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Abstract 
In this paper we propose a tableaux method for the interme-

diate syllogistic of Peterson and Thompson by using the algebra 
of Sommers and Englebretsen. The result is an analytic tableaux 
method capable of modeling inference in basic, relational, and 
intermediate syllogistic.

Key words: semantic trees; term logic; non-classical quanti-
fiers.

Resumen
En este trabajo proponemos un método de árboles para la si-

logística intermedia de Peterson y Thompson usando el álgebra 
de Sommers y Englebretsen. El resultado es un método analítico 
de árboles capaz de modelar inferencia en silogística básica, rel-
acional e intermedia.

Palabras clave: árboles semánticos; lógica de términos; 
cuantificadores no-clásicos.
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1. Introducción
En otro lugar hemos propuesto una unión del sistema Term Functor 

Logic (Sommers, 1967, 1982; Sommers y Englebretsen, 2000; Englebretsen, 
1987, 1996; Englebretsen y Sayward, 2011) con la silogística intermedia 
(Peterson, 1979; Thompson, 1982). Dicha unión estaba motivada porque 
si bien el sistema Term Functor Logic (TFL) ofrece una aproximación 
algebraica para la silogística, desafortunadamente, no modela casos 
de razonamiento en lenguaje natural con cuantificadores no clásicos 
como “muchos”, “la mayoría”, o “pocos”; mientras que, por otro lado, 
la silogística intermedia extiende el alcance de la silogística mediante 
la adición de cuantificadores no clásicos pero carece de un tratamiento 
algebraico. De la unión de estos sistemas resultó la Intermediate Term 
Functor Logic (TFL+), un sistema capaz de modelar inferencia silogística 
con las ventajas de un enfoque algebraico (i.e., la reducción de conjunto 
de reglas complejas a un sistema simple, formal y unificado) y las 
ventajas de una teoría silogística con cuantificadores no clásicos (i.e., la 
evaluación de una amplia gama de patrones inferenciales en lenguaje 
natural que extiende las capacidades de la silogística apodíctica 
tradicional) (Castro-Manzano, 2019). Adicionalmente, en otro lugar 
hemos propuesto un método analítico de árboles para el sistema TFL. 
Este método de árboles estaba motivado porque no existía un sistema 
de árboles para TFL capaz de preservar la riqueza expresiva y el poder 
inferencial del álgebra de Sommers y Englebretsen (cfr. D’Agostino et 
al, 1999; Sommers y Englebretsen, 2000, pp. 183 y ss.; Priest, 2008). Esta 
propuesta resultó en un método de prueba que reduce el número de 
reglas de inferencia y preserva las capacidades expresivas e inferenciales 
de TFL para la silogística básica, la silogística relacional y la lógica 
proposicional (Castro-Manzano, 2018).

Dados estos resultados previos, en este trabajo proponemos, a 
modo de síntesis, un método de árboles para la silogística intermedia 
usando las nociones del álgebra de TFL; en otras palabras, presentamos 
un método analítico de árboles para el sistema TFL+. El resultado es 
un método de árboles capaz modelar inferencia en silogística básica, 
relacional y, por supuesto, silogística intermedia. Para alcanzar este 
resultado procedemos de la siguiente manera. Primero presentamos 
de manera breve los sistemas lógicos previamente mencionados (con 
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especial énfasis en la silogística), posteriormente introducimos nuestra 
contribución y, al final, mencionamos algunos posibles usos de este 
método.

2. Silogística, TFL, silogística intermedia y TFL+

2.1 Aspectos generales de la silogística
La silogística es una lógica de términos que tiene sus orígenes en los 

Primeros Analíticos de Aristóteles y que estudia la relación de inferencia 
entre proposiciones categóricas. Una proposición categórica es una 
proposición compuesta por dos términos, una cantidad y una cualidad. 
El sujeto y el predicado de una proposición se llaman términos: el término-
esquema S denota el término sujeto de la proposición y el término-
esquema P denota el predicado. La cantidad puede ser universal (Todo) o 
particular (Algún) y la cualidad puede ser afirmativa (es) o negativa (no es). 
Estas proposiciones categóricas se denotan mediante una etiqueta (a (para 
la universal afirmativa, SaP), e (para la universal negativa, SeP), i (para 
la particular afirmativa, SiP), y o (para la particular negativa, SoP)) que 
nos permite determinar una secuencia de tres proposiciones categóricas 
que se conoce como modo. Un silogismo categórico, entonces, es un modo 
ordenado de tal manera que dos proposiciones fungen como premisas y 
la última como conclusión. Al interior de las premisas existe un término 
que ocurre en ambas premisas pero no en la conclusión: este término 
especial, usualmente denotado con el término-esquema M, funciona 
como un enlace entre los términos restantes y es conocido como término 
medio. De acuerdo con la posición del término medio se pueden definir 
cuatro arreglos o figuras que codifican los modos o patrones silogísticos 
válidos (Cuadro 11).

Figura 1 Figura 2 Figura 3 Figura 4
aaa
eae
aii
eio

eae
aee
eio
aoo

iai
aii

oao
eio

aee
iai
eio

Cuadro 1. Silogismos válidos

1  Por mor de brevedad, pero sin pérdida de generalidad, omitimos los 
silogismos que requieren carga existencial.



213Silogística intermedia, términos y árboles

Tópicos, Revista de Filosofía 58, ene-jun (2020) ISSN:0188-6649(impreso), 2007-8498(en línea) pp. 209-237 

2.2 Term Functor Logic
Para estudiar la relación de inferencia es costumbre hacer uso de 

lenguajes de primer orden. Ası́, por ejemplo, la lógica proposicional, la 
lógica de primer orden y la lógica de primer orden con identidad son 
sistemas lógicos definidos mediante lenguajes de primer orden: {p, q, r, 
..., ¬, ⇒}, {a, b, c, ..., x, y, z, ..., f, g, h, ..., A, B, C, ..., ¬, ⇒, ∀, ∃} y {a, b, c, ..., 
x, y, z, ..., f, g, h, ..., A, B, C, ..., ¬, ⇒, ∀, ∃, =}, respectivamente. El origen de 
esta costumbre está relacionado con las ventajas de orden representativo 
que los lenguajes de primer orden ofrecen frente a sistemas más 
tradicionales. Russell (1937), por ejemplo, popularizó la idea de que las 
limitaciones del programa lógico tradicional, i.e. silogı́stico, se debían 
al análisis de las proposiciones en clave terminista como triadas de 
términos sujeto y predicado unidos por una cópula. Carnap (1930) 
generalizó esta consideración a toda la lógica tradicional al sostener que 
la única sintaxis disponible en este tipo de lógica es predicativa.

Ciertamente, la sintaxis de términos ternaria (sujeto-cópula-
predicado) de la silogística tradicional es limitada y sus restricciones 
generan dificultades para representar proposiciones singulares, 
relacionales o compuestas (cfr. Geach, 1980, p. 64 y 1962, p. 54). Sin 
embargo, desde finales de la década de los 60’s, Fred Sommers defendió 
una revisión y una revitalización de la sintaxis ternaria, a la luz de lo 
que llamamos “el reto de Bar-Hillel”,2 mostrando que ninguna de estas 
limitaciones es de tipo knock-out. Como resultado de esta revisión, el 
proyecto filosófico de Sommers se diversificó en tres grandes líneas de 
investigación en ontología, semántica y lógica (cfr. Sommers, 2005) que 
se sistematizaron, respectivamente, en una teoría de categorías, una 
teoría de la verdad y un sistema lógico que hoy conocemos como Term 
Functor Logic (Sommers, 1967; Sommers, 1982; Sommers y Englebretsen, 

2  El reto de Bar-Hillel es el siguiente (el énfasis es nuestro): “I challenge 
anybody here to show me a serious piece of argumentation in natural languages that has 
been successfully evaluated as to its validity with the help of formal logic. I regard this 
fact as one of the greatest scandals of human existence. Why has this happened? 
How did it come to be that logic which, at least in the views of some people 2,300 
years ago, was supposed to deal with evaluation of argumentation in natural 
languages, has done a lot of extremely interesting and important things, but not 
this?” (cfr. Staal, 1969, p. 256).
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2000; Englebretsen, 1987; Englebretsen, 1996; Englebretsen y Sayward, 
2011).

El sistema Term Functor Logic representa la silogística usando 
términos en lugar de elementos lingüísticos de primer orden como 
variables individuales o cuantificadores.3 De acuerdo con esta álgebra, 
las cuatro proposiciones  categóricas pueden representarse mediante la 
siguiente sintaxis:4

•	 SaP := -S+P = -S-(-P) = -(-P)-S = -(-P)-(+S)
•	 SeP := -S-P = -S-(+P) = -P-S = -P-(+S)
•	 SiP := +S+P = +S-(-P) = +P+S = +P-(-S)
•	 SoP := +S-P = +S-(+P) = +(-P)+S = +(-P)-(-S)
Dada esta representación, TFL ofrece un método de decisión 

correcto, completo y simple para la silogística: una conclusión se sigue 
TFL-válidamente de un conjunto de premisas si y sólo si i) la suma de 
las premisas es algebraicamente igual a la conclusión y ii) el número 
de conclusiones con cantidad particular (viz., cero o uno) es igual al 
número de premisas con cantidad particular (cfr. Englebretsen, 1996, p. 
167). Así, por ejemplo, si consideramos un silogismo válido, digamos un 
silogismo tipo aaa-1, podemos ver cómo la aplicación de este método 
produce la conclusión correcta (Cuadro 2).

Proposición Representación
1. Todos los mamíferos son animales. -M+A
2. Todos los perros son mamíferos. -P+M
⊢ Todos los perros son animales. -P+A

Cuadro 2. Un silogismo tipo aaa-1

3  El que podamos modelar inferencias sin elementos lingüísticos de 
primer orden como variables o cuantificadores no es una novedad (cfr. Quine, 
1971; Noah, 1980; Kuhn, 1983), pero el proyecto lógico de Sommers tiene un 
impacto mayor: que sea posible usar una lógica de términos en lugar de un 
sistema de primer orden no tiene que ver con el hecho sintáctico, por decirlo de 
algún modo, de que podemos modelar inferencia sin variables o cuantificadores, 
sino con la visión más general de que el lenguaje natural es fuente de una lógica 
natural (cfr. Sommers, 1982; Sommers, 2005; Moss, 2015).

4  En lo que sigue usamos la presentación de Englebretsen (1996).
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En el ejemplo anterior podemos ver claramente cómo funciona este 
método: i) si sumamos las premisas obtenemos la expresión algebraica 
(−M+A)+(−P+M)=−M+A−P+M=−P+A, de tal modo que la suma de las 
premisas es algebraicamente igual a la conclusión, y la conclusión es 
igual a −P+A, en lugar de +A−P, porque ii) el número de conclusiones 
con cantidad particular (cero en este ejemplo) es igual al número de 
premisas con cantidad particular (cero en este ejemplo).

Esta aproximación algebraica es capaz de representar y modelar 
proposiciones relacionales, singulares y compuestas sin perder su 
motivación principal, a saber, que una inferencia es un proceso que 
ocurre entre términos. Así, por ejemplo, los siguientes casos ilustran 
cómo representar y modelar inferencias con proposiciones relacionales 
(Cuadro 3), singulares5 (Cuadro 4) o compuestas6 (Cuadro 5).

Proposición Representación

1. Algunos caballos son más rápidos 
que algunos perros. +C1+(+R12+P2)

2. Los perros son más rápidos que 
algunos hombres. -P2+(+R23+H3)

3.
Lo que es más rápido que lo que 
es más rápido que los hombres, es 
más rápido que los hombres.7

-(+R12+(+R23+H3))+(+R13+H3)

⊢ Algunos caballos son más rápidos 
que algunos hombres. +C1+(+R13+H3)

Cuadro 3. Ejemplo con proposiciones relacionales

5  Bajo el supuesto de que los términos singulares, como Sócrates, se 
representan con minúsculas.

6  Dado que el razonamiento proposicional se puede representar de la 
siguiente manera, P:=+[p], Q:=+[q], ¬P:=−[p], P⇒Q:=−[p]+[q], P˄Q:=+[p]+[q] y 
P˅Q:=−−[p]−−[q], el método se comporta como resolución (cfr. Noah, 2005).

7  En otras palabras, la relación ser más rápido que es transitiva.
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Proposición Representación
1. Todo hombre es mortal. -M+L
2. Sócrates es hombre. +s+M
⊢ Sócrates es mortal. +s+L

Cuadro 4. Ejemplo con proposiciones singulares

Proposición Representación
1. Si P entonces Q. -[p]+[q]
2. P. +[p]
⊢ Q. +[q]

Cuadro 5. Ejemplo con proposiciones compuestas

2.3 Silogística intermedia
Peterson (1979) y Thompson (1982) desarrollaron extensiones 

para la silogística (SYLL+) añadiendo cuantificadores no clásicos como 
“la mayoría” (para proposiciones mayoritarias), “muchos” (para 
proposiciones comunes) y “pocos” (para proposiciones predominantes).8 
Ası́, la silogı́stica intermedia añade las siguientes proposiciones 
intermedias: p es la predominante afirmativa (Pocos S no son P), b es 
la predominante negativa (Pocos S son P), t es la mayoritaria afirmativa 
(La mayorı́a de S es P), d es la mayoritaria negativa (La mayorı́a de S no es 
P), k es la común afirmativa (Muchos S son P) y g es la común negativa 
(Muchos S no son P).

Dadas estas nuevas proposiciones, SYLL+ añade las siguientes 
suposiciones de distribución: las proposiciones universales distribuyen 
su término sujeto; las negativas distribuyen su término predicado; y las 
proposiciones predominantes, mayoritarias y comunes distribuyen su 
término sujeto si y sólo si dicho término sujeto es el término menor. Con 
estas suposiciones básicas, decimos que una conclusión se sigue SYLL+-
válidamente de un conjunto de premisas si y sólo si:

1. Reglas de distribución.

a. El término medio está distribuido por lo menos en una premisa.

8  Aquí seguimos la presentación de Thompson (1982).
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b. Todo término distribuido en la conclusión está distribuido en las 
premisas.

2. Reglas de cualidad.

a. Existe por lo menos una premisa afirmativa.
b. Si la conclusión es negativa, por lo menos una premisa es negativa.
c. Si una premisa es negativa, la conclusión es negativa.

3. Reglas de cantidad.

a. Si una premisa es predominante, la conclusión no es universal.
b. Si una premisa es mayoritaria, la conclusión no es universal o 

predominante.
c. Si una premisa es común, la conclusión no es universal, 

predominante o mayoritaria.

Con estos elementos SYLL+ nos permite extender la silogística 
básica para lidiar con un rango más amplio de inferencias, tanto válidas 
(Cuadro 6) como inválidas (Cuadro 7). Además, como es de esperarse, 
la adición de p, t, k, b, d y g incrementa el número de inferencias válidas 
(Cuadro 8).

Proposición Representación
1. Los humanos son mortales. HaM
2. La mayoría de griegos son humanos. GtH
⊢ La mayoría de griegos son mortales. GtM

Cuadro 6. Un razonamiento válido: att-1

Proposición Representación
1. La mayoría de humanos son mortales. HtM
2. La mayoría de griegos son humanos. GtH
⊬ Los griegos son mortales. GaM

Cuadro 7. Un razonamiento inválido: tta-1
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Figura 1 Figura 2 Figura 3 Figura 4

Con “mayoría”

aat
att
ati
ead
etd
eto

aed
add
ado
ead
etd
eto

ati
eto
tai

dao

Aed
eto
tai

Con “muchos”

aak
atk
aki
akk
eag
etg
eko
ekg

aeg
adg
ago
agg
eag
etg
eko
ekg

aki
eko
kai
gao

Aeg
eko
kai

Con “pocos”

aap
app
apt
apk
api
eab
epb
epd
epg
epo

aeb
abb
abd
abg
abo
eab
epb
epd
epg
epo

pai
epo
bao
api

Aeb
pai
epo

Cuadro 8. Extensión de los silogismos válidos en SYLL+ (adaptado de (Thompson, 1982))

2.4 Intermediate Term Functor Logic
Hasta este momento es claro que el tratamiento algebraico de 

TFL provee un método simple y correcto para modelar la inferencia 
silogística; sin embargo, desafortunadamente, este tratamiento no 
incluye inferencias con cuantificadores no-clásicos como “la mayorı́a”, 
“muchos”, o “pocos.” Por otro lado, como hemos visto, aunque 
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la silogı́stica intermedia, SYLL+, ofrece un rango más amplio de 
inferencias, carece de un procedimiento algebraico. Dado este estado 
de cosas, en esta sección exponemos brevemente algunos detalles del 
sistema Intermediate Term Functor Logic (TFL+). Para exponer este sistema 
proponemos una modificación de la sintaxis de TFL con el fin de 
representar los cuantificadores adicionales de SYLL+ y posteriormente 
mostramos el método de decisión de TFL+.

Así pues, para representar las proposiciones intermedias p, t, k, b, 
d y g dentro del marco de TFL consideremos la sintaxis del Cuadro 9.

Proposición Representación Proposición Representación
SaP := -S0+P0 SeP := -S0-P0

SpP := +S3+P0 SbP := +S3-P0

StP := +S2+P0 SdP := +S2-P0

SkP := +S1+P0 SgP := +S1-P0

SiP := +S0+P0 SoP := +S0-P0

Cuadro 9. Sintaxis de TFL+

La razón detrás de esta propuesta sintáctica es simple: de acuerdo 
con el marco lógico de SYLL+, las proposiciones intermedias p (b), t (d) y 
k (g) son particulares hasta cierto punto, tal como lo son las proposiciones 
tipo i (o), lo cual nos obliga a elegir, siguiendo la sintaxis de TFL, una 
combinación +/+ de términos para las proposiciones afirmativas; y una 
combinación +/− para las negativas. Sin embargo, esto no es suficiente 
porque, de acuerdo con SYLL+, las proposiciones p (b), t (d) y k (g) no 
son convertibles,9 y por tanto, no son equivalentes a proposiciones de 
tipo i (o), lo cual nos obliga a usar algún tipo de bandera para denotar 
explícitamente este hecho: nosotros proponemos el uso de superíndices.

Ahora, de acuerdo con SYLL+, los nuevos cuantificadores implican 
un cierto orden (p (b) implica t (d), t (d) implica k (g) y k (g) implica i 
(o)) y por ende los superı́ndices se usan no sólo como banderas, sino 

9  Ası́, por ejemplo, t := La mayorı́a de mexicanos hablan español es particular, 
tal y como i := Algunos mexicanos hablan español es particular, pero claramente t no 
es convertible y por tanto no es equivalente a i: notemos que si Algunos mexicanos 
hablan español entonces seguramente Algunos hispanohablantes son mexicanos, pero 
La mayorı́a de mexicanos hablan español no implica que La mayorı́a de hispanohablantes 
son mexicanos. Contraejemplos similares pueden ser expuestos para mostrar que 
las proposiciones p (b), t (d) y k (g) no colapsan en proposiciones tipo i (o).
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como niveles ordenados de cuantificación. Esta elección sintáctica tiene 
las siguientes caracterı́sticas: las proposiciones tipo a, e, i y o tienen nivel 
0 para denotar el hecho de que se comportan de manera usual, como si 
no se hubieran hecho modificaciones; los superı́ndices se añaden a cada 
término con la finalidad de especificar el detalle de que las proposiciones 
tipo p, t, k, b, d y g no son convertibles; y además, estos ı́ndices nos 
permiten inducir un orden (3≥2≥1≥0) que indica que a (e) no entraña p 
(b), t (d), k (g), i (o); pero p (b), t (d), k (g) sı́ entrañan i (o).10

 Dada esta representación, la modificación del método de decisión 
es como sigue: una conclusión se sigue válidamente de un conjunto de 
premisas si y sólo si i) la suma de las premisas es algebraicamente igual 
a la conclusión, ii) el número de conclusiones con cantidad particular 
(viz., cero o uno) es igual al número de premisas con cantidad particular, 
y iii) el nivel de cuantificación de la conclusión es menor o igual que el 
máximo nivel de cuantificación de las premisas. Para ejemplificar este 
procedimiento consideremos un par de ejemplos, uno válido (Cuadro 
10), uno inválido (Cuadro 11).

Proposición Representación
1. Los humanos son mortales. -H0+M0

2. La mayoría de griegos son humanos. +G2+H0

⊢ La mayoría de griegos son mortales. +G2+M0

Cuadro 10. Un razonamiento válido: att-1

Proposición Representación
1. La mayoría de humanos son mortales. +H2+M0

2. La mayoría de griegos son humanos. +G2+H0

⊬ Los griegos son mortales. -G0+M0

Cuadro 11. Un razonamiento inválido: tta-1

10  Esto es diferente de la versión original (cfr. Thompson, 1982): Thompson 
permite que las proposiciones universales entrañen proposiciones particulares, 
pero nuestra versión sigue la propuesta de Sommers y Englebretsen, por lo 
que tenemos que añadir otra regla al marco de SYLL+: si dos premisas son 
universales, la conclusión no puede ser particular.
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Para ilustrar las ventajas de TFL+ frente a TFL y SYLL+ consideremos 
algunos ejemplos que ilustran el balance entre la complejidad de 
las reglas de SYLL+ y el poder expresivo de TFL (Cuadros 13-16). 
Notemos además que, como es de esperarse, la adición de p, t, k, b, d 
y g incrementa el número de modos correctos y permite las inferencias 
válidas del Cuadro 12.11

Figura 1 Figura 2 Figura 3 Figura 4

Con “mayoría”

att
ati
etd
eto

add
ado
etd
eto

ati
eto
tai

dao

eto
tai

Con “muchos”

atk
aki
akk
etg
eko
ekg

adg
ago
agg
etg
eko
ekg

aki
eko
kai
gao

eko
kai

Con “pocos”

app
apt
apk
api
epb
epd
epg
epo

abb
abd
abg
abo
epb
epd
epg
epo

pai
epo
bao
api

pai
epo

Cuadro 12.  Extensión de los silogismos válidos en TFL+

11  Para los modos válidos que necesitan carga existencial, como aat-1 o 
aak-1, lo único que necesitamos es añadir la premisa implícita que declara la 
existencia del término menor, es decir, algo como +S0+S0: tal adición permite la 
introducción de los modos válidos que aparecen en el Cuadro 8 pero que están 
ausentes en el Cuadro 12.
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Proposición Representación
1. Muchos ancianos están enfermos. +A1+E0

2. Esta persona es anciana. +p0+A0

⊬ Esta persona está enferma. +p0+E0

Cuadro 13. Una inferencia inválida: kii-1

Proposición Representación
1. Muchos alemanes son blancos. +A1+B0

2. Todos los alemanes son europeos. -A0+E0

⊬ Muchos europeos son blancos. +E1+B0

Cuadro 14. Una inferencia inválida: kak-3

Proposición Representación
1. Pocos autos son híbridos. +A3-H0

2. Todo auto es caro. -A0+C0

⊢ Algunos autos caros no son híbridos. +C0-H0

Cuadro 15. Una inferencia válida: bao-3

Proposición Representación
1. Ningún tonto es ciudadano. -T0-C0

2. La mayoría de votantes son ciudadanos. +V2+C0

⊢ Muchos votantes no son tontos. +V1-T0

Cuadro 16. Una inferencia válida: etg-2

Así pues, como se puede observar, TFL+ es un sistema que, además 
de ser confiable,12 tiene las ventajas algebraicas de TFL y las ventajas 
expresivas de SYLL+.

Con estos elementos estamos en condiciones para introducir, a 
modo de síntesis, un método analítico de árboles para TFL+.
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3. Árboles para TFL+

Como es usual, y siguiendo a D’Agostino et al (1999; Priest, 2008), 
decimos que un árbol es un grafo conectado acíclico definido por nodos 
y vértices. El nodo superior es la raíz. Los nodos inferiores son puntas. 
Cualquier camino desde la raíz hasta una punta es una rama. Para probar 
la validez de una inferencia se construye un árbol que comienza con una 
única rama cuyos nodos son premisas y la negación de la conclusión: 
esta es la lista inicial. Entonces se aplican las reglas que nos permiten 
extender la lista inicial:

Diagrama 1 Diagrama 2 Diagrama 3

El Diagrama 1 ilustra la regla para las proposiciones de tipo universal; 
el Diagrama 2, la regla para las proposiciones intermedias; y el Diagrama 
3, la regla de ordenamiento para los términos positivos, con n,k∈{0, 1, 2, 
3}. Notemos, además, que después de aplicar una regla introducimos un 
subíndice i∈{1, 2, 3, ...}. Para las proposiciones universales el subíndice 
puede ser cualquier número natural; para las proposiciones intermedias, 
el subíndice tiene que ser un nuevo natural si dichas proposiciones 
no tienen ya un subíndice asociado. Adicionalmente, y siguiendo los 
principios de TFL, asumimos las siguientes reglas de negación: −(±A) 
=∓A, −(±A±B)=∓A∓B y −(−−A−−A)=+(−A)+(−A).

Como es costumbre, decimos que un árbol es completo si y sólo si 
toda regla que puede ser aplicada ha sido aplicada. Una rama es cerrada 
si y sólo si hay términos de la forma  ±An

i y ∓An
i en dos de sus nodos; 

de otro modo es abierta. Una rama cerrada se indica escribiendo ⊥ en su 
punta; una rama abierta se indica escribiendo ∞. Un árbol es cerrado si 
y sólo si todas sus ramas son cerradas; de otro modo es abierto. Así, de 
nuevo como es usual, A es una consecuencia lógica de un conjunto de 
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premisas Γ (i.e., Γ⊢A) si y sólo si existe un árbol completo y cerrado cuya 
lista inicial incluye a Γ y la negación de A (i.e., Γ∪{−A}⊢⊥).

De acuerdo con esta propuesta, a continuación mostramos que el 
método funciona probando algunas formas válidas (Diagramas 4 y 
5) e inválidas (Diagramas 6 y 7) de TFL+. Adicionalmente, a modo de 
ejemplo, mostramos algunos casos particulares de silogística básica y 
relacional. Y por último, ofrecemos algunos elementos para concluir que 
el método es confiable.

3.1 Ejemplos de silogística intermedia

Diagrama 4. Una inferencia válida: 
bao-3 (vide Cuadro 15)

Diagrama 5. Una inferencia válida: 
etg-2 (vide Cuadro 16)
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Diagrama 6. Una inferencia 
inválida: kii-1 (vide Cuadro 13)

Diagrama 7. Una inferencia 
inválida: kak-3 (vide Cuadro 14)

3.2 Ejemplos de silogística básica
Cuando no usamos superíndices para representar niveles de 

cuantificación, el método nos permite lidiar con la silogística apodíctica 
tradicional o básica (Diagramas 8-11).
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Diagrama 8. aaa-1 Diagrama 9. eae-1

Diagrama 10. aii-1 Diagrama 11. eio-1
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3.3 Ejemplos de silogística relacional
El método, también, preserva inferencias con proposiciones 

relacionales. Consideremos, a continuación, el árbol del Diagrama 12 que 
corresponde al ejemplo del Cuadro 17 (aquí, de nuevo, no necesitamos 
superíndices para representar niveles de cuantificación).

Proposición TFL
1. Todo niño ama alguna niña. −B+(+L+G)
2. Toda niña adora algún gato. −G+(+A+C)
3. Todo gato es sarnoso. −C+M
4. Quien adora algo sarnoso es tonto. −(+A+M)+F
⊢ Todo niño ama algo tonto. −B+(+L+F)

Cuadro 17. Ejemplo de silogística relacional (adaptado de Englebretsen (1996, p. 172))
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Diagrama 12. Ejemplo de silogística relacional

Consideremos, por último, el árbol del Diagrama 13 que corresponde 
a un silogismo relacional con cuantificadores no clásicos (Cuadro 18).
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Proposición TFL+

1. Pocos mexicanos no son populares. +M3+P0

2. Las personas populares favorecen a muchos 
gobiernos.

−P0+(+F0+G2)

⊢ La mayoría de mexicanos favorece a algunos 
gobiernos.

+M2+(+F0+G0)

Cuadro 18. Ejemplo de silogística intermedia relacional

Diagrama 13. Ejemplo de silogística intermedia relacional
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3.4 Confiabilidad
Adicionalmente, podemos comentar que este método de árboles es 

confiable en la medida en que preserva las inferencias de TFL+, es decir, 
es confiable en el sentido de que toda inferencia TFL+ válida produce 
árboles completos y cerrados; y viceversa, toda inferencia que produce 
un árbol completo y cerrado es una inferencia TFL+ válida.

Proposición 1. Toda inferencia TFL+ válida produce un árbol TFL+ 
completo y cerrado.    

Para probar esta proposición consideremos un esquema general con 
todas las inferencias TFL+ válidas que aparecen en el Cuadro 12 (Cuadro 
20). Al aplicar las reglas de los árboles a las inferencias del Cuadro 20 
obtenemos árboles completos y cerrados (Cuadros 21 y 22).

I II III IV V VI VII VIII
1. -Y0+Z0 -Y0-Z0 -Z0+Y0 -Z0-Y0 -Y0+Z0 -Y0-Z0 +Zn+Y0 -Z0-Y0

2. +Xn+Y0 +Xn+Y0 +Xn-Y0 +Xn+Y0 +Yn+X0 +Yn+X0 -Y0+X0 +Yn+X0

⊢ +Xk+Z0 +Xk-Z0 +Xk-Z0 +Xk-Z0 +X0+Z0 +X0-Z0 +Zk+X0 +X0-Z0

Cuadro 20. Inferencias válidas en TFL+ para k<n

I II
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III IV

Cuadro 21. Árboles completos y cerrados de las inferencias TFL+ válidas (parte I)

V VI
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VII VIII

Cuadro 22. Árboles completos y cerrados de las inferencias TFL+ válidas (parte II)

Proposición 2. Toda inferencia que produce un árbol TFL+ completo 
y cerrado es una inferencia TFL+ válida.

Para probar esta proposición supongamos que existe una inferencia 
que produce un árbol TFL+ completo y cerrado pero que no es una 
inferencia TFL+ válida. Entonces existe un árbol completo y cerrado 
cuya lista inicial incluye un conjunto de proposiciones, digamos Γ, y la 
negación de la conclusión, pero de Γ no podemos construir una prueba 
de la conclusión usando las condiciones de validez de TFL+, es decir, a 
partir de Γ, o bien la suma de las premisas no es algebraicamente igual 
a la conclusión, o el número de conclusiones con cantidad particular 
no es igual al número de premisas con cantidad particular, o el nivel 
de cuantificación de la conclusión es mayor que el máximo nivel de 
cuantificación de las premisas.

Para este caso, considerando únicamente las inferencias TFL+ 
válidas que aparecen en el Cuadro 12, existen dos formas generales de 
conclusión a considerar, a saber, +Xk±Z0 y +X0±Z0. Ahora, como el árbol 
es completo, las reglas para generar dicho árbol deben haber sido 
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aplicadas; y como el árbol es cerrado, cada árbol debe ser de una de las 
siguientes siguientes formas (Diagramas 14 y 15):

Diagrama 14 Diagrama 15

Supongamos, entonces, que tenemos una instancia del árbol del 
Diagrama 14 pero que su correspondiente inferencia no es válida, es 
decir, donde Γ+=Γ∪{-Xk∓Z0}, Γ+⊢⊥, pero la aplicación de las condiciones 
de inferencia de TFL+ a Γ no nos permite producir +Xk±Z0, con k<n. 
Ahora bien, siguiendo las ramas del árbol del Diagrama 14 observamos 
que las puntas están cerradas, por lo que en nodos previos el árbol 
tiene que incluir algo de la forma +Xk y ±Z0, es decir, Γ={…, +Xk, ±Z0, …}. 
Pero si esto es así, si aplicamos la regla i) (i.e. la suma) a Γ obtenemos 
algo de la forma +X±Z, y no al revés, por la condición ii) (cantidad de 
particulares); y por último, por la condición iii) (nivel de cuantificación), 
la conclusión tiene que ser algo de la forma +Xk±Z0 con k<n. Sin embargo, 
esto último contradice la suposición de que no podemos construir una 
prueba de tal conclusión usando las condiciones de inferencia de TFL+. 
Lo mismo ocurre para el árbol del Diagrama 15 que es un caso particular 
del Diagrama 14 cuando k=0.



234 J. Martín Castro-Manzano

Tópicos, Revista de Filosofía 58, ene-jun (2020) Universidad Panamericana, Ciudad de México, México

4. Conclusiones
En esta contribución hemos intentado ofrecer un método analítico de 

árboles para el sistema TFL+. Como consecuencia de esta meta podemos 
extraer las siguientes observaciones:

1.	 El método de árboles que hemos propuesto evita la condición ii) 
(y iii)) del método de decisión de la silogística básica, relacional 
(e intermedia), a saber, que el número de premisas particulares 
debe ser igual al número de conclusiones particulares. Esto 
posibilita la aplicación general del método para cualquier 
número de premisas y niveles de cuantificación.

2.	 El método preserva el poder de TFL con respecto a inferencias 
relacionales, transformaciones de voz activa-pasiva, cambios 
asociativos y simplificaciones poliádicas, lo cual le da a este 
procedimiento una ventaja competitiva sobre (los árboles de) la 
lógica clásica de primer orden.

3.	 El método preserva el poder de TFL+ para lidiar con inferencias 
con cuantificadores no clásicos, lo cual le da una ventaja 
competitiva no sólo sobre (los árboles de) la lógica clásica de 
primer orden, sino sobre (los árboles de) TFL.

4.	 Debido a la peculiar álgebra de TFL, no necesitamos usar reglas 
de cuantificación ni skolemización, lo cual puede ser útil en 
relación con la programación lógica y la resolución.

5.	 El número de reglas de inferencia se reduce a un conjunto 
más pequeño, simple y uniforme de reglas que preserva las 
capacidades de TFL y TFL+ en diferentes contextos inferenciales 
(silogística básica, silogística relacional, silogística intermedia y 
lógica proposicional13).

Por todas estas razones, creemos que este método no es sólo 
novedoso, sino también prometedor, no nada más como otra herramienta 
didáctica, sino como un dispositivo de investigación:  

1.	 Por ejemplo, el método puede ser útil para estudiar razonamiento 
modal, probabilista o numérico en la medida en que puede ser 
usado para representar silogística modal (cfr. Englebretsen, 

13  Para el caso proposicional usamos las mismas normas de los árboles para la 
silogística pero suprimimos cualquier tipo de índice.
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1988; Thom, 1996; Rini, 1998; Malink, 2006), probabilística (cfr. 
Thompson, 1986) o numérica (cfr. Murphree, 1998).

2.	 El método, además, contribuye al estudio del razonamiento 
visual en tanto que encuentra un lugar natural dentro de un 
proyecto de razonamiento diagramático (cfr. Englebretsen, 1991; 
Englebretsen, 1996; Castro-Manzano y Pacheco-Montes, 2018).

3.	 Como el método puede ser útil para el estudio psicológico de 
la inferencia puede usarse para aproximar una descripción 
psicológica más rica del razonamiento en lenguaje natural (cfr. 
Keil, 2005; Khemlani y Johnson-Laird, 2012).

4.	 Además, en la medida en que puede utilizarse para adaptar o 
modificar motores inferenciales para bases de datos aristotélicas 
(cfr. Mozes, 1989), el método tiene impacto en la programación 
lógica (cfr. Castro-Manzano, Lozano-Cobos y Reyes-Cárdenas, 
2018).

5.	 Por último, el estudio de este método tiene relevancia para la 
historia y la filosofía de la lógica en tanto que promueve una 
revisión de las lógicas de términos (cfr. Veatch, 1970; Sommers, 
1982; Englebretsen, 1996; Englebretsen y Sayward, 2011) como 
herramientas que pueden ser más interesantes y poderosas de 
lo que originalmente podríamos creer (cfr. Carnap, 1930; Geach, 
1962 y 1980).
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