Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of applied research and technology
versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423
J. appl. res. technol vol.8 no.3 Ciudad de México dic. 2010
Effect of the Side CuttingEdge Angle on the Surface Roughness for Aluminum 1350 in the Turning Operation by Taguchi Method
L. Rico*1, S. Noriega*2, J.L. García3, E.A. Martínez4, R. Ñeco5, F.J. Estrada6
1,2,3,4,5,6 Universidad Autónoma de Ciudad Juárez Department of Industrial and Manufacturing Engineering, Avenida del Charro 450 C.P. 32310 Col. Partido Romero, Ciudad Juárez Chih. Tel:656 6884843 *Email: larico@uacj.mx
ABSTRACT
The purpose of this work was to analyze the effect of the side cuttingedge angle on the surface roughness of aluminum 1350 in a turning operation. A Taguchi design L32 was used in this work; the control variables were spindle speed, feed rate, depth of cutting and the side cuttingedge angle. Several metal cutting experiments and statistical tests provide evidence that the side cuttingedge angle significantly affects the surface roughness with a Statistical F equal to 24.96, mainly, when the side cuttingedge angle is maintained at high level; in this study, the high level was kept to 5.0 degrees. Also, when the high level condition is kept, it causes a major variation of the residual values; consequently, the surface roughness of the workpiece falls out of the specifications demanded by customers. Moreover, the best combination of the cutting parameters for a minimum surface roughness equal to 23.5 μin was obtained. Finally, further research directions are presented.
Keywords: Side cuttingedge angle, Taguchi method, surface roughness.
RESUMEN
El propósito de este trabajo fue analizar el efecto del ángulo de corte de la herramienta sobre la rugosidad superficial del aluminio 1350 en la operación de torneado. Se uso un diseño Taguchi L32 en este trabajo; las variables de control fueron velocidad del husillo, tasa de alimentación, profundidad de corte y el ángulo de corte de la herramienta. Los experimentos y pruebas estadísticas realizadas mostraron que con una F estadística igual a 24.96, el ángulo de la herramienta de corte afecta significativamente la rugosidad superficial, principalmente, cuando el ángulo de corte se mantiene a un nivel alto; en este estudio, el nivel se mantuvo a 5 grados. Además, cuando esta condición se mantiene, causa una mayor variación en los residuales; consecuentemente, la textura de la pieza de trabajo cae fuera de la especificación demandada por el cliente. Adicionalmente, se obtuvo la mejor combinación de los parámetros de corte para una mínima rugosidad superficial igual a 23.5 μin. Finalmente, se hacen algunas recomendaciones para futuras investigaciones.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
[1]. Feng, C.X. (Jack) and Wang, X., "Development of Empirical Models for Surface Roughness Prediction in Finish Turninig", International Journal of Advanced Manufacturing Technology Vol. 20, No. 5,Oct, 2002, pp.348356 [ Links ]
[2]. Nalbant, M., Gokkaya, H., and Toktas, I. "Comparison of regression and Artificial Neural network Models for Surface Roughness Prediction with the cutting parameters", Vol. 2007, No 1, Jan, 2007, pp. 38 [ Links ]
[3]. Zhang, J.Z. and Chen, J.C. "The development of inprocess surface roughness adaptive control system in end milling operations", International Journal of advanced Manufacturing Technology Vol. 31, Num 910, March, 2007, pp. 877887 [ Links ]
[4]. Mohamed A. Dabnun, M.S.J. Hashmi, M.A. ElBaradie Surface roughness prediction model by design of experiments for turning machinable glassceramic (Macor) Journal of Materials Processing Technology, Vol. 164165, May, 2005, pp. 12891293 [ Links ]
[5]. Ghani, J.A., Choudhury, Hassan, H.H. "Application of Taguchi method in the optimization of end milling parameters", Journal of Materials Processing Technology Vol.145, Num. 1, Jan. 2004, pp. 8492 [ Links ]
[6]. PuertasArbizu, C.J. and Pérez, L. "Surface roughness prediction by factorial design of experiments in turning processes". Journal of Materials Processing Technology. Vol. 143 144, Num. 20, Dec. 2003 pp. 390396 [ Links ]
[7]. Bernardos, P.G., and Vosniakos, G.C. "Prediction of surface roughness in CNC FACE milling using neural networks and Taguchi's design of experiments", Robotics and Computer Integrated Manufacturing. Vol. 18, Num. 56, OctDec. 2002, pp. 343354 [ Links ]
[8]. Darwish, S.M., "The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy", Journal of Materials Processing Technology. Vol. 97, Num. 13, Jan, 2000, pp.1018 [ Links ]
[9]. Beauchamp Y., T.M., Youssef A.Y., Masounave J., "Effect of tool vibrations on surface roughness during lathe dry turning process", Computers Ind. Eng., Vol 31, No3/4, 1996, Dec, pp.637644, [ Links ]
[10]. Alauddin, M., El Baradie, M.A., and Hashmi, M.S.J. "Prediction of tool life in end milling by Response Surface Methodology". Journal of Materials Processing Technology. Vol. 71, Num. 3, Nov. 1997, pp. 456 465 [ Links ]
[11]. Kalpakjian Serope & Steven R.Schimid, Manufacturing Engineering and Technology, 4d Ed., Prentice Hall, 2001 [ Links ]