SciELO - Scientific Electronic Library Online

 
vol.21 número1Erythemal irradiance at the Magellan's region and Antarctic ozone hole 1999-2005Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Atmósfera

versión impresa ISSN 0187-6236

Resumen

DOURADO, M  y  PEREIRA DE OLIVEIRA, A. A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio, Brazil. Atmósfera [online]. 2008, vol.21, n.1, pp.13-34. ISSN 0187-6236.

An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23° S, 42°08' W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 m s-1, increases the atmospheric boundary layer in 214 m when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 m. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frío during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frío during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 m and 5.4 m for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts in Cabo Frío.

Palabras llave : One-dimensional modelling; atmospheric boundary layer; air-sea interaction; upwelling.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons