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Abstract

In this paper I attempt to retrieve Leibniz’s linear diagram-
matic logic for his syllogistic and highlight its computational
and logical features by providing a formal approach to it in
metalogical terms, which is something that, as far as we know,
has not yet been accomplished. Thus, in this contribution I pur-
sue two goals, one historical and the other logical: i) to bring
more attention on the algorithmic aspects of Leibniz’s linear di-
agrammatic system for his syllogistic, which I believe has been
neglected because of a general bias against diagram-based rea-
soning; and ii) to prove the metalogical properties of the system
in order to argue that such a system is a bona fide logical system.
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Resumen

En este articulo recuperamos la ldgica diagramatica lineal
de Leibniz para la silogistica y descubrimos sus propiedades
légicas y computacionales a través de una aproximacion
formal en términos metaldgicos, lo cual es algo que, hasta
donde sabemos, atn falta por hacerse. Asi, en esta contribucion
buscamos, respectivamente, dos metas, una histérica y una
logica: i) prestar mas atencion a los aspectos algoritmicos del
sistema diagramatico lineal de Leibniz para la silogistica, de
los cuales creemos que han sido desdefados por un prejuicio
general en contra del razonamiento diagramatico; y ii) probar
propiedades metaldgicas del sistema para argumentar que es un
sistema logico bona fide.
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1. Introduction

In this paper I retrieve Leibniz’s linear diagrammatic logic for his
syllogistic as it appears in De forma logicae comprobatione per linearum
ductus (Phil., VII, B, 1V, 1-10) (Leibniz & Couturat, 1903: 292-328) and
highlight its computational and logical features by providing a revision
of it in metalogical terms, which is something that, as far as I know, has
not yet been accomplished (Cf. Lenzen, 1990, 2004; Velarde Lombrafia,
2002).

Thus, in this contribution I pursue two goals, one historical and the
other logical: i) to bring more attention on the algorithmic aspects of
Leibniz’s linear diagrammatic system for his syllogistic (henceforth,
LEIB), which I believe has been neglected because of a general bias
against diagram-based reasoning, as we shall see; and ii) to prove the
metalogical properties of LEIB that give evidence that such a system
is a bona fide logical system—and not only a didactic tool —which may
shed some light on other aspects of Leibniz’s philosophy in general and
heterogeneous logic in particular.

The paper is organized in the following way. In Section 1 I begin with
a brief exposition of the usual concepts of logic and logical system in order
to describe the typical approaches to logical consequence. In Section 2,
I develop some ideas that lie behind the notion of diagrammatic logical
consequence. Later, in Section 3, I explain some of the general aspects
of syllogistic and VENN so as to exemplify the preceding notions and
introduce the basic aspects of a diagrammatic logic. After that, I present
LEIB’s syntax and semantics and show its metalogical attributes in order
to argue that LEIB is a bona fide (diagrammatic) logical system. Finally, I
briefly discuss the results of my study and close by giving some pointers

concerning future research.

2. Logic, Logical Systems, and Diagrammatic Logical
Consequence

2.1 Logic

Reasoningis a process that produces new information given previous
data by following certain norms that allow us to describe inference as
the unit of measurement of reasoning: inference may be more or less (in)
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correct depending on the compliance or violation of such norms. The
science that studies such norms is logic.

The structural understanding of logic has depended, typically but
not exclusively, on equivalent sentential approaches: the semantical,
the syntactical, and the abstract. From the semantical standpoint the
central concept of such norms is that of interpretation and defines our
notions of satisfaction, model, and logical truth as denoted by F and is
usually attributed to Tarski (1956a). From the syntactical point of view
the main concept of those norms is that of deducibility; it characterizes
our intuitions of proof, demonstration, and theorem as denoted by
and is usually attributed to Carnap (1937). Finally, from the abstract
standpoint the idea behind those norms is that of a function of consequence
that generalizes the previous accounts as typically attributed to Tarski
(1956b). These approaches are sentential and they define logical
consequence as the proprium of logic. As an example, consider classical
logic: its logical consequence relation follows the next structural norms
where and are sentences and is a set of sentences: reflexivity (if @€T,
then '), monotonicity (if '+, then TU{Y}F¢ ), and cut (if THY and

Tu{y}@, then I'-@).

2.2 Logical systems

Logical systems, the tools used to model and better understand
the relation of consequence may be defined by a pair (L,B) where L is
a language, and B is a semantic base (often equivalent to a calculus).
Usually, the vocabulary is made up of two sets of signs: variables (non-
logical signs) and constants (logical signs). Syntax is used to determine,
uniquely and recursively, the well-formed expressions of the system and
semantics is used to provide meaning to such well-formed expressions.
A well-defined logical system must have these elements. To illustrate
this notion of logical system let us consider classical propositional logic,
L, Its vocabulary has the constants CONS={—,v} and the variables
VAR={¢_1,p_2,...}. It has two syntax rules: i) if p€VAR, then ¢ is a well-
formed formula (wff) of L ; and ii) if ¢ and s are wffs of L, then ¢ and
@V are also wffs of L. The semantics of L, is composed by a domain and
a function of interpretation. The domain of L, is the set of truth values,
D={1,0}, where 1 stands for the designated value and 0 for the anti-
designated value. The function of interpretation f maps the variables to
the truth values, f:VAR—D. With this function a valuation v is defined in
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such way that v(@)=f(¢), v(~¢)=1-0(¢), and v(GV)=max(v(@),0(V)).
This valuation provides the rules of correspondence that allow us to
build the truth tables of L, along with the remaining connectives and
tautologies which, due to soundness and completeness, are equivalent
to a mechanichal calculus.

2.3 Diagrams and diagrammatic logical consequence

I shall show that diagrammatic logical systems can be defined in
a similar fashion and that we can describe a well-behaved notion
of diagrammatic logical consequence between diagrams (and not
sentences); but before we do that, I would like to introduce diagrams by
paying attention to their expressive power.

Pop culture already somehow recognizes this expressive power:
the 19* century proverb “a picture is worth 1000 words” is quite
representative in this sense; but the basic idea is much older. Notable
examples of confidence in the expressive power of diagrams can be
found in different historical periods. Ramon Llull (1232-1315), for
instance, is arguably the most famous case: he developed his Ars Magna,
a diagrammatic device used to explain the divine nature to those unable
to understand God, under the assumption that diagrammatic methods
were more convincing or expressive than sentential representations
(Figure 1). Thomas Murner (1475-1537) also used diagrams in his Logica
Memorativa in order to teach logic (Figure 2). Dutch mathematician
and philosopher of science Simon Stevin (1548-1620) developed
another remarkable diagram in his demonstration that the efficiency
of the inclined plane is a logical consequence of the impossibility of
perpetual motion (Figure 3). And, of course, besides these examples we
have Descartes’ (1596-1650), who is perhaps the most famous case of a
modern philosopher who made good use of diagrams in order to model
hypotheses, such as the mechanics of the pineal gland (Figure 4).
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Figure 1. Figure 2. Figure 3. Figure 4.

A diagram A diagram A diagram A diagram
from Llull's Ars|from Murner’s|from Stevin’s De|from Descartes’
Magna (Llull, | Logica ~ Memorativa | weedgaet  (Stevin, | Principles of
1501) (Murner, 1967) 1586) Philosophy
(Descartes, Miller

& Miller, 1984)

Our point is that the expressive power of diagrams for aiding
reasoning was not news for modern thinkers and Leibniz was no
exception: we can find evidence for this statement in an 18" century
research program for diagrammatic reasoning in the work of Leibniz
(Figure 5), Lambert (Figure 6), and Plouquet (Figure 7).

Barkra Ale M find C Commmeme —
gzzzgzg z T Alle B findo M M——m _,‘;’ l

Figure 5. A Barbara Figure 6. A  Barbara Figure 7. A

syllogism in De forma |syllogism in Neues Organon Barbara syllogism
logicae  comprobatione  per (Lambert, 1764) in Sammlung der
linearum ductus (Leibniz & Schriften
Couturat, 1903) (Bok, 1766)

This confidence in the expressive power of diagrams is
understandable. In order to represent knowledge we use internal and
external representations. Internal representations convey mental images,
for example; whereas external representations include physical objects
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on paper, on blackboards, or computer screens. External representations
can be divided into two classes: sentential and diagrammatic (Larkin &
Simon, 1987).

Sentential representations are sequences of sentences in a particular
language. Diagrammatic representations are sequences of diagrams that
contain information stored at one particular locus in a configuration,
including information about relations with the adjacent loci; and
diagrams are information graphics' that index information by location on
a plane (Larkin & Simon, 1987). The difference between diagrammatic
and sentential representations, thus, is that the former preserve explicit
information about topological relations, while the latter do not—they
may, of course, preserve other kinds of relations.

This confidence in the power of diagrams is comprehensible due
to their computational advantages: they group together information
avoiding large amounts of text, they automatically support a large
number of perceptual inferences—which are extremely easy to
interpret—, and they grant the possibility of applying operational
constraints (like free rides and overdetermined alternatives (Shimojima,
1996)) to allow the automation of perceptual inference (Larkin & Simon,
1987).

However, despite this general confidence, when it comes to reasoning
there is a bias (or a tradition) that supports the claim that while proof-
based reasoning is essential in logic and mathematics, diagram-based
reasoning, no matter how useful (Nelsen, 1993) or elegant (Polster,
2004), is not, for it is not bona fide reasoning. Thus, for example, Tennant
has suggested a diagram is only a heuristic to prompt certain trains of
inference (Tennant, 1986); Dieudonné has urged a strict adherence to
axiomatic methods with no appeal to geometric intuition, at least in

! Information graphics can be divided into the next classes (Nakatsu, 2009):

quantitative charts (bar-column charts, line graphs, XY scatterplots, pie charts),
maps (directional maps, topographic maps, contour maps, weather maps),
tables (one way tables, two ways tables, multiway tables), pictorial illustrations,
and diagrams, which we can use to study system topology (conceptual models,
network diagrams), sequence and flow (flowcharts, activity diagrams), hierarchy-
classification (organization charts, classification hierarchies, composition
models), association (semantic networks, entity relationship diagrams), cause
and effect (directed graphs, fishbone diagrams, fault tree analysis diagrams),
and reasoning (argument diagrams, Euler diagrams, Venn diagrams).
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formal proofs (Dieudonné, 2008); Lagrange remarked in the Preface to
the first edition of his Mécanique Analytique (1788) that no figures were
to be found in his work (Boissonnade, Lagrange, & Vagliente, 2013); and
even Leibniz himself shared a similar opinion at some point (emphasis

mine):

La force de la démonstration est indepéndante de la fiqure
tracée, qui n'est que pour faciliter l'intelligence de ce qu’on
veut dire et fixer l'attention; ce sont les propositions
universelles, c’est-a-dire les définitions, les axiomes et
les théorémes déja démontrés qui font le raisonnement
et le soutiendraient quand la figure n’y serait pas
(Leibniz, 1966: 309).

This bias against diagram-based reasoning is based upon the
assumption that diagrams naturally lead to fallacies, mistakes, and are
not susceptible of generalization. Nevertheless, in retrospect we can find
an argument against this assumption in Newton’s Preface to the First
Edition of Principia Mathematica (Newton, 1974) by reducing proof-based
reasoning to mechanical reasoning (emphasis mine):

But as artificers do not work with perfect accuracy,
it comes to pass that mechanics is so distinguished
from geometry that what is perfectly accurate is called
geometrical; what is less so, is called mechanical.
However, the errors are not in the art, but in the artificers.
He that works with less accuracy is an imperfect
mechanic; and if any could work with perfect accuracy,
he would be the most perfect mechanic of all, for the
description of right lines and circles, upon which
geometry is founded, belongs to mechanics (Newton,

1974: 11).

Along similar lines, Allwein, Barwise, and Etchemendy (1996) and
Shin (1994) have developed a successful research program around
heterogeneous and diagrammatic reasoning that has promoted
different studies and model theoretical schemes that help us represent
and better understand diagrammatic reasoning in logical terms, thus
allowing a well-defined notion of a diagrammatic logical system and a
diagrammatic inference.

Topicos, Revista de Filosofia 52 (2017)



RemIs)coveriNG LEiBNI1Z's DiagGraMMATIC LOGIC 97

Thus if, as we stated above, reasoning is a process that produces new
information given previous data, and information can be represented
diagrammatically, it is not unreasonable to suggest that diagrammatic
inference is the unit of measure of diagrammatic reasoning:
diagrammatic inference would be correct or incorrect depending on
the compliance or violation of certain norms. Let us denote the relation
of diagrammatic logical consequence or diagrammatic inference by +;
this relation would define our intuitions around the informal notions
of visual inference or visual argument and would follow, in principle, the
standard structural norms where § is a particular diagram and A is a set
of diagrams: reflexivity (if 6€A , then A~§), monotonicity (if A=§, then
AU{8'}8), and cut (if A~8 and U{5}~8&’, then A »§’).

To give a somewhat detailed account of these structural properties
we need to describe how the operator — works. Shimojima has
developed a logical theory around diagrammatic inference that defines
(informally) a free ride as a process in which some reasoner gains
information without following any step specifically designed to gain it
(Shimojima, 1996: 32), in other words, a free ride is a process that allows
us to reach automatically (and sometimes inadvertently) a conclusion
from a diagrammatic representation of the premises. Inversely, an
overdetermined alternative occurs when a diagram that should not follow
from a given diagrammatic configuration of the premises does follow.

Using Shimojima’s approach we could say that reflexivity establishes
that a if a diagram is part of a set of diagrams or diagrammatic
configuration, then that particular diagram is a visual consequence of
such configuration because there is a free ride from the diagrammatic
configuration to a particular diagram; monotonicity would say that if a
diagram is a free ride from a diagrammatic configuration, and a new
diagram is added to such configuration, then the initial diagram is still
a free ride from the original configuration.? Finally, cut would establish
that if a diagram is a free ride from a diagrammatic configuration and

2 In other place we have argued that monotonicity is not a bona fide

property of diagrammatic inference, but for the purposes of this paper the
assumption of monotonicity will suffice.
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the addition of a new diagram produces a new free ride, there is a free
ride from the original diagrammatic configuration to the new diagram.

3. Syllogistic and VENN

The previous description may seem too abstract for something as
concrete as a diagram. So, in this section I exemplify the preceding
notions and introduce the basic aspects of a diagrammatic logical system
by using syllogistic and VENN. I use syllogistic for two obvious reasons:
first, because syllogistic is a paradigmatic mode of reasoning given
that it is relevant to us in many ways. Logically, as a basis for science.
Historically, as a tradition that gathers ancient and contemporary
logicians. And pedagogically, as a trademark of our education and
culture: most undergraduate logic courses, books, and manuals around
the world cover or include a fragment of syllogistic not just to teach or
introduce logic, but to provide forma mentis for scientific reasoning and
critical thinking. And secondly, because syllogistic, the object of study
in this paper, was quite appreciated by Leibniz (1966) (emphasis mine):

Je tiens que l'invention de la forme des syllogismes
est une des plus belles de l'esprit humain, et méme
des plus considérables. C'est une espéce de mathématique
universelle, dont 'importance n'est pas assez connue; et I'on
peut dire qu'un art d’infaillibilité y est contenu, pourvu
qu’on sache et qu’on puisse s’en bien servir, ce qui nest
pas toujour permis (Leibniz, 1966: 428).

And we use VENN not only because it is a very powerful system
capable of representing set theoretical assumptions, but also because it
is probably the diagrammatic system most used to represent syllogistic.

3.1 Syllogistic

Syllogistic has its origin in Aristotle’s Prior Analytics and is the
theory of inference that deals with the consequence relation between
two categorical propositions taken as premises and another categorical
proposition taken as a conclusion. A categorical proposition is a proposition
composed by two terms, a quantity, and a quality. The subject and the
predicate of a proposition are called terms: the term-schemadenotes
the subject term of the proposition and the term-schema P denotes the
predicate. The quantity may be either universal (All) or particular (Some)
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and the quality may be either affirmative or negative. These categorical
propositions are denoted by a label, either A (universal affirmative), E
(universal negative), I (particular affirmative), or O (particular negative).
A categorical syllogism, then, is a sequence of three categorical propositions
ordered in such a way that two propositions are premises and the last
one is a conclusion. Within the premises there is a term that appears in
both premises but not in the conclusion. This particular term works as
a link between the remaining terms and is known as the middle term,
which we will denote with the term-schema M. According to this term
we can set up four figures that encode and abbreviate all the valid and
only the valid syllogisms (Table 2).

Figure 1 Figure 2 Figure 3 Figure 4
Barbara Cesare Disamis Calemes
MAPSAMFSAP PEMSAMVW-SEP MIPMASHFSIP PAMMESWFSEP
Celarent Camestres Datisi Dimaris
MEPSAMWSEP PAMSEMWSEP MAPMISFSIP PIMMAS-SIP
Darii Festino Bocardo Fresison
MAPSIMFSIP PEMSIMFSOP MOPMASHSOP PEMMIS+SOP
Ferio Baroco Ferison -
MEPSIM-SOP PAMSOMESOP MEPMIS-SOP
Table 2. Valid syllogisms
3.2 VENN

VENN (Venn, 1880) is a sound and complete diagrammatic logical

system (Shin, 1994) that represents syllogistic perspicuously. VENN
can be defined as a (diagrammatic) logical system with a well-defined
vocabulary, syntax, and semantics (Shin, 1994: 48). Briefly, the vocabulary
is determined by the next elements: the closed curve, the rectangle, the
shading, the X, and the line (Figure 8).

) ®

Figure 8. Vocabulary of VENN
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With this vocabulary a diagram in VENN is defined as any finite
combination of diagrammatic elements (Shin, 1994). A region is any
enclosed area in a diagram. A basic region is a region enclosed by a
rectangle or a closed curve. A minimal region is a region within which
no other region is enclosed. An X-sequence is a diagram of alternating
X’s and lines with an X in each extremal position. Regions represent sets
and the rectangle represents the domain. A shaded region represents an
empty region and a region with an X represents a non-empty region.
And with this syntax the categorical propositions can be represented as
follows (Figure 9):

Figure 9. Categorical propositions in VENN

Further, the semantics of VENN depends onanatural homomorphism
with sets that help define the rules for developing (diagrammatic) proofs
in this diagrammatic system (Shin, 1994 81):

1. The rule of erasure of a diagrammatic object tells us that a well-formed
diagram (wfd) D’ is obtained from a wfd D if D’ results from either
erasing a closed curve of D, or erasing a shading of some region of D, or
erasing an entire X-sequence of D.

2. The rule of erasure of parts of an X-sequence says that is obtained
from if it results fromby the erasure of parts in some X-sequence that
fall in shaded regions, provided that the remaining X’s are reconnected.

3. The rule of spreading of an X-sequence tells us that is obtained from
if extra X-sequences have been added to some X-sequence of D.

4. The rule of introduction of a basic region indicates that a basic region
may be introduced by drawing either a rectangle or a closed curve.
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5. The rule of conflicting information says that if a diagram has a region
with both a shading and an X-sequence, then we may transform the
given diagram into any diagram.

6. The rule of unification of diagrams says that D’ is obtained from two
wifds D, and D, if every region of D is a counterpart region of either D,
or D, and conversely. If any region of D is shaded or has an X-sequence,
then it has a counterpart in either D, or D, which is also shaded or has
an X-sequence and conversely.

The previous rules may be summarized into the rules of erasure,
addition, and unification (Nakatsu, 2009: 133). As an example, consider a
diagrammatic proof of a syllogism of the form (Figure 10). According to
the previous rules we begin with an introduction of areas (step 1) and
then a unification is applied (step 2). After that, we apply an erasure of
an X-sequence (step 3) and then a spreading of an X-sequence (step 4).
Finally, by the erasure of a closed curve rule, we obtain a final diagram
(step 5). Since the conclusion got drawn by drawing down the premises,
the inference is valid (and corresponds to a Darii syllogism).

Figure 10. Example of a proof in VENN

As we can see, with these rules VENN provides an essential feature
of a well-defined diagrammatic logic: a linear time diagrammatic
method of decision for syllogistic that consists in drawing the diagrams
for the premises and then checking (by mere observation) whether it is
possible to “read off” the conclusion from the drawing of the premises;

in case it does, the syllogism is valid; otherwise it is invalid.

4. Leibniz’s linear diagrammatic logic

After this lengthy presentation we are now in a good position to
introduce and reconstruct Leibniz’s linear diagrammatic logic, LEIB, by
recovering it as a logical system and by discovering its logical attributes.
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The diagrammatic system we are interested in appears in De forme
logicae comprobatione per linearum ductus (Phil., V1I, B, 1V, 1-10) and we use
the edition of Couturat (Leibniz & Couturat, 1903, 292-328).

4.1 LEIB as a logical system

My first goal is to present LEIB by reconstructing its vocabulary,
syntax, and semantics. In order to do that I pay special attention to
LEIB’s diagrams for categorical propositions (Figure 11):

Propositio universalis affirmativa : Propositio universalis negativa.

Omn?BstC ‘ - Null Best C B
. d‘:;::“:t izl { < L1 | Nollus homo est lapis % c N
Propositio particularis affirmativa. Propositio particularis negativa.

Quoddam B est C B Quoddam B non est C 3 B
Quidam Homo est sapiens | C | Quidam homo non est Rusticus ¢ C | l

Figure 11. Categorical propositions in LEIB (Leibniz & Couturat,
1903, 292-293)

From these diagrams we can infer that the vocabulary of LEIB has the
following basic diagrammatic elements: the solid horizontal line and the

dotted vertical line (Figure 12).

Figure 12. Vocabulary of LEIB
With this vocabulary we can define the syntax of the wfds for LEIB.
The solid horizontal lines stand for terms and the vertical lines stand for

a relation between terms. Given two horizontal lines representing terms,
one could be completely included in another; they could be completely
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disjoint; they could partially intersect each other; or one could be
partially not included in another (Figure 13).

P P —
s s

P —_— P

s H ; s

Figure 13. Syntax of LEIB

The semantics of these wfds is straightforward: a diagram of a
proposition A shows that all that is S is indexed in P, but not inversely.
Proposition E shows thatno S is indexed in P and vice versa. Proposition
I represents the fact that some S is indexed in some P, and vice versa.
Proposition O states that some S is not indexed in all O (Figure 14).

Figure 14. Reconstruction of categorical propositions in LEIB

To exemplify how LEIB works let us represent a syllogism in a
diagrammatic fashion. Figure 15 shows what a Barbara syllogism looks
like:

Barbara
Omne C estB | B
OmneDestC | C ;
OmneDestB [ D

Figure 15. A Barbara syllogism as it originally appears in Leibniz &
Couturat (1903: 294)
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The construction of the previous syllogism is relatively simple. We
produce the diagrams that stand for the premises of a Barbara syllogism,
namely, MAPSAM. In order to do that we draw the proposition MAP
(Figure 16). Then, since SAM shares M with MAP, SAM must be drawn

with respect to M (Figure 17):

Figure 16. MAP Figure 17. SAM

Hence, following the reconstruction, a Barbara syllogism would look
like the following diagram:

P i

M,
si
Figure 18. A Barbara syllogism reconstructed in LEIB

I shall show what canonical syllogisms look like in LEIB, but before
I do that I would like to focus on the most interesting aspect about LEIB:
a linear time diagram-based algorithm of decision, call it A, that takes
any syllogism as an input and provides a decision about the (in)validity
of such syllogism by checking whether the wfd of the conclusion is
automatically represented by representing the wfds of the premises
(otherwise, the syllogism is invalid) (Table 3).
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A (o)

Input: syllogism o
If Prem(s)~Conc(s)
o <« valid

else

o « invalid

endIf

Table 3. LEIB’s algorithm of decision

Prem takes a syllogism o and produces a diagram for the premises;
~ stands for a free ride; and Conc checks the diagram of the conclusion
of o. In Figure 19 it is easy to see how the conclusion was automatically
obtained by representing the premises, i.e., the conclusion “got drawn”
automatically by “drawing down” the premises: this is a fair example of
a free ride.

s
Figure 19. Free ride in a Barbara syllogism in LEIB
Using the previous decision algorithm and our reconstruction of

LEIB we can show diagrammatic proof of the valid syllogisms in LEIB
(Figures 20-23):
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P P
Barbara M : =
S Sl
P 3 P
Celarent M, — g
S S
P P
Darii M g
s —_— s
P P
Ferio M =
s s —_
Figure 20. Valid syllogisms from figure 1
s S
Cesare g
s -
L e
Camestres =
s
P P
Festino M —_—
s ; s —
P P
Baroco M _—v ‘ =
s 3 ; s

Figure 21. Valid syllogisms from figure 2
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P P
Disamis M g
s —_— s —

Datisi M —
s |
P, —_— p R
Bocardo M e =
si si |
P P
Ferison M ind
s s e

Calemes —M'=——— -
s —_ S —
[ — P
Dimaris M \——, =
s — s —
— P e—
Fresison M r g
s ; s —_—

Figure 23. Valid syllogisms from figure 4

Finally, to provide a more comprehensive explanation of how LEIB
works I would like to show a couple of examples of invalid syllogistic
forms. First consider a form with premises MEPSEM, which should be
invalid. LEIB shows that such syllogism is actually invalid because the
conclusion is not a free ride, but an overdetermined alternative (because
the diagram of the conclusion is not even a wfd) (Figure 24).
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M e 4

5 — S

Figure 24. An invalid syllogistic form in LEIB

In Leibniz’s own account, a form with premises would also be
invalid because the conclusion would also be an overdetermined
alternative (Figure 25).

Omae B est C B
» Qu. C non est D ekl ]
ed non sequitur ]
D

Qu. D non est B

Figure 25. An invalid syllogistic form in Leibniz & Couturat (1903:
299)

4.2 LEIB’s logical attributes

After this exploration of LEIB as a logical system I would like to
pursue my second goal by suggesting a proof for a set of propositions that
cover attributes of soundness, completeness, decidability, autarchy, and
some sort of equivalence with VENN as well as a subset of BOOL (Boole,
1951). But before we look at those properties we need a preliminary
result that I like to call Aristotle’s Lemma.

In Prior Analytics A.1, 25b1 Aristotle argued that it is possible to
reduce all valid syllogisms to the universal syllogisms from figure 1,
that is to say, to Barbara and Celarent. The idea in this proposition is
that all valid syllogisms can be reduced, by following some precise
instructions (like the ones depicted in Table 4), to other valid syllogisms.
This is precisely the phenomenon captured by the medieval tradition of
using names as abbreviations as we saw in Table 2 and is also Leibniz’s
desideratum.
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Letter Instruction
B Reduce syllogism to Barbara
Reduce syllogism to Celarent
Reduce syllogism to Darii
Reduce syllogism to Ferio
Apply conversion to a proposition
Apply conversion per accidens to a proposition
Move places of major and minor premises

Apply a contradiction
Table 4. Instructions for the reduction of syllogisms

N|Z|= | |=|g0

Hence, for example, a Cesare syllogism can be reduced to a Celarent
syllogism because “Cesare” starts with letter C, and this is possible by a
conversion of the proposition E, which is indicated by the letter s right
after the letter e that stands for a categorical proposition E. We can see
that this idea holds in LEIB.

Proposition 1. (Aristotle’s lemma for LEIB) Every valid syllogism is
reducible to some syllogism from figure 1.

Proof. We prove this diagrammatically with the aid of some rigid
motions (Figures 25-27). In Figure 25 we can see Cesare and Celarent
preserve the same diagram by reflection w.r.t. a Y axis; Camestres and
Celarent preserve the same diagram by applying a 180° rotation and then
a reflection w.r.t. a Y axis. Festino and Ferio preserve the same diagram
by reflection w.r.t. the Y axis. Baroco is reduced to Barbara by applying a
contradiction of the conclusion using it as a premise.
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Cesare M | ———— ~ Celarent M—
— st ;
P P
Camestres M mm———— ~ Celarent M o
s [ S—
p
Festino M — Ferio Me——l
s
P, p
Baroco M — ~ Barbara M
s : | s

Figure 25. Reduction of syllogisms from figure 2 to syllogisms from
figure 1

In Figure 26 we can see Disamis and Darii preserve the same
diagram by applying a 180° rotation; Datisi and Darii, and Ferison
and Ferio preserve the same diagram. Bocardo is reduced to Barbara by
contradiction.

Disamis M; ~ Darii M+
P L
Datisi % — ~  Darii M
S — ——
P N
Bocardo M ———o— ~ PBarbara M
[  —
P —_— P
Ferison M——— ~  Ferio Me—m——
s s

Figure 26. Reduction of syllogisms from figure 3 to syllogisms from
figure 1

Finally, in Figure 27 we can see Calemes and Celarent preserve the
same diagram by applying a 180° rotation and then a reflection w.r.t. a
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Y axis. Dimaris and Darii preserve the same diagram by applying a 180°
rotation. Fresison is reduced to Ferio by reflection w.r.t. a Y axis.

P

P

Calemes M—— i ~ Celarent Mm—————

s i L si |
Dimaris M e ~  Darii M

J JE— P
Fresison M —_— Ferio ™

s s

Figure 27. Reduction of syllogisms from figure 4 to syllogisms from
figure 1

With this result we can proceed to show that LEIB’s algorithm
is sound and complete. Let us denote the application of A to a given
syllogism o, from figure i€{1,2,3,4} and row j€{1,2,3,4} in Table 2 by A
(thus, for instance, the application of A to a Dimaris syllogism is A (0, ,)
and, for sake of exposition, A (0, ,) is a placeholder).

Proposition 2. (Soundness) If A (o)=valid, then o is valid.

Proof. We prove this proposition by cases. Since there are four
figures, we need to cover each valid syllogism from each figure, which
is precisely what we have done in the previous section (Figures 20-23).
Thus, we have that for every o,, when A(o,)=valid, o,; is valid.

Proposition 3. (Completeness) If o is valid, then A (o)=valid.

Proof. We prove this by contradiction. Suppose that for all 7,j, the
syllogism o, is valid but for some valid syllogism o, ,A(o, )=invalid. Now,
we know 0 .is valid and if we apply A(c, ) we obtam A(o, ) =invalid,
as we can see from Proposition 2. Now, since all valid sylloglsms o,
can be reduced to the valid syllogisms from figure 1 by Proposmon 1
(Aristotle’s lemma), it follows that A(o )=valid, and thus, for all valid
syllogisms k,A (o, )=valid, which contradicts our initial assumption.

From these results it follows that a syllogism o is valid if and only
if A (0)=valid, and since A is a diagrammatic decision procedure we can
infer, as a corollary, that:
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Proposition 4. (Decidability) LEIB is decidable.

Indeed, algorithm A is a mechanical and diagrammatic procedure
that is sound and complete; but perhaps the importance of these results
lies in their relation to two important properties: autarchy and some sort
of equivalence with VENN using three sets or regions, call it VENN..

The autarchy of a diagrammatic system corresponds to a trade-off
between free rides and overdetermined alternatives, thatis, acompromise
between valid and invalid diagrams (i.e., diagrams that do not follow
from the configuration of the premises). An autarchic diagrammatic
system is, thus, a system with a set of operational constraints that
always give rise to free rides and never to overdetermined alternatives
(Bellucci, Moktefi & Pietarinen, 2013). Since LEIB is sound, complete,
and decidable, it follows that:

Proposition 5. (Autarchy) LEIB is autarchic.
This is an important result that will have impact on Leibniz’'s own
account of LEIB, as we shall see in Section 4.3; specially because:

Proposition 6. (Equivalence) LEIB is equivalent to VENN, w.r.t.
syllogistic.

Proof. In order to provide proof for this statement we show that
every valid syllogism in LEIB (say, theorem of LEIB) is a valid syllogism
in VENN, (say, theorem of VENN,) and vice versa. From left to right:
suppose that for any valid syllogisms, is a valid syllogism in LEIB but an
invalid one in VENN.. Given the soundness and completeness of LEIB,
being o, a valid sylloglsm in LEIB implies that o, is valid simpliciter. But
since VENN is sound and complete as well (Shm 1994), if o, ;18 invalid in
VENN,, then o, must be invalid, which is a contradiction. From right to
left the proof is similar.

What this brief metalogical exploration shows is that LEIB
is not only a logical system, but an actual bona fide diagram-
based logic because it produces valid (soundness) and only valid
inferences (completeness) by providing a time efficient (O(n))
mechanical method of decision (decidability) that helps the
automation of perceptual inference (autarchy), while preserving
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equivalence with VENN, (w.r.t. syllogistic) and, thus, with some
subset of BOOL (equivalence).

4.3 Leibniz vs LEIB

After these results we would like to introduce an interesting puzzle
that originates from a conflict between the previous formal account of
LEIB and Leibniz’s own account. Consider that, by Proposition 6, LEIB
is equivalent to VENN, w.r.t. syllogistic and thus, it is equivalent to some
subset of BOOL. This fact is important because it means that LEIB does
not allow us to infer particular propositions from universal propositions
due to issues with empty classes: in fact if, for instance, we try to get a
Barbari syllogism in LEIB we will find that a such task is impossible and
any attempt to build a Barbari necessarily yields a Barbara syllogism, due
to autarchy, and the same happens with other syllogisms that require
existential import.

In the opinion of Kneale and Kneale (1962), Leibniz was by no
means an Aristotelian purist, but he was committed to the assumption of
existential import (p. 322). Indeed, Leibniz thought that his diagrammatic
system was capable of modeling and representing syllogisms with
existential import such as Barbari, Cesaro, Fesapmo, Calemos, and so forth,
which implies the possibility of deriving particular propositions from
universal ones (Phil., IV, 50; Math., V, 27; Cf. New essays, IV, XVII, 4).
Nevertheless, it is not clear how this is possible since LEIB is autarchic
and equivalent to VENN, and BOOL.

The previous situation leads to an interesting puzzle between
consistency and eligibility: if Leibniz proposed his system only as a
representation system, then it would be a trivial system because it
would represent any syllogism, both valid and invalid; but it is quite
clear that Leibniz himself argued against such a thesis. Therefore, his
system was proposed rather as a non-trivial reasoning system, but then,
by Propositions 1-6, by being equivalent to VENN, and BOOL, it has
a model in a modern interpretation of syllogistic that assumes empty
terms. The puzzle is, thus: why would Leibniz argue that his system is
capable of modeling such imperfect syllogisms (implying the acceptance
of empty terms) when it actually does not (implying the rejection of
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empty terms)? I believe the answer to this puzzle is beyond the logical
scope, and so, we leave the question open.

5. Conclusions

Today the typical diagrammatic treatments of syllogistic include
Venn-Euler diagrams (Venn, 1880), Carroll’s triliteral diagrams
(Carroll, 1887), Karnaugh maps (Karnaugh, 1953), and more recently,
Pagnan’s SYLL (Pagnan, 2012). In this paper I have introduced another
diagrammatic treatment of syllogistic by re(dis)covering Leibniz’s
diagrammatic logic, which should be an interesting task historically and
logically because this diagrammatic system has not been explored before
in metalogical terms and because we have showed (our reconstruction
of) LEIB has a sound and complete algorithm for syllogistic that provides
more evidence on the thesis that diagrammatic reasoning is bona fide
reasoning.

In sum, our results i) show formal evidence that LEIB is closer to
the logical interpretations of BOOL (Boole, 1951) and VENN (Venn,
1880) than to the medieval tradition, which is not a novelty, but is
interesting nevertheless; ii) provide a formal approach to Leibniz’s linear
diagrammatic logic in metalogical terms, which is something that, as far
as I know, has not yet been accomplished; and iii) offer some sort of
informal support for the thesis that some fragment of Leibniz’s mathesis
has modern ontological commitments.

Finally, as part of our current and future work, I would like to
add that I am developing similar metalogical reconstructions for other
diagrammatic logical systems (old and new, traditional and original) in
order to promote the study of mechanical and diagram-based reasoning
as a research program with applications, mainly, in philosophy and
Artificial Intelligence. In the meantime, I would like to reconsider
Leibniz’ famous passage (emphasis mine):

L'unique moyen de redresser nos raisonnemens
est de les rendre aussi sensibles que le sont ceux
de Mathematiciens, en sorte qu’on puisse trouver
son erreur a veue d’oeil, | et quand il ya des disputes
entre les gens, on puisse dire suelement: contons, sans
autre ceremonie, pour voir lequel a raison (Leibniz &

Couturat, 1903, 176).
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And rewrite those insightful last words in order to restate: let us
draw diagrams, without further ado, to see who is right!
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