SciELO - Scientific Electronic Library Online

 
vol.9Superbacterias y análisis genómico de la Resistencia antimicrobianaModelado de cinética de liberación y potencial de control fúngico de aceite esencial de tomillo (Thymus vulgaris) encapsulado índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.9  Tepic  2022  Epub 12-Abr-2024

https://doi.org/10.15741/revbio.09.e1121 

Original articles

Eclosion inhibition of Haemonchus contortus eggs with two extracts of Caesalpinia coriaria fruits

Inhibición de la eclosión de huevos de Haemonchus contortus con dos extractos de frutos de Caesalpinia coriaria

A. Olmedo-Juárez2 
http://orcid.org/0000-0001-5499-7449

X. De Jesús-Martínez1 

S. Rojas-Hernández1 
http://orcid.org/0000-0001-5152-2149

A. Villa-Mancera3 
http://orcid.org/0000-0002-5997-5641

T. Romero-Rosales1 
http://orcid.org/0000-0002-9158-8481

J. Olivares-Pérez1  * 
http://orcid.org/0000-0002-7455-2890

1Universidad Autónoma de Guerrero, Programa de Posgrado Maestría en Ciencias Agropecuarias y Gestión Local, Carretera Iguala-Tuxpan, Guerrero, México http://mcagropecuarias.uagro.mx.

2Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro Nacional de Investigación, Disciplinaria en Salud Animal e Inocuidad, Carretera Federal Cuernavaca- Cuautla N° 8534/Col. Progreso C.P. 625550, Jiutepec, Morelos, México / A.P. 206- CIVAC Tel. (777) 319 28 50 y 319 28 60 www.inifap.gob.mx

3Facultad de Medicina Veterinaria y Zootecnia - Benemérita Universidad Autónoma de Puebla, Puebla, México


ABSTRACT

Haemonchus contortus is a gastrointestinal parasite of small ruminants. The objective of the study was to evaluate the effect of the acetonic and ethanolic extracts of the Caesalpinia coriaria fruits legume on the egg eclosion inhibition (EEI) of H. contortus in small ruminants. For this effect, it was evaluated at different concentrations of the extracts (acetonic: 20.0, 10.0, 5.0, 2.5, 1.2 and 0.6 mg / mL), (ethanolic: 6.15, 3.12, 1.56 and 0.78 mg / mL), and methanol 4 % v/v in distilled water as negative control and ivermectin 0.5 % as positive control, were used. The inhibitory effect data were analyzed with a completely randomized design by analysis of variance using the general linear model and the Tukey test (p <0.05); the lethal concentrations (LC50 and LC90) were estimated by the Probit analysis of the statistical analysis systems (SAS) program. The inhibitory effects of the extracts depended on the concentration, where the inhibitory activity was comparatively similar to the positive control doses of 1.2 mg/mL for the acetonic extract (AE) and 0.78 mg/mL for the ethanolic extract (EE), (p < 0.0001). The LC50 were AE = 0.23 mg/mL and EE = 0.014 mg/mL; LC90 AE = 1.04 mg/mL and EE = 0.14 mg/mL. The results indicate that the EEI of the extracts elaborated with the C. coriaria fruits in acetonic and ethanolic solvent have inhibitory activity against H. contortus eggs eclosion, nevertheless, requires further investigations as antiparasitic for oral use in animals.

KEY WORDS: Caesalpinia coriaria; Haemonchus contortus; parasite; eggs

RESUMEN

Haemonchus contortus es un parasito gastrointestinal de los pequeños rumiantes. El objetivo del estudio fue evaluar el efecto del extracto acetónico y etanólico de frutos de la leguminosa Caesalpinia coriaria sobre la inhibición de la eclosión de huevos (EEI) de H. contortus en pequeños rumiantes. Por éste efecto se evaluó a diferentes concentraciones de los extractos (acetónico: 20.0, 10.0, 5.0, 2.5, 1.2 y 0.6 mg / mL), (etanólico: 6.15, 3.12, 1.56 y 0.78 mg / mL), y metanol al 4 % v/v en agua destilada fue utilizada como control negativo e ivermectina 0.5 % como control positivo. Los datos del efecto inhibidor se analizaron con un diseño completamente al azar mediante análisis de varianza utilizando el modelo lineal general y la prueba de Tukey (p < 0.05); las concentraciones letales (LC50 y LC90) se estimaron mediante el análisis Probit del programa de sistemas de análisis estadístico (SAS). Los efectos inhibitorios de los extractos dependieron de la concentración, donde la actividad inhibitoria fue comparativamente similar al control positivo a las dosis de 1.2 mg/mL para el extracto acetónico (AE) y 0.78 mg/mL para el extracto etanólico (EE), (p < 0.0001). Las LC50 fueron AE = 0.23 mg/mL y EE = 0.014 mg/mL; LC90 AE = 1.04 mg/mL y EE = 0.14 mg/mL. Los resultados indican que la EEI de los extractos elaborados con los frutos de C. coriaria en disolvente acetónico y etanólico tienen actividad inhibitoria contra huevos de H. contortus, sin embargo, requiere de mayores investigaciones como antiparasitario para su uso vía oral en animal.

PALABRAS CLAVE: Caesalpinia coriaria; Haemonchus contortus; parásito; huevos

Introduction

Parasitism is one of the main problems that affect small ruminants, and in this group, gastrointestinal nematodes (GIN) are the most important cause of mortality in sheep and goats in the tropics of Mexico (Delgado, A. et al., 2016; Zapata et al., 2016; Canul-Ku et al., 2012). H. contortus is a gastroenteric nematode that parasitizes the abomasum of ruminants (sheep, goats and cattle) and is epidemiologically the most important with 70% prevalence in tropical regions (Olivares et al., 2012; Ehsan et al., 2020) This parasite is the most pathogenic (Baltrusis et al., 2020), it feed on blood, injury the abomasal epithelium and clinically causes epithelium inflammation, emaciation, anemia and hypoproteinemia with losses of up to 500 mL of blood/day, submandibular edema, drooping of the productive parameters (production of wool, milk and meat), and in many cases death of infected animals (Eshan et al., 2020). The frequent use of anthelmintic for the parasites control has been one of the causes that has led to the resistance development of these microorganisms (Laca-Megyesi et al., 2020). The parasites are a problem from a biological and economic point of view, especially when the inadequate use of chemical dewormers is abused, this has promoted the development of the anthelminthic resistance (Muñiz-Lagunes et al., 2015). Kaplan & Vidyashankar (2012) reported resistance of H. contortus to ivermectin, moxidectin, levamizole and albendazole in 76 %, 24 %, 98 % and 54 % of the studied goat and sheep herds; to tetrahydropyrimidines and macrocyclic lactones (Baltrusis et al., 2020).

The impact of parasitism by GIN has motivated the development of investigation in alternative medicine, such as the use of biological agents (fungi and hematophagous mites) (Pérez-Pérez et al., 2014; Von de - Fernex et al., 2015; Olmedo et al., 2014; García-Ortiz et al., 2015) and medicinal plants or extracts of tree leaves with nematicidal properties of use in ruminants (León-Castro et al., 2015; Olivares et al., 2012; Carvalho et al., 2012). Manuel-Pablo et al. (2020) reported that the supply of a diet with 4.5 % tannins from the C. coriaria fruits in goats; they had a daily consumption of 45 g of the secondary compounds without negative effects on health, weight gain and feed conversion of the animals. The arboreal legume C. coriaria Jacq. Willd, is commonly known as "Cascalote", is widespread in the Tierra Caliente region of Guerrero and contains a high variety of secondary metabolites such as tannins, gallic acid, and flavonoids (Sánchez-Carranza et al., 2017), gallotannins (methyl gallate) and their derivatives were also identified (De Jesús-Martínez et al., 2018). The objective of the study was to evaluate the acetonic and ethanolic extracts from C. coriaria fruits against H. contortus eggs.

Material and Methods

Vegetative material corresponded to C. coriaria dried fruit (5000 g) were collected in march in the Tierra Caliente region of Guerrero, Mexico, located at 18° 20´ 30" NL and 100 39`18" WL, which were brought to total dryness through of a forced-air heater at 40 °C. Subsequently they were subjected to a milling with a Mini Wiley Mill, to obtain a particle size of 1 mm.

Preparation of acetonic and ethanolic extracts

Each acetone and ethanol extracts were elaborated separately preparing a solution of 300 g of dried fruits of C. coriaria suspended in 2000 mL of the solvents, during 72 h, at room temperature, to extract polar secondary compounds and intermediate polarity. Then the liquid solutions of the extracts were filtered with different filters separately in the following order, first gauze, then cotton and finally filter paper, the residual solvents were removed by distillation under reduced pressure with the help of a rotary evaporator (Buchi R-114) at 60 °C, and finally, they were dried by Lyophilization processes (Labconco FreeZone -105 °C) to obtain the semi-solid extracts. The solvent-free dry extracts (36 g) were stored at -40 °C until their use in the in vitro bioassays.

Biological material

Obtaining Haemonchus contortus eggs

The H. contortus eggs were used obtained of the feces from an ovine experimentally infected with infective larvae (L3) of the parasite (strain INIFAP, 350 L3/kg of BW of the animal). The eggs were concentrated through the passage in different sieves (200, 100, 75 and 37 μm in diameter) and by density gradients in 40 % sucrose solution.

Eggs eclosion inhibition (% EEI)

Eight 96-well microtiter plates were used. The treatments were acetonic and ethanolic extracts at different concentrations (20, 10, 5, 2.5, 1.2 and 0.6 mg / mL) and (6.15, 3.12, 1.56 and 0.78 mg / mL), 4 % methanol as a negative control and ivermectin injectable solution (5 mg / mL; Ivomec® Pour ON Boehringer Ingelheim laboratory) as a positive control. Fifty µL of an aqueous suspension containing 100 ± 150 H. contortus eggs were placed in each well. Subsequently, aliquots of 50 μL of the extracts and controls were added, having a final volume of 100 μL per well. The plates were incubated by 48 hours at a temperature of 28 ° C, with 100 % humidity (at an incubator Ecoshel model Cl-80). The egg eclosion process was stopped by adding 10 μL of 5 % lugol solution. Finally, a total count of eggs or larvae of each well was performed and the EEI percentage was determined by the following formula: % EEI = [(number of eggs) / (number of larvae + number of eggs)] * 100.

Statistical analysis

The data were analyzed under a completely randomized design, with the following statistical model: Y ij = μ + T i + ξ ij ; where: Y ij = eclosion inhibition; μ = general mean; T i = effect of the extracts and controls ξ i = the random error of the treatment. The difference between means was compared with the Tukey test (p < 0.05). In addition, minimum (LC50) and maximum (LC90) lethal concentrations were determined using the PROBIT procedure of the SAS statistical package (SAS, 2002).

Results and Discussion

The results obtained in the study showed evidence that the extracts of the fruits of this arboreal legume have inhibitory effects on the eclosion of H. contortus eggs. In the percentages of EEI, the effects were close to 100 % at the concentration doses of 2.5 and 3.12 mg L of the acetonic (Figure 1) and ethanolic (Figure 2) extracts respectively, this means that both extracts used effectively inhibited the eclosion of eggs to the interrupt their development. Figure 3 shows the images with the readings of the eggs after their incubation with the different treatments, the images 3A, 3B and 3C showed the high eclosion of eggs to L1 larvae that were observed when they were incubated with the negative controls (methanol at 4 % and H2O). The 3D, 3E and 3F images showed the remaining eggs that were inhibited by exposure to the C. coriaria fruit extracts. Poné et al. (2011) reported that the active compounds in the extracts penetrate the envelope (cuticle) of the egg and prevent its development and/or paralyze the larvae of the first embryonic stage. Delgado-Nuñez et al. (2020) reported an interruption of embryonic development and a 30 % reduction in the cell mass and shell of the egg. In addition, some eggs showed irregular edges and deformations that produced a wrinkled surface appearance.

Figure 1.  Eggs eclosion inhibition of H. contortus exposed to acetonic extract elaborated with C. coriaria fruits (abc different literals eclosion inhibition differed between treatments) 

Figure 2 Eggs eclosion inhibition of H. contortus exposed to ethanolic extract elaborated with C. coriaria fruits (abc different literals eclosion inhibition differed between treatments) 

Figure 3 Microscopic images that represented the readings of the H. contortus eggs: (A, B and C) showed the high eggs eclosion to L1 larvae in the negative controls, (D, E and F) showed the remaining eggs inhibited by exposure to C. coriaria fruits extracts 

Ademola et al. (2011), Zabré et al. (2017) when using an acetonic solvent observed that tannins extracted from Cassia alata and Acacia raddiana, respectively, were responsible of eggs eclosion inhibition and adult stage H. contortus mortality inducing, but damages in the enveloped of the eggs was not they described. Similar results were obtained by Carvalho et al. (2012), Akkari et al. (2014), Cabardo & Portugaliza (2017) when they used ethanol solvent observed that tannins extracted polarly from several plants rich in condensed tannins, showed in studies in vitro activity to inhibit the eclosion of eggs, infective stage larvae (L3) and caused paralysis and / or death in adult parasites. These antecedents indicated that the use of acetonic and ethanolic solvents extracted secondary polar compounds that showed activity against H. contortus eggs. Veloz-Garcia et al. (2004) reported as main phenolic compounds to gallic and tannic acids in the cascalote pods, in another study De Jesús-Martínez et al. (2018) reported to the gallotannins (methyl gallate) and their derivatives as primordial secondary compounds, for this reason, the effects observed against the parasite eggs in this study, could be attributed to the action of these compounds.

The lethal concentrations (LC50 and LC90) of the extracts used are shown in figure 4A and 4B. In the acetonic extract, an LC50 of 0.23 mg/mL and LC90 of 1.04 mg/mL are observed, and for the ethanolic extract an LC50 of 0.014 mg/mL and CL90 of 0.14 mg/mL, are observed. The results showed a concentration-dependent effect in the different extracts, however, comparatively between the two extracts it can be seen that the lethal concentrations of the ethanolic extract were lower compared to acetonic extract, which may indicate that the polar compounds extracted of the C. coriaria fruits with the ethanolic solvent, turned out to be more lethal against the eggs of the parasite. Al - Rawahi et al. (2013) reported that the solubility of polyphenols is affected by the type of solvents used and their polarity, resulting in extracts with different properties despite being elaborated from the same plant. Dai & Mumper (2010), Al-Farsi et al. (2007) observed that 100% acetone extracted flavonoid and phenolic compounds of low polarity. Ringuelet & Viña (2013) mentioned that ethanol is a solvent of excellent solubility to extract polar compounds. The same phenomenon was observed by Castillo-Mitre et al. (2017) who reported the different effect of extracts elaborated with Acacia cochliacantha leaves using different solvents, against eggs of H. contortus and attributed it to polar and non-polar compounds present in the different fractions. Sánchez-Carranza et al. (2017) reported that fruits and leaves of C. coriaria are a rich source in condensed tannins, such as gallic acid, ethyl gallate and tannic acid, as a basis of hydrolyzable tannins, so the biological activity reported in this study could be related to these metabolites. In addition, the concentration doses used in the study were less than 9% (90 g/kg dry matter) of tannins to cause mortality in the animal (Nawab et al., 2020). Frutos et al. (2004) fed finishing lambs daily with diets added with 20.8 g/kg of dry matter, and they did not observe toxic effects or decrease in the production of the animals. Manuel-Pablo et al. (2020) provided daily 45 g of secondary compounds in the fruits of C. coriaria without negative effects on health, weight gain and feed conversion of the goats. Pérez, V. et al. (2011) reported symptoms such as methemoglobinemia, kidney failure, anorexia, depression and diarrhea in ruminants when they consumed tannins in the diet to higher quantities at 4400 mg/kg of body weight.

Figure 4 Lethal concentrations of the acetonic (A) and ethanolic (B) extract elaborated with C. coriaria fruits on the egg eclosion inhibition of H. contortus 

Conclusions

It is concluded that the extract elaborated withC. coriariafruits in acetonic and ethanol solvents eclosion inhibitsH. contortuseggs, so it could be an option in the treatment of nematodes in small ruminants, however, it requires more research as antiparasitic for direct and reliable use in animals. The effect on the eggs eclosion inhibition of the parasite was different between the extracts and was attributed to the solvent used because it was the same arboreal fruit. The findings in this study require additional investigations for the identification of the compounds responsible for the EEI, by means of studies of identification of bioactive compounds by high-performance liquid chromatography (HPLC).

Acknowledgements

Part of this work was supported by INIFAP (project SIGI: 8215734475). This research forms part of the Master's thesis of MVZ Xochitl de Jesús Martínez under the direction of Dr Jaime Olivares-Pérez and Dr Agustín Olmedo-Juárez.

References

Ademola, I. O., & Eloff, J. N. (2011). Ovicidal and larvicidal activity of Cassia alata leaf acetone extract and fractions on Haemonchus contortus: In vitro studies. Pharmaceutical Biology, 49(5), 539-544. https://doi.org/10.3109/13880209.2010.526948 [ Links ]

Akkari, H., Rtibi, K., B’chir, F., Rekik, M., Darghouth, M.A., & Gharbi, M. (2014). In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Veterinary Research Communications, 38, 249-255. https://doi.org/10.1007/s11259-014-9609-y [ Links ]

Al-Farsi, M., Alasalvar, C., Al-Abid, M., Al-Shoaily, K., Al-Amry, M., & Al-Rawahy, F. (2007). Compositional and functional characteristics of dates, syrups, and their by-products. Food and Chemistry, 104(3), 943-947. http://dx.doi.org/10.1016/j.foodchem.2006.12.051 [ Links ]

Al-Rawahi, A. S., Rahman, M. S., Guizani, N., & Essa, M. M. (2013). Chemical composition, water sorption isotherm, and phenolic contents in fresh and dried pomegranate peels. Journal Drying Technology, 31(3), 257-263. https://doi.org/10.1080/07373937.2012.710695 [ Links ]

Baltrušis, P., Komáromyová, M., Várady, M., Samson-Himmelstjerna, G., & Johan Höglund, J. (2020). Assessment of the F200Y mutation frequency in the β tubulin gene of Haemonchus contortus following the exposure to a discriminating concentration of thiabendazole in the egg hatch test. Experimental Parasitology, 217, 107957. https://doi.org/10.1016/j.exppara.2020.107957 [ Links ]

Cabardo, D. E., & Portugaliza, H. P. (2017). Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. International Journal of Veterinary Science and Medicine, 5(1), 30-34. https://doi.org/10.1016/j.ijvsm.2017.02.001 [ Links ]

Canul-Ku, H. L., Rodríguez-Vivas, R. I., Torres-Acosta, J. F. J., Aguilar- Caballero, A. J., Pérez-Cogollo, L. C., & Ojeda-Chi, M. M. (2012). Prevalence of cattle herds with ivermectin resistant nematodes in the hot sub-humid tropics of Mexico. Veterinary Parasitology, 183(3-4), 292-298. https://doi.org/10.1016/j.vetpar.2011.07.029 [ Links ]

Carvalho, C. O., Chagas, A. C. S., Cotinguiba, F., Furlanc, M., Brito, L. G., Chaves, F. C. M., Stephan, M. P., Bizzo, H. R., & Amarante, A. F. T. (2012). The anthelmintic effect of plant extracts on Haemonchus contortus and Strongyloides venezuelensis. Veterinary Parasitology , 183(3-4), 260- 268. https://doi.org/10.1016/j.vetpar.2011.07.051 [ Links ]

Castillo-Mitre, G. F., Olmedo-Juárez, A., Rojo-Rubio, R., Cortázar-González, M., Mendoza-de Gives, P., Hernández-Beteta, E. E., Reyes-Guerrero, D. E., López- Arellano, M. E., Vázquez-Armijo, J. F., Ramírez-Vargas, G., & Zamilpa, A. (2017). Caffeoyl and coumaroyl derivatives from Acacia cochliacantha exhibit ovicidal activity against Haemonchus contortus. Journal of Ethnopharmacology. 204, 125-131. https://doi.org/10.1016/j.jep.2017.04.010 [ Links ]

Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. https://doi.org/10.3390/molecules15107313 [ Links ]

De Jesús-Martínez, X., Olmedo-Juárez, A., Olivares-Pérez, J., Zamilpa, A., Mendoza-De Gives, P., López-Arellano, M. E., Rojas-Hernández, S., Villa-Mancera, A., Camacho-Díaz, L. M., & Cipriano-Salazar, M. (2018). In Vitro Anthelmintic Activity of Methanolic Extract from Caesalpinia coriaria J. Willd Fruits against Haemonchus contortus Eggs and Infective Larvae. BioMed Research International, 2018, 7375693. https://doi.org/10.1155/2018/7375693 [ Links ]

Delgado, A., Núñez, O., Aguilera, V. L., Palacios, D., Salas, R. J., Berbert, G., González, M., & Fernández, N. (2016). Acción ovicida in vitro del extracto hidro-alcoholico crudo de la semilla de Pouteria sapota (mamey colorado) contra huevos de Haemonchus contortus. Primer reporte. Revista de Producción Animal, 28(2-3), 51-54. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-79202016000200007Links ]

Delgado-Núñez, E. J., Zamilpa, A., González-Cortazar, M., Olmedo-Juárez, A., Cardoso-Taketa, A., Sánchez-Mendoza, E., Tapia-Maruri, D., Salinas-Sánchez, D. O., & Mendoza-de Gives, P. (2020) Isorhamnetin: A Nematocidal Flavonoid from Prosopis laevigata Leaves Against Haemonchus contortus Eggs and Larvae. Biomolecules, 10(5), 773. https://doi.org/10.3390/biom10050773 [ Links ]

Ehsan, M., Hu, R. S., Liang, Q. L., Hou, J. L., Song, X., Yan, R., Zhu, X. Q., & Li, X. (2020). Advances in the Development of Anti-Haemonchus contortus Vaccines: Challenges, Opportunities, and Perspectives. Vaccines, 8(3), 1-18. http://dx.doi.org/10.3390/vaccines8030555 [ Links ]

Frutos, P., Raso, M., Hervás, G., Mantecón, A. R., Pérez, V., & Giráldez, F. J. (2004). Is there any detrimental effect when a chestnut hydrolysable tannin extract is included in the diet of finishing lambs?. Animal Research, 53(2), 127-136. https://doi.org/10.1051/animres:2004001 [ Links ]

García-Ortiz, N., Aguilar-Marcelino, L., Mendoza-de-Gives, P., López-Arellano, M. E., Bautista-Garfias, C. R., & González-Garduño, R. (2015). In vitro predatory activity of Lasioseius penicilliger (Arachnida: Mesostigmata) against three nematode species: Teladorsagia circumcincta, Meloidogyne sp. and Caenorhabditis elegans. Veterinaria México, 2(1), 1-8. http://dx.doi.org/10.21753/vmoa.2.1.340 [ Links ]

Kaplan, M. R., & Vidyashankar, N. A. (2012). An inconvenient truth: Global worming and anthelmintic resistance. Veterinary Parasitology , 186(1-2), 70-78. https://doi.org/10.1016/j.vetpar.2011.11.048 [ Links ]

Laca-Megyesi, Š., Königová, A., Babják, M., Molnár, L., Rajský, M., Szestáková,E., Major, P., Soroka, J., Urda-Dolinská, M., Komáromyová, M., & Várady, M. (2020). Wild ruminants as a potential risk factor for transmission of drug resistance in the abomasal nematode Haemonchus contortus. European Journal of Wildlife Research, 66, 9. https://doi.org/10.1007/s10344-019-1351-x [ Links ]

León-Castro, Y., Olivares-Pérez, J., Rojas-Hernández, S., Villa-Mancera, A., Valencia-Almazán, M. T., Hernández-Castro, E., Córdova-Izquierdo, A., & Jiménez-Guillén, R. (2015). Chemical composition of three tree fodders and effect in control Haemonchus contortus and change of body weight in kids. Ecosistemas y Recursos Agropecuarios, 2(5), 193-201. https://www.redalyc.org/pdf/3586/358638159007.pdfLinks ]

Manuel-Pablo, A., Elghandour, M. M. Y., Olivares-Pérez, J., Rojas-Hernández, S., Cipriano-Salazar, M., Cruz-Lagunas, B., & Camacho-Diaz, L. M. (2020) Productive performance, rumen fermentation and carcass yield of goats supplemented with cascalote fruit (Caesalpinia coriaria J. Wild.). Agroforestry Systems, 94, 1381-1391. https://doi.org/10.1007/s10457-018-0312-9 [ Links ]

Muñiz-Lagunés, A., González-Garduño, R., López-Arellano, M. E., Ramírez-Valverde, R., Ruíz-Flores, A., García-Muñiz, G., Ramírez-Vargas, G., Mendoza-de Gives, P., & Torres Hernández, G. (2015). Anthelmintic resistance in gastrointestinal nematodes from grazing beef cattle in Campeche State, Mexico. Tropical Animal Health and Production, 47, 1049-1054. https://doi.org/10.1007/s11250-015-0826-3 [ Links ]

Nawab, A., Tang, S., Gao, W., Li, G., Xiao, M., An, L., Wu, J., & Liu, W. (2020) Tannin Supplementation in animal feeding; mitigation strategies overcome the toxic effects of tannins on animal health: A Review. Journal of Agricultural Science, 12(4), 217-230. https://doi.org/10.5539/jas.v12n4p217 [ Links ]

Olivares, P. J., Gutiérrez, S. I., Rojas, H. S., Valencia, A. M. T., Míreles, M. E. J., & Córdova, I. A. (2012). Seasonal prevalence of Strongyle in Creole goats of the Tierra Caliente region, State of Guerrero, México. Research Opinions in Animal and Veterinary Sciences, 2(3), 216-220. http://www.roavs.com/pdf-files/Issue_3_2012/216-220.pdfLinks ]

Olmedo, J. A., Rojo, R. R., Arece, G. J., Mohamed, A. Z. S., Kholif, E. A., & Morales, A. E. (2014). In vitro of Pithecellobium dulce and Lysiloma acapulcensis on the exogenous development of gastrointestinal strongyles in sheep. Italian Journal of Animal Science. 13(4), 303-307. https://doi.org/10.4081/ijas.2014.3104 [ Links ]

Pérez- Pérez, C., Hernández-Villegas, M. M., Cruz- Burelo, P., Bolio-López, G. I., & Hernández-Bolio, G. I. (2014). Efecto antihelmitico in vitro del extracto metanólico de hojas de Gliricidia sepium contra nematodos gastrointestinales de ovinos. Tropical and subtropical agroecosystems, 17(1), 105-111. https://www.redalyc.org/pdf/939/93930735013.pdfLinks ]

Pérez, V., Doce, R. R., García-Pariente, C., Hervás, G., Carmen Ferreras, M., Mantecón, Á. R., & Frutos, P. (2011). Oak leaf (Quercus pyrenaica) poisoning in cattle. Research in Veterinary Science, 91(2), 269-277. https://doi.org/10.1016/j.rvsc.2010.12.015 [ Links ]

Poné, J. W., Florence, K. T., Mbida, M., Tedonkeng, E. P., & Bilong C. F. B. (2011). In vitro activities of acetonic extracts from leaves of three forage legumes (Calliandra calotyrsus,Gliricidia sepium and Leucaena diversifolia) on Haemonchus contortus. Asian Pacific Journal of Tropical Medicine, 4(2), 125-128. https://doi.org/10.1016/s1995-7645(11)60051-5 [ Links ]

Ringuelet, J. A., & Viña, S. Z. (2013). Productos Naturales Vegetales. Universidad Nacional de La Plata - Editorial de la Universidad de La Plata. Pag. 16. https://doi.org/10.35537/10915/27885 [ Links ]

Sánchez-Carranza, J. N., Álvarez, L., Marquina-Bahena, S., Salas-Vidal, E., Cuevas, V., Jiménez, E. W., Rafael, A., Veloz, G., Carraz, M. and González-Maya, L. (2017). Phenolic compounds isolated from Caesalpinia coriaria induce S and G2/M phase cell cycle arrest differentially and trigger cell death by interfering with microtubule dynamics in cancer cell lines. Molecules , 22(4), 666. https://doi.org/10.3390/molecules22040666 [ Links ]

SAS. (2002). Statistical Analysis System, Institute SAS/STAT User’s Guide. Version 8, 6th Edition, SAS Institute, Cary, 112 p. [ Links ]

Veloz-García, R. A., Martin-Martínez, R., Veloz-Rodríguez, R., Muñoz-Sánchez, C. I., Guevara-Olvera, L., Miranda-López, R., González-Chavira, M. M., Torres-Pacheco, I., Guzmán-Maldonado, S. H., Cardador-Martínez, A., Loarca-Piña, L., & Guevara-González, R. G. (2004). Antimutagenic and antioxidant activities of cascalote (Caesalpinia cacalaco) phenolics. Journal of the Science of Food and Agriculture, 84(13), 1632-1638. https://doi.org/10.1002/jsfa.1852 [ Links ]

Von Son-de Fernex, E., Alonso-Díaz, M. A., Mendoza-de-Gives, P., Valles-de la Mora, B., González-Cortazar, M., Zamilpa, A., & Castillo-Gallegos, E. (2015). Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Veterinary Parasitology , 214 (1-2),89-95. https://doi.org/10.1016/j.vetpar.2015.10.005 [ Links ]

Zabré, G., Kaboré, A., Bayala, B., Katiki, L. M., Costa-Júnior, L. M., Tamboura, H. H., Adrien, M.G., Belem, A. M. G., Abdalla, A. L., Niderkorn,V., Hoste, H., & Louvandini, H. (2017). Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana. Parasite. 24, 44. https://doi.org/10.1051/parasite/2017044 [ Links ]

Zapata, S. R., Velásquez, V. R., Herrera, O. L. V., Ríos, O. L., & Polanco, E. D. N. (2016). Prevalencia de Nematodos Gastrointestinales en Sistemas de Producción Ovina y Caprina bajo Confinamiento, Semiconfinamiento y Pastoreo en Municipio de Antoquia, Colombia. Revista de Investigaciones Veterinarias del Perú, 27(2), 344-354. https://dx.doi.org/10.15381/rivep.v27i2.11647 [ Links ]

Received: December 13, 2020; Accepted: January 05, 2022; Published: January 26, 2022

*Corresponding author: Olivares Perez Jaime. Universidad Autónoma de Guerrero, Programa de Posgrado Maestría en Ciencias Agropecuarias y Gestión Local, Carretera Iguala-Tuxpan, Guerrero. E-mail: olivaares@hotmail.com México http://mcagropecuarias.uagro.mx. Phone 7321198006

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License