Scielo RSS <![CDATA[Ingeniería mecánica, tecnología y desarrollo]]> http://www.scielo.org.mx/rss.php?pid=1665-738120160001&lang=pt vol. 5 num. 4 lang. pt <![CDATA[SciELO Logo]]> http://www.scielo.org.mx/img/en/fbpelogp.gif http://www.scielo.org.mx <![CDATA[Determinación del Desbalance en Sistemas Rotor-cojinete a velocidad constante: Método de Identificación Algebraica]]> http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-73812016000100385&lng=pt&nrm=iso&tlng=pt Resumen: En este trabajo se presenta el desarrollo del modelo matemático de un identificador algebraíco en línea; para determinar el desbalance y su posición angular en sistemas rotodinámicos vibratorios de multiples grados de libertad. El identificador propuesto se obtiene al tomar como base un modelo matemático en elemento finito para sistemas rotatorios de múltiples grados de libertad. Para el desarrollo del modelo, se consideró un elemento tipo viga con cuatro grados de libertad por nodo, donde se incluyen los efectos de la inercia rotatoria, momentos giroscópicos, deformaciones por cortante y amortiguamiento interno y externo del sistema. Se evaluó y analizó el comportamiento en el tiempo del identificador propuesto, para la identificación del desbalance y su posición angular; se tomó como dato de entrada la respuesta de vibración al desbalance a velocidad constante del sistema rotodinámico, obtenida de la simulación numérica.<hr/>Abstract: The development of a mathematical model for an on-line algebraic identifier is presented in this work. This model is used for determining the unbalance and its related angular position on vibrating rotor-dynamic systems of multiple degrees of freedom. The proposed identifier was obtained from the basis of a finite element mathematical model for rotating systems of multiple degrees of freedom. The model was developed under the consideration of four degrees of freedom beam-type element, where rotational inertia, gyroscopic moments, shearing strains and inner and outer damping effects were included. The on time behavior of proposed identifier was assessed for unbalance identification and its related angular position; the constant-speed unbalanced vibration response obtained from numerical simulation was used as input data. <![CDATA[Effect of different building materials on conjugate heat and mass transfer]]> http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-73812016000100395&lng=pt&nrm=iso&tlng=pt Abstract: A numerical analysis of the effect of heat conduction of different building materials on conjugate heat and mass transfer in a square cavity is presented. The air fluid inside the cavity is contaminated with Carbon Dioxide (CO2). The governing equations of mass, momentum, energy and concentration with a turbulent k-ε model were solved by the finite-volume technique. From the thermal point of view, case A (adobe block) was the optimal configuration in order to reach comfortable conditions. In general, the case B (red brick) was the best choice for air quality purposes with a difference of 200 ppm with respect to other building materials for all Rayleigh numbers under study.<hr/>Resumen: En este artículo se presenta un estudio numérico del efecto de la conducción de calor de diferentes materiales de construcción sobre la transferencia de calor y masa en una cavidad rectangular. El aire al interior de la cavidad se encuentra contaminado con CO2. Las ecuaciones de conservación de masa, momentum, energía, especies y el modelo de turbulencia k-ε fueron resueltas usando la técnica de volumen finito. El caso A (bloque de adobe) fue la configuración óptima desde el punto de vista del confort térmico. En general, el caso B (ladrillo rojo) fue la mejor opción desde el punto de vista de la calidad del aire interior con una diferencia de 200 ppm con respecto a otros materiales de construcción y para todos los números de Rayleigh analizados. <![CDATA[Influencia del Flujo De Enfriamiento en el Comportamiento Térmico de un Termosifón de Contorno]]> http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-73812016000100405&lng=pt&nrm=iso&tlng=pt Resumen: Los termosifones de contorno son dispositivos que pueden aplicarse en la recuperación del calor residual de los procesos industriales, contribuyendo al incremento de su eficiencia energética. Con este propósito se estudió el comportamiento térmico de un termosifón de contorno al variar el flujo de enfriamiento en la zona de condensación. Se analizaron el máximo calor transportado y la eficiencia térmica del dispositivo para diferentes flujos de enfriamiento y relaciones de llenado. Para realizar esta investigación se construyó una instalación experimental y un termosifón de contorno que usa agua destilada como fluido de trabajo. Se eligieron dos relaciones de llenado, 15% y 30%, del volumen interno del termosifón. Se suministraron flujos de calor de 157 W, 304 W y 442 W, y se varió el flujo de enfriamiento en 0.017 kg/s (1 lpm), 0.026 kg/s (1.5 lpm) y 0.033 kg/s (2 lpm) para cada flujo de calor suministrado y por consiguiente para cada relación de llenado. Se encontró que la eficiencia térmica máxima obtenida en el termosifón de contorno fue de 84.6%, sin embargo, cuando se alcanzó el máximo transporte de calor la eficiencia térmica presentó valores inferiores al máximo aunque siempre mayores a 75%. Se observó también que mientras más aumenta el flujo de enfriamiento, es mayor la independencia de la relación de llenado del termosifón, debido a que el flujo de enfriamiento es capaz de absorber todo el calor transportado por el vapor hacia el condensador. Finalmente, como era de esperarse, el mayor transporte de calor se registró para la mayor relación de llenado que fue de 30% del volumen interno del termosifón de contorno.<hr/>Abstract: Loop thermosyphons are devices that can be applied in heat recovery in industrial processes, contributing to increase their energy efficiency. For this purpose the thermal behavior of a loop thermosyphon was studied by varying the cooling flow in the condensing zone. Heat transport capability and thermal performance of the device for different cooling flows and filling ratios were analyzed. For this research an experimental installation and a loop thermosyphon that uses distilled water as the working fluid were built. Two filling ratios, 15% and 30%, of the thermosyphon internal volume were chosen. Heat rates of 157 W, 304 W and 442 W were supplied, and the cooling flows were 0.017 kg/s (1 lpm), 0.026 kg/s (1.5 lpm) and 0.033 kg/s (2 lpm) for each heat rate and therefore for each filling ratio. It was found that the maximum thermal efficiency of the loop thermosyphon was 84.6%, however, when the maximum heat transport is achieved thermal efficiency had lower values but always greater than 75%. It was also observed that the more increases the cooling flow the more independent is the thermosyphon from filling ratio, since the cooling flow is capable of absorbing all the heat carried by the steam to the condenser. Finally, as expected, the higher heat transport capability was recorded for loop thermosyphon larger filling ratio of 30% of its internal volume. <![CDATA[Adaptation of Topologic Optimized Structures Based on Skeletonization]]> http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-73812016000100415&lng=pt&nrm=iso&tlng=pt Resumen: El diseño estructural basado en métodos de optimización es muy eficiente en la generación de estructuras de peso mínimo, máxima rigidez, etc.; sin embargo, tiene la desventaja de genera geometría muy complejas, cuya manufactura es difícil o imposible. Por ello, estas geometrías deben ser adaptadas a los procesos de manufactura, de tal forma que se obtienen soluciones de diseño viables. Durante el proceso de adaptación, varias de las características óptimas se pierden. Para minimizar esta pérdida se propone un método de adaptación, basado en esqueletonización, para soluciones topológicas. El objetivo es generar una estructura manufacturable a partir de una solución topológica, considerando miembros estructurales estándar. En este trabajo, se desarrolló un algoritmo para interpretar y adaptar soluciones topológicas. Esqueletonización se aplica para obtener una representación simplificada de la solución óptima, sin perder su topología. El resultado se transforma en un conjunto de líneas rectas unidad por vértices. Estas líneas son reemplazadas por miembros estándar de sección transversal parametrizada. Mediante optimización de forma las dimensiones de la sección transversal son definidas. Como ejemplo, se aplica el método al diseño de una viga corta en cantiléver, obteniendo una estructura completamente manufacturable, cuyas características topológicas son preservadas.<hr/>Abstract: The structural design based on optimization methods is very efficient in generating structures of minimum weight, maximum stiffness, etc.; nevertheless, it has the disadvantage of producing very complex geometries, whose manufacture is difficult or unfeasible. Therefore, these geometries have to be adapted to manufacturing processes, obtaining in this way feasible design solutions. During this adaptation process, several optimal characteristics are lost. In order to minimize this loss the authors propose an adaptation method, based on skeletonization, for topological solutions. The objective is to generate a manufacturable structure from a topological solution considering standard structural members. In this work, an algorithm to interpret and adapt the topological solution was developed. Skeletonization is applied to obtain a simpler representation of the optimal solution without losing its topology. The result is transformed in a set of straight lines joined by vertices. These lines are replaced by standard members, whose cross-section is parameterized. By applying size optimization, the dimensions of this cross-section are defined. As an example the method is applied to design an optimal short cantilever beam, showing a final structure completely manufacturable, whose topological characteristics are preserved.