SciELO - Scientific Electronic Library Online

 
vol.54 número4A hamiltonian control approach for the stabilization of the angular velocity of a rigid body system controlled by two torquesLaser beam quality factor (M²) measured by distorted fresnel zone plates índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.54 no.4 México ago. 2008

 

Investigación

 

Characterization of ALN thin films deposited by DC reactive magnetron sputtering

 

M. García–Méndezª, S. Morales–Rodríguezb, R. Machorroc and W. De La Cruzc

 

ª Laboratorio de Nanociencias y Nanotecnología, Facultad de Ciencias Físico–Matemáticas de la UANL, División de Posgrado, Manuel L. Barragán S/N, Edif. de Posgrado, Ciudad Universitaria, San Nicolás de los Garza, N.L. 66450, México, e–mail: mgarcia@fcfm.uanl.mx

b Programa de Posgrado en Ingeniería Física Industrial, FCFM–UANL, División de Posgrado, Manuel L. Barragán S/N, Edif. de Posgrado, Ciudad Universitaria, San Nicolás de los Garza, N.L. 66450, México.

c Centro de Ciencias de la Materia Condensada de la Universidad Nacional Autónoma de México, Km. 107, Carretera Tijuana–Ensenada, Ensenada, B.C. 22860, México

 

Recibido el 30 de mayo de 2007
Aceptado el 2 de junio de 2008

 

Abstract

A set of AlN thin–films was prepared by reactive magnetron sputtering at room temperature. The purpose of this work was to study the effect of oxygen impurities on the structural and optical properties of AlN films. The structural and optical properties of the resulting films were characterized using X–ray diffraction (XRD) and spectroscopic ellipsometry, respectively. Depending on the deposition conditions, films can be hexagonal (wurtzite, P633m3) or cubic (zinc blende, Fm3m) in their microstructure. From the optical measurements, the ellipsometric parameters (ψ,Δ) and the real refractive index as a function of energy were obtained. From the ellipsometric measurements, a model of the Lorentz single–oscillator was employed to estimate the optical band gap, Eg.

Keywords: Reactive sputtering; thin films; AlN.

 

Resumen

Se utilizó la técnica de erosión iónica reactiva para crecer películas delgadas de nitruro de aluminio (AlN). El propósito principal de este trabajo consistió en analizar el efecto del oxígeno en las propiedades ópticas y estructurales de las películas. Las propiedades estructurales y ópticas de las muestras se caracterizaron con espectroscopia elipsométrica y difracción de rayos X, respectivamente. La microestructura que pueden presentar las películas puede ser hexagonal (tipo wurzita, P633m3) ó cubica (zinc–blenda, Fm3m), dependiendo de las condiciones de depósito. A partir de la medición de los parámetros elipsométricos (ψ,Δ), se utilizó el modelo del oscilador simple de Lorentz para obtener un estimado del ancho óptico, Eg.

Descriptores: Erosión iónica reactiva; películas delgadas; AlN.

 

PACS: 81.15.–Z, 68.55.–a, 82.80.–d

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was sponsored by CONACyT–México (project CO2–43707) and PAICyT–UANL (project CA1256–06). M. García Méndez would like to thank Dr. Miguel Ávalos Borja, from CCMC–UNAM, Ensenada, because the facilities granted for the use of XRD equipment. Also to Eloísa Aparicio Ceja, V Garcia and J.A. Diaz for the technical support. Authors thanks Azahel Bueno for his ellipsometric measurements.

 

References

1. J. Chaudhuri et al, Mater Charac 58 (2006) 672.        [ Links ]

2. J. Olivares et al., Diam Relat Mater 16 (2007) 1421.        [ Links ]

3. J.P. Kar, G. Bose, and S. Tuli, Vacuum 81 (2006) 494.        [ Links ]

4. K.H. Chiu, J.H. Chen, H.R. Chen, and R.S. Huang, Thin Solid Films 515 (2007) 4819.        [ Links ]

5. K. Jang et al., Mat Sci Semicon Proc 9 (2006) 1137.        [ Links ]

6. G.M. Prinz et al., Superlattices Microst 40 (2006) 513.        [ Links ]

7. T.P. Drüsedau, T. Neubert, and A.N. Panckow, Surf Coat Tech 163–164 (2003) 164.        [ Links ]

8. V.M. Pantojas, W. Otaño–Rivera, and J.N. Caraballo, Thin Solid Films 492 (2005) 118.        [ Links ]

9. J.X. Zhang et al., Surf Coat Tech 198 (2005) 68.        [ Links ]

10. A.S. Gudovskikh et al, Sensors Actuators A–Phys 113 (2004) 355.        [ Links ]

11. L. Trinkler, B. Berzina, A. Auzina, M. Benabdesselan, and P. Iacconi, Nucl Instrum A 580 (2007) 354.        [ Links ]

12. A. Sato, K. Azumada, T. Atsumori, and K. Hará, J Crys Growth 298 (2007) 379.        [ Links ]

13. H. Uchida, M. Yamashita, S. Hanaki, and T. Fujimoto, Vacuum 80 (2006)1356.        [ Links ]

14. N. Takahashi, Y. Matsumoto, and T. Nakamura, J Phys Chem Solids 67 (2006) 665.        [ Links ]

15. S. Iwata, Y. Nanjo, T. Okuno, S. Kurai, and T. Taguchi, J Crys Growth 301–302 (2007) 461.        [ Links ]

16. P.D. Brown et al., J Crys Growth 234 (2002) 384.        [ Links ]

17. T. Matsumoto and M. Kiuchi, Nucllnstrum B, 242 (2006) 424        [ Links ]

18. K. Lal et al, Thin Solid Films 434 (2003) 264.        [ Links ]

19. Y.Z. You and D. Kim, Thin Solid Films 515 (2007) 2860.        [ Links ]

20. J. R. Creighton, G.T. Wang, and M.E. Coltrin, J Crystal Growth 298 (2007) 2.        [ Links ]

21. Q.X. Guo, T. Tanaka, M. Nishio, and H. Ogawa, Vacuum 80 (2006) 716.        [ Links ]

22. B.H. Hwang, Ch.S. Chen, H.Y Lu, and T.Ch. Hsu, Mat Sci and Eng A 325 (2002) 380.        [ Links ]

23. V.A. Lavrenko, I. Desmaison, A.D. Panasyuk, and M. Deismaison–Brut, J. Eur. Ceram. Soc. 23 (2003) 357.        [ Links ]

24. G.A. Slack, L.I. Schowalter, D. Moreli, and J.A. Freitas Jr., J Crys Growth 246 (2002) 287.        [ Links ]

25. F. Ansart, H. Ganda, R. Saporte, and J.P. Traverse, Thin Solid Films 260 (1995) 38.78        [ Links ]

26. Powder Diffraction File, JCPDS International Centre for Diffraction Data, ICDD, Newtown Square, PA, 1998.        [ Links ]

27. J.A. Woollam Co, Ellipsometry Handbook and WVASE32TM program 2000.        [ Links ]

28. J.C. Vickerman (editor), Surface Analysis: the principal techniques, 5a edición (John Wiley & Sons. 2005).        [ Links ]

29. J.H. Scofield, Journal Electron Spectros 8 (1976) 129.        [ Links ]

30. V. Brie and P. Pigeat, J Cryst Growth 299 (2007) 189.        [ Links ]

31. R.F. Bunsha, Deposition technologies for films and coatings (Noyes Ed., Norwich, USA, 1982).        [ Links ]

32. J.A. Thornton, JVST 11 (1974) 666.        [ Links ]

33. S. Loughin, R.H. French, in (Ed.), Handbook of Optical Constants of Solids III (Academic Press, 1998, 373).        [ Links ]

34. L.X. Benedict et al, Solid State Commun 112 (1999) 129.        [ Links ]

35. A.S. Gudovskikh et al, Sensor Actuat–A Phys 113 (2004) 355.        [ Links ]

36. J.M. Khoshman and M.E. Kordesch, J non–Cryst Solids 351 (2005) 3334.        [ Links ]

37. S. Venkataraj, D. Severin, R. Drese, F. Koerfer, and M. Wutting, Thin Solid Films 502 (2006) 235.        [ Links ]

38. A.M. Mahmood et al., Diamond and Related Materials 12 (2003) 1315.        [ Links ]

39. PW. Wang, S. Sui, W. Wang, and W. Durrer, Thin Solid Films 295 (1997) 142.        [ Links ]

40. J.F. Moulder, W.F. Sticke, P.E. Sobol, and K.D. Bomben, Handbook of X–ray Photoelectron Spectroscopy, 2a edición (Physical Electronics Division. Eden Prairie. 1992).        [ Links ]

41. G.L. Fisher et al., Journal of the American Chemical Society 124 (2002) 5528.        [ Links ]

42. V. Brien and P. Pigeat, J Cryst Growth 299 (2007) 189.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons