SciELO - Scientific Electronic Library Online

 
vol.61 número3Hamiltonian dynamics for Proca's theories in five dimensions with a compact dimensionThe Hagen-Beverloo law for outflow of granular solids from holes on side walls índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.3 México may./jun. 2015

 

Investigación

 

Complete sets of circular, elliptic and bipolar harmonic vortices on a plane

 

P.L. Rendóna and E. Ley-Koob

 

a Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México. e-mail: pablo.rendon@ccadet.unam.mx

b Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 20-364, C.P. 01000, México D.F., México.

 

Received 23 October 2014;
accepted 12 February 2015

 

Abstract

A class of harmonic solutions to the steady Euler equations for incompressible fluids is presented in two dimensions in circular, elliptic and bipolar coordinates. Since the velocity field is solenoidal in this case, it can be written as the curl of a vector potential, which will then satisfy Poisson's equation with vorticity as a source term. In regions with zero vorticity, Poisson's equation reduces to Laplace's equation, and this allows for the construction of harmonic potentials inside and outside circles and ellipses, depending on the coordinate system. The vector potential is normal to the coordinate plane, and is proportional to the scalar harmonic functions on the plane, thereby guaranteeing that the velocity field is also harmonic and is located on the coordinate plane. The components of the velocity field normal to either a circle or an ellipse are continuous, but the tangential components are discontinuous, so that, in effect, a vortex sheet is introduced at these boundaries. This discontinuity is a measure of the vorticity, normal to the plane and distributed harmonically along the perimeter of the respective circles or ellipses. An analytic expression for the streamlines is obtained which makes visualisation of vortices of various geometries and harmonicities possible. This approach also permits a reformulation of the notion of multipolarity of vortices in the traditional sense of a multipolar expansion of the Green function for Poisson's equation. As an example of the applicability of this formulation to known vortical structures, Rankine vortices of different geometries are expressed in terms of harmonic functions.

Keywords: Incompressible and inviscid fluids; steady vortices; Euler equations; superintegrability and exact solvability.

 

PACS: 02.30.Jr; 47.10.A-; 47.15.ki.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. J.C. McWilliams, J. Fluid Mech. 146 (1984) 21.         [ Links ]

2. X.J. Carton, G.R. Flierl, and L.M. Polvani, Europhys. Lett. 9 (1989) 339.         [ Links ]

3. G.J.F. Van Heijstand R.C. Kloosterziel, Nature 338 (1989) 569.         [ Links ]

4. G.F. Carnevale and R.C. Kloosterziel, J. Fluid Mech. 259 (1994) 305.         [ Links ]

5. Y.G. Morel and X.J. Carton, J. Fluid Mech. 267 (1994) 23.         [ Links ]

6. D.G. Crowdy, Phys. Fluids 11 (1999) 2556.         [ Links ]

7. D. Crowdy, Phys. Fluids 14 (2002) 257.         [ Links ]

8. P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, England, 1992).         [ Links ]

9. H. Helmholtz, J. Reine Angew. Math. 55 (1858).         [ Links ]

10. E. Ley-Koo and A. Gongora, Rev. Mex. Fis. 34 (1988) 645.         [ Links ]

11. E. Ley-Koo and A. Gongora, Rev. Mex. Fis. 37 (1991) 759.         [ Links ]

12. K. Moffatt, in IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures and Turbulence Location, edited by A. V. Borisov, V. V. Kozlov, I. S. Mamaev, and M. A. Sokolovskiy (Springer, Dordrecht, The Netherlands, 2008), pp. 1-10.         [ Links ]

13. D. G. Crowdy, J. Fluid Mech. 498 (2004) 381.         [ Links ]

14. J. T. Stuart, J. Fluid Mech. 29 (1967) 417.         [ Links ]

15. D. G. Dritschel, J. Fluid Mech. 157 (1985) 95.         [ Links ]

16. D. Crowdy and J. Marshall, Phys. Fluids (2004) 3122.         [ Links ]

17. H. Aref and D.L. Vainchtein, Nature 392 (1998) 769.         [ Links ]

18. G. Kirchhoff, Vorlesungen über matematische Physic: Mechanik (Teubner, Leipzig, 1876).         [ Links ]

19. T.B. Mitchell and L.F. Rossi, Phys. Fluids 20 (2008) 054103.         [ Links ]

20. D.W. Moore and P.G. Saffman, in Aircraft Wake Turbulence and 1ts Detection, edited by J. H. Olsen, A. Goldburg, and M. Rogers (Plenum Press, New York, 1971). pp. 339-354.         [ Links ]

21. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, England, 1895).         [ Links ]

22. S.A. Chaplygin, Trudy Otd. Fiz. Nauk Imper. Mosk. Obshch. Lyub. Estest. 11 (1903) 11.         [ Links ]

23. S. A. Chaplygin, Regul. Chaotic Dyn. 12 (2007) 219.         [ Links ]

24. V.V. Meleshko and G.J.F. Van Heijst, J. Fluid Mech. 272 (1994) 157.         [ Links ]

25. D. Crowdy, Phys. Fluids (2003) 3710.         [ Links ]

26. V.A. Bogomolov, 1zv. Atmos. Ocean. Phys. 15 (1979) 18.         [ Links ]

27. Y. Kimura and H. Okamoto, J. Phys. Soc. Jpn. 56 (1987) 4203.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons