SciELO - Scientific Electronic Library Online

 
vol.35 número3Particulate matter air pollution effects on pulmonary tuberculosis activation in a semi-desert city on the US-Mexican borderSeasonal variation of atmospheric bulk deposition along an urbanization gradient in Nuevo Leon, Mexico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Atmósfera

versión impresa ISSN 0187-6236

Resumen

ROJAS, Nestor Y. et al. Incremental excess of PM components and sources between two adjacent sites of Bogotá, Colombia. Atmósfera [online]. 2022, vol.35, n.3, pp.557-575.  Epub 13-Jun-2022. ISSN 0187-6236.  https://doi.org/10.20937/atm.52986.

Air pollution in towns adjacent to and downwind of large cities can be similar or even higher than in the city itself. In the case of towns constituting the greater Bogotá area, with more than half a million inhabitants and strong industrial activity, little is known about the factors that affect their poor air quality. This work investigated the incremental excess of the composition and source contribution to PM2.5 in two sites near Bogotá (Soacha: 4º35’4.59” N, 74º13’11.62” W; and Mosquera: 4º42’9.75” N, 74º13’54.94” W), using the Chemical Mass Balance receptor model with organic molecular markers, and back trajectory analysis. Simultaneous sample collection was carried out for two-months. Organic matter was the major component of the PM2.5 mass (66 ± 14% and 61 ± 12%), while secondary inorganic ions (sulfate, nitrate, and ammonium) constituted 13 ± 8 % and 10 ± 2 %. The main anthropogenic sources contributing to PM2.5 at Soacha were wood combustion (23%), diesel vehicles (19%), and coal combustion at small facilities (11%). At Mosquera, they were gasoline vehicles (26%), diesel vehicles (19%), and coal combustion at small inefficient facilities (15%). The contribution of regional secondary organic aerosol to PM2.5 was significant (19% and 15%), arriving mostly from the Orinoco basin but higher in air masses arriving from the Amazon rainforest. The regional contribution to secondary inorganic aerosols was higher with winds from the Magdalena Valley. The methods presented in this manuscript will be useful in other megacities and large cities to better manage impacts of local and regional air pollution sources.

Palabras llave : Incremental excess; Molecular markers; Chemical Mass Balance; Source apportionment; Back trajectories.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )