. https://www.jstor.org/stable/40059007 Links ]

Ryser-Degiorgis, M. P. (2013). Wildlife health investigations: needs, challenges and recommendations. BMC veterinary research, 9(1), 223. https://doi.org/10.1186/1746-6148-9-223 [ Links ]

Samuel, W. M., Pybus, M. J., & Kocan, A. A. (2001). Parasitic diseases of wild mammals (2nd ed.). Iowa State University. https://www.researchgate.net/profile/Grant-Singleton/publication/229698454_Hepatic_Capillariasis/links/5af96d6aaca2720af9ef24a7/Hepatic-Capillariasis.pdf Links ]

Sooksawasdi Na Ayudhya, S., & Kuiken, T. (2021). Reverse zoonosis of COVID-19: lessons from the 2009 influenza pandemic. Veterinary Pathology, 58(2), 234-242. https://doi.org/10.1177/0300985820979843 [ Links ]

Sosa-Gutierrez, C. G., Vargas-Sandoval, M., Torres, J., & Gordillo-Pérez, G. (2016). Tick-borne rickettsial pathogens in questing ticks, removed from humans and animals in Mexico. Journal of Veterinary Science, 17(3), 353-360. https://doi.org/10.4142/jvs.2016.17.3.353 [ Links ]

Suzán, G., & Ceballos, G. (2005). The role of feral mammals on wildlife infectious disease prevalence in two nature reserves within Mexico City limits. Journal of Zoo and Wildlife Medicine, 36(3), 479-484. https://www.jstor.org/stable/20096487 Links ]

Toweill, D. E., & Price, M. A. (1976). Ectoparasites of ringtails collected from Kerr County, Texas. Southwestern Entomologist , 1, 20. [ Links ]

Vélez-Hernández, L., Reyes-Barrera, K. L., Rojas-Almaráz, D., Calderón-Oropeza, M. A., Cruz-Vázquez, J. K., & Arcos-García, J. L. (2014). Riesgo potencial de parásitos zoonóticos presentes en heces caninas en Puerto Escondido, Oaxaca. Salud Pública de México, 56(6), 625-630. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342014000600012&lng=es&tlng=es Links ]

Webb Jr, J. P., & Loomis, R. B. (1970). Four species of Microtrombicula (Acarina: Trombiculidae) from Mexico and Nicaragua. Bulletin of the Southern California Academy of Sciences, 69(3), 133-144. https://www.biodiversitylibrary.org/page/34157622#page/995/mode/1up Links ]

Whitaker, J. O., & Morales-Malacabra, J. B. (2005). Ectoparasites and other associates (ectodytes) of mammals of Mexico, Cap 43, 535-666 en Contribuciones Mastozoologicas en homenaje a Bernardo Villa, 706 p. Instituto de Biologia, UNAM; CONABIO, México. https://books.google.com.mx/books?id=PQphdAd9KKcC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Links ]

Appendix 1

Appendix 1  Bassariscus astutus parasites 

Class Order Family Species Zoonosis Reference
Archiacanthocephala Oligacanthorhynchida Oligacanthorhynchidae Macracanthorhynchus ingens 13
Conoidasida Eucoccidiorida Sarcocystidae Toxoplasma gondii Toxoplasmosis 22
Arachnida Ixodida Ixodidae Amblyomma americanum Tularemia (Francisella tularensis), Ehrliquiosis (Ehrlichia spp.), Rocky Mountain spotted fever (Rickettsia rickettsii) 5, 11, 14, 19
Arachnida Ixodida Ixodidae Dermacentor parumapertus 8
Arachnida Ixodida Ixodidae Dermacentor variabilis Tularemia (F. tularensis), Rocky Mountain spotted fever (Rickettsia rickettsii) 14
Arachnida Ixodida Ixodidae Haemaphysalis leporispalustris 14
Arachnida Ixodida Ixodidae Ixodes angustus 20
Arachnida Ixodida Ixodidae Ixodes conepati 14, 20
Arachnida Ixodida Ixodidae Ixodes cookei Encephalitis (Flavivirus spp.) 4, 11, 19, 23
Arachnida Ixodida Ixodidae Ixodes dampfi 29
Arachnida Ixodida Ixodidae Ixodes kingi 8, 11
Arachnida Ixodida Ixodidae Ixodes rubidus 1, 7
Arachnida Ixodida Ixodidae Ixodes scapularis Babiosis (Babesia microti), Lyme disease(Borrelia burgdorferi) 19
Arachnida Ixodida Ixodidae Ixodes sculptus 4
Arachnida Ixodida Ixodidae Ixodes texanus 5, 11, 24, 25
Arachnida Mesostigmata Hirstionyssidae Hirstionyssus breviseta 14
Arachnida Mesostigmata Hirstionyssidae Hirstionyssus staffordi 14
Arachnida Mesostigmata Laelapidae Androlaelaps circularis 16
Arachnida Mesostigmata Laelapidae Androlaelaps fahrenholzi 14
Arachnida Sarcoptiformes Glycyphagidae Homopus hypudaei 14
Arachnida Trombidiformes Cheyletidae Cheyletus eruditus 14
Arachnida Trombidiformes Cheyletidae Eucheyletia hardyi 14
Arachnida Trombidiformes Trombiculidae Euschoengastia eadsi 14
Arachnida Trombidiformes Trombiculidae Microtrombicula fisheri 10
Arachnida Trombidiformes Trombiculidae Microtrombicula tragulata 10
Arachnida Trombidiformes Trombiculidae Pseudoschoengastia apista 14
Insecta Phthiraptera Trichodectidae Neotrichodectes thoracicus 6, 14
Insecta Siphonaptera Ceratophyllidae Dactylopsylla percernis 19
Insecta Siphonaptera Ceratophyllidae Malaraeus sinomus 14, 15
Insecta Siphonaptera Ceratophyllidae Monopsyllus wagneri 15
Insecta Siphonaptera Ceratophyllidae Orchopeas neotomae 15
Insecta Siphonaptera Ceratophyllidae Orchopeas sexdentalus 14, 19
Insecta Siphonaptera Ceratophyllidae Oropsylla montana 15
Insecta Siphonaptera Ceratophyllidae Thrassis aridis 15
Insecta Siphonaptera Hystrichopsyllidae Anomiopsyllus novomexicanensis 15
Insecta Siphonaptera Hystrichopsyllidae Anomiopsyllus nudatus 14
Insecta Siphonaptera Hystrichopsyllidae Atyphloceras echis 15
Insecta Siphonaptera Hystrichopsyllidae Epitedia stanfordi 15
Insecta Siphonaptera Hystrichopsyllidae Megarthroglossus bisetis 15
Insecta Siphonaptera Hystrichopsyllidae Meringis arachis 15
Insecta Siphonaptera Hystrichopsyllidae Micropsylla sectilis 15
Insecta Siphonaptera Hystrichopsyllidae Stenistomera alpina 15
Insecta Siphonaptera Pulicidae Ctenocephalides felis 9
Insecta Siphonaptera Pulicidae Echidnophaga gallinacea 14, 15, 18, 19
Insecta Siphonaptera Pulicidae Hoplopsyllus affinis 11
Insecta Siphonaptera Pulicidae Pulex irritans 11, 17
Insecta Siphonaptera Pulicidae Pulex simulans 14, 15, 18, 19
Insecta Siphonaptera Rhopalopsyllidae Polygenis gwyni 14
Kinetoplastea Trypanosomatids Trypanosomatidae Trypanosoma cruzi Chagas disease 26, 27, 28
Chromadorea Rhabditida Ancylostomatidae Placoconus lotoris 3, 13
Chromadorea Rhabditida Pneumospiruridae Pneumospirura bassarisci 12, 13
Secernentea Spirurida Physalopteridae Physaloptera sp 13
Cestoda Cyclophyllidea Mesocestoididae Mesocestoides bassarisci Mesocestoidiasis 2
Cestoda Cyclophyllidea Mesocestoididae Mesocestoides sp Mesocestoidiasis 13
Cestoda Cyclophyllidea Taeniidae Taenia pencei Coenurosis, Taeniasis 21

Source: Fuente: 1 Neumann (1911) quoted by Cooley y Kohls (1945), 2 MacCallum (1921) quoted by Pence y Willis, (1978), 3 Price (1928) quoted by Pence y Willis (1978), 4Bishopp y Trembley (1945), 5Brennan (1945), 6 Wiseman (1959) quoted by Mayberry et al. (2000), 7 Hoffmann (1962) quoted by Whitaker y Morales-Malacabra (2005), 8 Beck et al. (1963), 9 Barrera (1968) quoted by Whitaker y Morales-Malacabra (2005), 10Webb y Loomis (1970), 11Toweill y Price (1976), 12Pence y Stone (1977), 13Pence y Willis (1978), 14Custer y Pence (1979), 15Eads et al. (1979), 16 Bassols (1981) quoted by Whitaker y Morales-Malacabra (2005), 17 Morales-Muciño y Llorente-Bousquets (1986) quoted by Whitaker y Morales-Malacabra (2005), 18 Ayala-Barajas et al. (1988) quoted by Whitaker y Morales-Malacabra (2005), 19Richerson et al. (1992), 20Samuel et al. (2001), 21 Rausch (2003), 22 Suzán y Ceballos (2005), 23 Montiel-Parra et al. (2007), 24Gordillo-Perez et al. (2009), 25Guzmán-Cornejo et al. (2007), 26Brown et al. (2010), 27Curtis-Robles et al. (2018), 28Kramm et al. (2019) y 29 Sánchez‑Montes et al. (2021).

Received: May 19, 2023; Accepted: September 23, 2023; Published: October 13, 2023

*Corresponding Author: Martha Gabriela Duran-Irigoyen. Universidad Autónoma de Ciudad Juárez, Departamento de Ciencias Químico-Biológicas. Av. Benjamín Franklin no. 4650, Zona PRONAF, C. P. 33315, Ciudad Juárez, Chihuahua, México. E-mail: duran.ig@yandex.com

Author contribution

Conceptualization of the work, MGDI; development of the methodology, MGDI; software management, MGDI; experimental validation, JMMC; results analysis, MGDI, JMMC; Data Management, MGDI; writing and preparation of the manuscript, MGDI, JMMC; writing, proofreading and editing, MGDI, JMMC; project manager, MGDI, JMMC; fundraising, MGDI, JMMC. “All authors of this manuscript have read and accepted the published version of it.”

Conflict of interest

The authors declare no conflict of interest.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License