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Abstract
In this paper I attempt to retrieve Leibniz’s linear diagram-

matic logic for his syllogistic and highlight its computational 
and logical  features by providing a  formal approach to it in 
metalogical terms, which is something that, as far as we know, 
has not yet been accomplished. Thus, in this contribution I pur-
sue two goals, one historical and the other logical: i) to bring 
more attention on the algorithmic aspects of Leibniz’s linear di-
agrammatic system for his syllogistic, which I believe has been 
neglected because of a general bias against diagram-based rea-
soning; and ii) to prove the metalogical properties of the system 
in order to argue that such a system is a bona fide logical system.

Key words: diagrammatic reasoning, diagrams, linear dia-
grams, metalogic.

Received: 02 - 09 - 2015. Accepted: 08 - 12 - 2015.



90 J. Martín Castro-Manzano

Tópicos, Revista de Filosofía 52 (2017)

Redescubriendo la lógica diagramática de 
Leibniz

J. Martín Castro-Manzano
Universidad Popular Autónoma del Estado de Puebla, Puebla

josemartin.castro@upaep.mx

Resumen
En este artículo recuperamos la lógica diagramática lineal 

de Leibniz para la silogística y descubrimos sus propiedades 
lógicas y computacionales a través de una aproximación 
formal en términos metalógicos, lo cual es algo que, hasta 
donde sabemos, aún falta por hacerse. Así, en esta contribución 
buscamos, respectivamente, dos metas, una histórica y una 
lógica: i)  prestar más atención a los aspectos algorítmicos del 
sistema diagramático lineal de Leibniz para la silogística, de 
los cuales creemos que han sido desdeñados por un prejuicio 
general en contra del razonamiento diagramático; y ii) probar 
propiedades metalógicas del sistema para argumentar que es un 
sistema lógico bona fide.
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1. Introduction
In this paper I retrieve Leibniz’s linear diagrammatic logic for his 

syllogistic as it appears in De formæ logicæ comprobatione per linearum 
ductus (Phil., VII, B, IV, 1-10) (Leibniz & Couturat, 1903: 292-328) and 
highlight its computational and logical features by providing a revision 
of it in metalogical terms, which is something that, as far as I know, has 
not yet been accomplished (Cf. Lenzen, 1990, 2004; Velarde Lombraña, 
2002).

Thus, in this contribution I pursue two goals, one historical and the 
other logical: i) to bring more attention on the algorithmic aspects of 
Leibniz’s linear diagrammatic system for his syllogistic (henceforth, 
LEIB), which I believe has been neglected because of a general bias 
against diagram-based reasoning, as we shall see; and ii) to prove the 
metalogical properties of LEIB that give evidence that such a system 
is a bona fide logical system—and not only a didactic tool—which may 
shed some light on other aspects of Leibniz’s philosophy in general and 
heterogeneous logic in particular.

The paper is organized in the following way. In Section 1 I begin with 
a brief exposition of the usual concepts of logic and logical system in order 
to describe the typical approaches to logical consequence. In Section 2, 
I develop some ideas that lie behind the notion of diagrammatic logical 
consequence. Later, in Section 3, I explain some of the general aspects 
of syllogistic and VENN so as to exemplify the preceding notions and 
introduce the basic aspects of a diagrammatic logic. After that, I present 
LEIB’s syntax and semantics and show its metalogical attributes in order 
to argue that LEIB is a bona fide (diagrammatic) logical system. Finally, I 
briefly discuss the results of my study and close by giving some pointers 
concerning future research.  

2. Logic, Logical Systems, and Diagrammatic Logical 
Consequence

2.1 Logic
Reasoning is a process that produces new information given previous 

data by following certain norms that allow us to describe inference as 
the unit of measurement of reasoning: inference may be more or less (in)
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correct depending on the compliance or violation of such norms. The 
science that studies such norms is logic.

The structural understanding of logic has depended, typically but 
not exclusively, on equivalent sentential approaches: the semantical, 
the syntactical, and the abstract. From the semantical standpoint the 
central concept of such norms is that of interpretation and defines our 
notions of satisfaction, model, and logical truth as denoted by ⊨ and is 
usually attributed to Tarski (1956a). From the syntactical point of view 
the main concept of those norms is that of deducibility; it characterizes 
our intuitions of proof, demonstration, and theorem as denoted by ⊢ 
and is usually attributed to Carnap (1937). Finally, from the abstract 
standpoint the idea behind those norms is that of a function of consequence 
that generalizes the previous accounts as typically attributed to Tarski 
(1956b). These approaches are sentential and they define logical 
consequence as the proprium of logic. As an example, consider classical 
logic: its logical consequence relation follows the next structural norms 
where  and  are sentences and  is a set of sentences: reflexivity (if φ∈Γ, 
then Γ⊢φ), monotonicity (if Γ⊢φ, then Γ∪{ψ}⊢φ ), and cut (if Γ⊢ψ and 
Γ∪{ψ}⊢φ , then Γ⊢φ). 

2.2 Logical systems
Logical systems, the tools used to model and better understand 

the relation of consequence may be defined by a pair 〈L,B〉 where L is 
a language, and B is a semantic base (often equivalent to a calculus). 
Usually, the vocabulary is made up of two sets of signs: variables (non-
logical signs) and constants (logical signs). Syntax is used to determine, 
uniquely and recursively, the well-formed expressions of the system and 
semantics is used to provide meaning to such well-formed expressions. 
A well-defined logical system must have these elements. To illustrate 
this notion of logical system let us consider classical propositional logic, 
L0. Its vocabulary has the constants CONS={¬,∨} and the variables 
VAR={φ_1,φ_2,…}. It has two syntax rules: i) if φ∈VAR, then φ is a well-
formed formula (wff) of L0; and ii) if φ and ψ are wffs of L0, then ¬φ and 
φ∨ψ are also wffs of L0. The semantics of L0 is composed by a domain and 
a function of interpretation. The domain of L0 is the set of truth values, 
D={1,0}, where 1 stands for the designated value and 0 for the anti-
designated value. The function of interpretation f maps the variables to 
the truth values, f:VAR⟶D. With this function a valuation v is defined in 
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such way that v(φ)=f(φ), v(¬φ)=1-v(φ), and v(φ∨ψ)=max(v(φ),v(ψ)). 
This valuation provides the rules of correspondence that allow us to 
build the truth tables of L0 along with the remaining connectives and 
tautologies which, due to soundness and completeness, are equivalent 
to a mechanichal calculus.

2.3 Diagrams and diagrammatic logical consequence
I shall show that diagrammatic logical systems can be defined in 

a similar fashion and that we can describe a well-behaved notion 
of diagrammatic logical consequence between diagrams (and not 
sentences); but before we do that, I would like to introduce diagrams by 
paying attention to their expressive power.

Pop culture already somehow recognizes this expressive power: 
the 19th century proverb “a picture is worth 1000 words” is quite 
representative in this sense; but the basic idea is much older. Notable 
examples of confidence in the expressive power of diagrams can be 
found in different historical periods. Ramon Llull (1232-1315), for 
instance, is arguably the most famous case: he developed his Ars Magna, 
a diagrammatic device used to explain the divine nature to those unable 
to understand God, under the assumption that diagrammatic methods 
were more convincing or expressive than sentential representations 
(Figure 1). Thomas Murner (1475-1537) also used diagrams in his Logica 
Memorativa in order to teach logic (Figure 2). Dutch mathematician 
and philosopher of science Simon Stevin (1548-1620) developed 
another remarkable diagram in his demonstration that the efficiency 
of the inclined plane is a logical consequence of the impossibility of 
perpetual motion (Figure 3). And, of course, besides these examples we 
have Descartes’ (1596-1650), who is perhaps the most famous case of a 
modern philosopher who made good use of diagrams in order to model 
hypotheses, such as the mechanics of the pineal gland (Figure 4).
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Figure 1. 
A diagram 

from Llull’s Ars 
Magna (Llull, 
1501)

Figure 2. 
A diagram 

from Murner’s 
Logica Memorativa 
(Murner, 1967)

Figure 3. 
A diagram 

from Stevin’s De 
weedgaet (Stevin, 
1586)

Figure 4. 
A diagram 

from Descartes’ 
Principles of 
P h i l o s o p h y 
(Descartes, Miller 
& Miller, 1984)

	
Our point is that the expressive power of diagrams for aiding 

reasoning was not news for modern thinkers and Leibniz was no 
exception: we can find evidence for this statement in an 18th century 
research program for diagrammatic reasoning in the work of Leibniz 
(Figure 5), Lambert (Figure 6), and Plouquet (Figure 7).

Figure 5. A Barbara 
syllogism in De formæ 
logicæ comprobatione per 
linearum ductus (Leibniz & 
Couturat, 1903)

Figure 6. A Barbara 
syllogism in Neues Organon

(Lambert, 1764)

Figure 7. A 
Barbara syllogism 
in Sammlung der 
Schriften

(Bök, 1766)
					         	        	     

This confidence in the expressive power of diagrams is 
understandable. In order to represent knowledge we use internal and 
external representations. Internal representations convey mental images, 
for example; whereas external representations include physical objects 
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on paper, on blackboards, or computer screens. External representations 
can be divided into two classes: sentential and diagrammatic (Larkin & 
Simon, 1987).

Sentential representations are sequences of sentences in a particular 
language. Diagrammatic representations are sequences of diagrams that 
contain information stored at one particular locus in a configuration, 
including information about relations with the adjacent loci; and 
diagrams are information graphics1 that index information by location on 
a plane (Larkin & Simon, 1987). The difference between diagrammatic 
and sentential representations, thus, is that the former preserve explicit 
information about topological relations, while the latter do not—they 
may, of course, preserve other kinds of relations.  

This confidence in the power of diagrams is comprehensible due 
to their computational advantages: they group together information 
avoiding large amounts of text, they automatically support a large 
number of perceptual inferences—which are extremely easy to 
interpret—, and they grant the possibility of applying operational 
constraints (like free rides and overdetermined alternatives (Shimojima, 
1996)) to allow the automation of perceptual inference (Larkin & Simon, 
1987).

However, despite this general confidence, when it comes to reasoning 
there is a bias (or a tradition) that supports the claim that while proof-
based reasoning is essential in logic and mathematics, diagram-based 
reasoning, no matter how useful (Nelsen, 1993) or elegant (Polster, 
2004), is not, for it is not bona fide reasoning. Thus, for example, Tennant 
has suggested a diagram is only a heuristic to prompt certain trains of 
inference (Tennant, 1986); Dieudonné has urged a strict adherence to 
axiomatic methods with no appeal to geometric intuition, at least in 

1  Information graphics can be divided into the next classes (Nakatsu, 2009): 
quantitative charts (bar-column charts, line graphs, XY scatterplots, pie charts), 
maps (directional maps, topographic maps, contour maps, weather maps), 
tables (one way tables, two ways tables, multiway tables), pictorial illustrations, 
and diagrams, which we can use to study system topology (conceptual models, 
network diagrams), sequence and flow (flowcharts, activity diagrams), hierarchy-
classification (organization charts, classification hierarchies, composition 
models), association (semantic networks, entity relationship diagrams), cause 
and effect (directed graphs, fishbone diagrams, fault tree analysis diagrams), 
and reasoning (argument diagrams, Euler diagrams, Venn diagrams).
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formal proofs (Dieudonné, 2008); Lagrange remarked in the Preface to 
the first edition of his Mécanique Analytique (1788) that no figures were 
to be found in his work (Boissonnade, Lagrange, & Vagliente, 2013); and 
even Leibniz himself shared a similar opinion at some point (emphasis 
mine):

La force de la démonstration est indepéndante de la figure 
tracée, qui n’est que pour faciliter l’intelligence de ce qu’on 
veut dire et fixer l’attention; ce sont les propositions 
universelles, c’est-à-dire les définitions, les axiomes et 
les théorèmes déjà démontrés qui font le raisonnement 
et le soutiendraient quand la figure n’y serait pas 
(Leibniz, 1966: 309).

This bias against diagram-based reasoning is based upon the 
assumption that diagrams naturally lead to fallacies, mistakes, and are 
not susceptible of generalization. Nevertheless, in retrospect we can find 
an argument against this assumption in Newton’s Preface to the First 
Edition of Principia Mathematica (Newton, 1974) by reducing proof-based 
reasoning to mechanical reasoning (emphasis mine):

But as artificers do not work with perfect accuracy, 
it comes to pass that mechanics is so distinguished 
from geometry that what is perfectly accurate is called 
geometrical; what is less so, is called mechanical. 
However, the errors are not in the art, but in the artificers. 
He that works with less accuracy is an imperfect 
mechanic; and if any could work with perfect accuracy, 
he would be the most perfect mechanic of all, for the 
description of right lines and circles, upon which 
geometry is founded, belongs to mechanics (Newton, 
1974: 11).

Along similar lines, Allwein, Barwise, and Etchemendy (1996) and 
Shin (1994) have developed a successful research program around 
heterogeneous and diagrammatic reasoning that has promoted 
different studies and model theoretical schemes that help us represent 
and better understand diagrammatic reasoning in logical terms, thus 
allowing a well-defined notion of a diagrammatic logical system and a 
diagrammatic inference.
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Thus if, as we stated above, reasoning is a process that produces new 
information given previous data, and information can be represented 
diagrammatically, it is not unreasonable to suggest that diagrammatic 
inference is the unit of measure of diagrammatic reasoning: 
diagrammatic inference would be correct or incorrect depending on 
the compliance or violation of certain norms. Let us denote the relation 
of diagrammatic logical consequence or diagrammatic inference by ↦; 
this relation would define our intuitions around the informal notions 
of visual inference or visual argument and would follow, in principle, the 
standard structural norms where δ is a particular diagram and Δ is a set 
of diagrams: reflexivity (if δ∈Δ , then Δ↦δ), monotonicity (if Δ↦δ, then 
Δ∪{δ’}↦δ), and cut (if Δ↦δ and ∪{δ}↦δ’, then Δ ↦δ’).

To give a somewhat detailed account of these structural properties 
we need to describe how the operator ↦ works. Shimojima has 
developed a logical theory around diagrammatic inference that defines 
(informally) a free ride as a process in which some reasoner gains 
information without following any step specifically designed to gain it 
(Shimojima, 1996: 32), in other words, a free ride is a process that allows 
us to reach automatically (and sometimes inadvertently) a conclusion 
from a diagrammatic representation of the premises. Inversely, an 
overdetermined alternative occurs when a diagram that should not follow 
from a given diagrammatic configuration of the premises does follow.

Using Shimojima’s approach we could say that reflexivity establishes 
that a if a diagram is part of a set of diagrams or diagrammatic 
configuration, then that particular diagram is a visual consequence of 
such configuration because there is a free ride from the diagrammatic 
configuration to a particular diagram; monotonicity would say that if a 
diagram is a free ride from a diagrammatic configuration, and a new 
diagram is added to such configuration, then the initial diagram is still 
a free ride from the original configuration.2 Finally, cut would establish 
that if a diagram is a free ride from a diagrammatic configuration and 

2  In other place we have argued that monotonicity is not a bona fide 
property of diagrammatic inference, but for the purposes of this paper the 
assumption of monotonicity will suffice.
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the addition of a new diagram produces a new free ride, there is a free 
ride from the original diagrammatic configuration to the new diagram.

3. Syllogistic and VENN
The previous description may seem too abstract for something as 

concrete as a diagram. So, in this section I exemplify the preceding 
notions and introduce the basic aspects of a diagrammatic logical system 
by using syllogistic and VENN. I use syllogistic for two obvious reasons: 
first, because syllogistic is a paradigmatic mode of reasoning given 
that it is relevant to us in many ways. Logically, as a basis for science. 
Historically, as a tradition that gathers ancient and contemporary 
logicians. And pedagogically, as a trademark of our education and 
culture: most undergraduate logic courses, books, and manuals around 
the world cover or include a fragment of syllogistic not just to teach or 
introduce logic, but to provide formæ mentis for scientific reasoning and 
critical thinking. And secondly, because syllogistic, the object of study 
in this paper, was quite appreciated by Leibniz (1966) (emphasis mine):

Je tiens que l’invention de la forme des syllogismes 
est une des plus belles de l’esprit humain, et même 
des plus considérables. C’est une espèce de mathématique 
universelle, dont l’importance n’est pas assez connue; et l’on 
peut dire qu’un art d’infaillibilité y est contenu, pourvu 
qu’on sache et qu’on puisse s’en bien servir, ce qui n’est 
pas toujour permis (Leibniz, 1966: 428).

And we use VENN not only because it is a very powerful system 
capable of representing set theoretical assumptions, but also because it 
is probably the diagrammatic system most used to represent syllogistic.

3.1 Syllogistic
Syllogistic has its origin in Aristotle’s Prior Analytics and is the 

theory of inference that deals with the consequence relation between 
two categorical propositions taken as premises and another categorical 
proposition taken as a conclusion. A categorical proposition is a proposition 
composed by two terms, a quantity, and a quality. The subject and the 
predicate of a proposition are called terms: the term-schemadenotes 
the subject term of the proposition and the term-schema P denotes the 
predicate. The quantity may be either universal (All) or particular (Some) 



99Re(dis)covering Leibniz’s Diagrammatic Logic

Tópicos, Revista de Filosofía 52 (2017)

and the quality may be either affirmative or negative. These categorical 
propositions are denoted by a label, either A (universal affirmative), E 
(universal negative), I (particular affirmative), or O (particular negative). 
A categorical syllogism, then, is a sequence of three categorical propositions 
ordered in such a way that two propositions are premises and the last 
one is a conclusion. Within the premises there is a term that appears in 
both premises but not in the conclusion. This particular term works as 
a link between the remaining terms and is known as the middle term, 
which we will denote with the term-schema M. According to this term 
we can set up four figures that encode and abbreviate all the valid and 
only the valid syllogisms (Table 2).

Figure 1 Figure 2 Figure 3 Figure 4
Barbara 

MAPSAM⊢SAP
Cesare 

PEMSAM⊢SEP
Disamis 

 MIPMAS⊢SIP
C a l e m e s 

PAMMES⊢SEP

Celarent
MEPSAM⊢SEP

Camestres
PAMSEM⊢SEP

Datisi
MAPMIS⊢SIP

Dimaris
PIMMAS⊢SIP

Darii
MAPSIM⊢SIP

Festino
PEMSIM⊢SOP

Bocardo
MOPMAS⊢SOP

Fresison
PEMMIS⊢SOP

Ferio
MEPSIM⊢SOP

Baroco
PAMSOM⊢SOP

Ferison
MEPMIS⊢SOP

-

Table 2. Valid syllogisms

3.2 VENN
VENN (Venn, 1880) is a sound and complete diagrammatic logical 

system (Shin, 1994) that represents syllogistic perspicuously. VENN 
can be defined as a (diagrammatic) logical system with a well-defined 
vocabulary, syntax, and semantics (Shin, 1994: 48). Briefly, the vocabulary 
is determined by the next elements: the closed curve, the rectangle, the 
shading, the X, and the line (Figure 8).

Figure 8. Vocabulary of VENN
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With this vocabulary a diagram in VENN is defined as any finite 
combination of diagrammatic elements (Shin, 1994). A region is any 
enclosed area in a diagram. A basic region is a region enclosed by a 
rectangle or a closed curve. A minimal region is a region within which 
no other region is enclosed. An X-sequence is a diagram of alternating 
X’s and lines with an X in each extremal position. Regions represent sets 
and the rectangle represents the domain. A shaded region represents an 
empty region and a region with an X represents a non-empty region. 
And with this syntax the categorical propositions can be represented as 
follows (Figure 9):

Figure 9. Categorical propositions in VENN
	

Further, the semantics of VENN depends on a natural homomorphism 
with sets that help define the rules for developing (diagrammatic) proofs 
in this diagrammatic system (Shin, 1994 81):

1. The rule of erasure of a diagrammatic object tells us that a well-formed 
diagram (wfd) D’ is obtained from a wfd D if D’ results from either 
erasing a closed curve of D, or erasing a shading of some region of D, or 
erasing an entire X-sequence of D.

2. The rule of erasure of parts of an X-sequence says that  is obtained 
from  if it results fromby the erasure of parts in some X-sequence that 
fall in shaded regions, provided that the remaining X’s are reconnected.

3. The rule of spreading of an X-sequence tells us that  is obtained from  
if extra X-sequences have been added to some X-sequence of D.

4. The rule of introduction of a basic region indicates that a basic region 
may be introduced by drawing either a rectangle or a closed curve.
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5. The rule of conflicting information says that if a diagram has a region 
with both a shading and an X-sequence, then we may transform the 
given diagram into any diagram.

6. The rule of unification of diagrams says that D’ is obtained from two 
wfds D1 and D2 if every region of D is a counterpart region of either D1 
or D2 and conversely. If any region of D is shaded or has an X-sequence, 
then it has a counterpart in either D1 or D2 which is also shaded or has 
an X-sequence and conversely.

The previous rules may be summarized into the rules of erasure, 
addition, and unification (Nakatsu, 2009: 133). As an example, consider a 
diagrammatic proof of a syllogism of the form (Figure 10). According to 
the previous rules we begin with an introduction of areas (step 1) and 
then a unification is applied (step 2). After that, we apply an erasure of 
an X-sequence (step 3) and then a spreading of an X-sequence (step 4). 
Finally, by the erasure of a closed curve rule, we obtain a final diagram 
(step 5). Since the conclusion got drawn by drawing down the premises, 
the inference is valid (and corresponds to a Darii syllogism).

Figure 10. Example of a proof in VENN

As we can see, with these rules VENN provides an essential feature 
of a well-defined  diagrammatic logic: a linear time diagrammatic 
method of decision for syllogistic that consists in drawing the diagrams 
for the premises and then checking (by mere observation) whether it is 
possible to “read off” the conclusion from the drawing of the premises; 
in case it does, the syllogism is valid; otherwise it is invalid.   

4. Leibniz’s linear diagrammatic logic
After this lengthy presentation we are now in a good position to 

introduce and reconstruct Leibniz’s linear diagrammatic logic, LEIB, by 
recovering it as a logical system and by discovering its logical attributes. 
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The diagrammatic system we are interested in appears in De formæ 
logicæ comprobatione per linearum ductus (Phil., VII, B, IV, 1-10) and we use 
the edition of Couturat (Leibniz & Couturat, 1903, 292-328).

4.1 LEIB as a logical system
My first goal is to present LEIB by reconstructing its vocabulary, 

syntax, and semantics. In order to do that I pay special attention to 
LEIB’s diagrams for categorical propositions  (Figure 11):

Figure 11. Categorical propositions in LEIB (Leibniz & Couturat, 
1903, 292-293)

From these diagrams we can infer that the vocabulary of LEIB has the 
following basic diagrammatic elements: the solid horizontal line and the 
dotted vertical line (Figure 12).	

Figure 12. Vocabulary of LEIB

With this vocabulary we can define the syntax of the wfds for LEIB. 
The solid horizontal lines stand for terms and the vertical lines stand for 
a relation between terms. Given two horizontal lines representing terms, 
one could be completely included in another; they could be completely 
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disjoint; they could partially intersect each other; or one could be 
partially not included in another (Figure 13).   

Figure 13. Syntax of LEIB

The semantics of these wfds is straightforward: a diagram of a 
proposition A shows that all that is S is indexed in P, but not inversely. 
Proposition E shows that no S is indexed in P and vice versa. Proposition 
I represents the fact that some S is indexed in some P, and vice versa. 
Proposition O states that some S is not indexed in all O (Figure 14).
   

Figure 14. Reconstruction of categorical propositions in LEIB

To exemplify how LEIB works let us represent a syllogism in a 
diagrammatic fashion. Figure 15 shows what a Barbara syllogism looks 
like:

Figure 15. A Barbara syllogism as it originally appears in Leibniz & 
Couturat (1903: 294)
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The construction of the previous syllogism is relatively simple. We 
produce the diagrams that stand for the premises of a Barbara syllogism, 
namely, MAPSAM. In order to do that we draw the proposition MAP 
(Figure 16). Then, since SAM shares M with MAP, SAM must be drawn 
with respect to M (Figure 17):

Figure 16. MAP Figure 17. SAM

Hence, following the reconstruction, a Barbara syllogism would look 
like the following diagram:

Figure 18. A Barbara syllogism reconstructed in LEIB

I shall show what canonical syllogisms look like in LEIB, but before 
I do that I would like to focus on the most interesting aspect about LEIB: 
a linear time diagram-based algorithm of decision, call it A, that takes 
any syllogism as an input and provides a decision about the (in)validity 
of such syllogism by checking whether the wfd of the conclusion is 
automatically represented by representing the wfds of the premises 
(otherwise, the syllogism is invalid) (Table 3).
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     A (σ)
      Input: syllogism σ
      If Prem(s)↦Conc(s)
       σ ← valid
      else
      σ ← invalid
     endIf

Table 3. LEIB’s algorithm of decision

Prem takes a syllogism σ and produces a diagram for the premises; 
↦ stands for a free ride; and Conc checks the diagram of the conclusion 
of σ. In Figure 19 it is easy to see how the conclusion was automatically 
obtained by representing the premises, i.e., the conclusion “got drawn” 
automatically by “drawing down” the premises: this is a fair example of 
a free ride. 	

Figure 19. Free ride in a Barbara syllogism in LEIB

Using the previous decision algorithm and our reconstruction of 
LEIB we can show diagrammatic proof of the valid syllogisms in LEIB 
(Figures 20-23):
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Figure 20. Valid syllogisms from figure 1

Figure 21. Valid syllogisms from figure 2
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Figure 22. Valid syllogisms from figure 3

Figure 23. Valid syllogisms from figure 4
	
Finally, to provide a more comprehensive explanation of how LEIB 

works I would like to show a couple of examples of invalid syllogistic 
forms. First consider a form with premises MEPSEM, which should be 
invalid. LEIB shows that such syllogism is actually invalid because the 
conclusion is not a free ride, but an overdetermined alternative (because 
the diagram of the conclusion is not even a wfd) (Figure 24).
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Figure 24. An invalid syllogistic form in LEIB

In Leibniz’s own account, a form with premises  would also be 
invalid because the conclusion would also be an overdetermined 
alternative (Figure 25).

Figure 25. An invalid syllogistic form in Leibniz & Couturat (1903: 
299)

4.2 LEIB’s logical attributes
After this exploration of LEIB as a logical system I would like to 

pursue my second goal by suggesting a proof for a set of propositions that 
cover attributes of soundness, completeness, decidability, autarchy, and 
some sort of equivalence with VENN as well as a subset of BOOL (Boole, 
1951). But before we look at those properties we need a preliminary 
result that I like to call Aristotle’s Lemma.

In Prior Analytics A.1, 25b1 Aristotle argued that it is possible to 
reduce all valid syllogisms to the universal syllogisms from figure 1, 
that is to say, to Barbara and Celarent. The idea in this proposition is 
that all valid syllogisms can be reduced, by following some precise 
instructions (like the ones depicted in Table 4), to other valid syllogisms. 
This is precisely the phenomenon captured by the medieval tradition of 
using names as abbreviations as we saw in Table 2 and is also Leibniz’s 
desideratum.
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Letter Instruction
B Reduce syllogism to Barbara
C Reduce syllogism to Celarent
D Reduce syllogism to Darii
F Reduce syllogism to Ferio
S Apply conversion to a proposition
P Apply conversion per accidens to a proposition
M Move places of major and minor premises
C Apply a contradiction

Table 4. Instructions for the reduction of syllogisms

Hence, for example, a Cesare syllogism can be reduced to a Celarent 
syllogism because “Cesare” starts with letter C, and this is possible by a 
conversion of the proposition E, which is indicated by the letter s right 
after the letter e that stands for a categorical proposition E. We can see 
that this idea holds in LEIB.

Proposition 1. (Aristotle’s lemma for LEIB) Every valid syllogism is 
reducible to some syllogism from figure 1.

Proof. We prove this diagrammatically with the aid of some rigid 
motions (Figures 25-27). In Figure 25 we can see Cesare and Celarent 
preserve the same diagram by reflection w.r.t. a Y axis; Camestres and 
Celarent preserve the same diagram by applying a 180° rotation and then 
a reflection w.r.t. a Y axis. Festino and Ferio preserve the same diagram 
by reflection w.r.t. the Y axis. Baroco is reduced to Barbara by applying a 
contradiction of the conclusion using it as a premise.
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Figure 25. Reduction of syllogisms from figure 2 to syllogisms from 
figure 1

In Figure 26 we can see Disamis and Darii preserve the same 
diagram by applying a 180° rotation; Datisi and Darii, and Ferison 
and Ferio preserve the same diagram. Bocardo is reduced to Barbara by 
contradiction.

Figure 26. Reduction of syllogisms from figure 3 to syllogisms from 
figure 1

Finally, in Figure 27 we can see Calemes and Celarent preserve the 
same diagram by applying a 180° rotation and then a reflection w.r.t. a 
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Y axis. Dimaris and Darii preserve the same diagram by applying a 180° 
rotation. Fresison is reduced to Ferio by reflection w.r.t. a Y axis.

Figure 27. Reduction of syllogisms from figure 4 to syllogisms from 
figure 1

With this result we can proceed to show that LEIB’s algorithm 
is sound and complete. Let us denote the application of A to a given 
syllogism σi,j from figure i∈{1,2,3,4} and row j∈{1,2,3,4} in Table 2 by A 
(thus, for instance, the application of A to a Dimaris syllogism is A (σ4,2) 
and, for sake of exposition, A (σ4,4) is a placeholder).

Proposition 2. (Soundness) If A (σ)=valid, then σ is valid.
Proof. We prove this proposition by cases. Since there are four 

figures, we need to cover each valid syllogism from each figure, which 
is precisely what we have done in the previous section (Figures 20-23). 
Thus, we have that for every σi,j, when A(σi,j)=valid, σi,j is valid.

Proposition 3. (Completeness) If σ is valid, then A (σ)=valid.
Proof. We prove this by contradiction. Suppose that for all i,j, the 

syllogism σi,j is valid but for some valid syllogism σk,j,A(σk,j)=invalid. Now, 
we know σ1,j is valid and if we apply A(σ1,j) we obtain A(σ1,j)=invalid, 
as we can see from Proposition 2. Now, since all valid syllogisms σn>1,j 
can be reduced to the valid syllogisms from figure 1 by Proposition 1 
(Aristotle’s lemma), it follows that A(σn>1,j)=valid, and thus, for all valid 
syllogisms k,A (σk,j)=valid, which contradicts our initial assumption.

From these results it follows that a syllogism σ is valid if and only 
if A (σ)=valid, and since A is a diagrammatic decision procedure we can 
infer, as a corollary, that:
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Proposition 4. (Decidability) LEIB is decidable.
Indeed, algorithm A is a mechanical and diagrammatic procedure 

that is sound and complete; but perhaps the importance of these results 
lies in their relation to two important properties: autarchy and some sort 
of equivalence with VENN using three sets or regions, call it VENN3.

The autarchy of a diagrammatic system corresponds to a trade-off 
between free rides and overdetermined alternatives, that is, a compromise 
between valid and invalid diagrams (i.e., diagrams that do not follow 
from the configuration of the premises). An autarchic diagrammatic 
system is, thus, a system with a set of operational constraints that 
always give rise to free rides and never to overdetermined alternatives 
(Bellucci, Moktefi & Pietarinen, 2013). Since LEIB is sound, complete, 
and decidable, it follows that:

Proposition 5. (Autarchy) LEIB is autarchic.
This is an important result that will have impact on Leibniz’s own 

account of LEIB, as we shall see in Section 4.3; specially because:

Proposition 6. (Equivalence) LEIB is equivalent to VENN3 w.r.t. 
syllogistic.

Proof. In order to provide proof for this statement we show that 
every valid syllogism in LEIB (say, theorem of LEIB) is a valid syllogism 
in VENN3 (say, theorem of VENN3) and vice versa. From left to right: 
suppose that for any valid syllogisms , is a valid syllogism in LEIB but an 
invalid one in VENN3. Given the soundness and completeness of LEIB, 
being σi,j a valid syllogism in LEIB implies that σi,j is valid simpliciter. But 
since VENN is sound and complete as well (Shin, 1994), if σi,j is invalid in 
VENN3, then σi,j must be invalid, which is a contradiction. From right to 
left the proof is similar.     

What this brief metalogical exploration shows is that LEIB 
is not only a logical system, but an actual bona fide diagram-
based logic because it produces valid (soundness) and only valid 
inferences (completeness) by providing a time efficient (O(n)) 
mechanical method of decision (decidability) that helps the 
automation of perceptual inference (autarchy), while preserving 
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equivalence with VENN3 (w.r.t. syllogistic) and, thus, with some 
subset of BOOL (equivalence).

4.3 Leibniz vs LEIB
After these results we would like to introduce an interesting puzzle 

that originates from a conflict between the previous formal account of 
LEIB and Leibniz’s own account. Consider that, by Proposition 6, LEIB 
is equivalent to VENN3 w.r.t. syllogistic and thus, it is equivalent to some 
subset of BOOL. This fact is important because it means that LEIB does 
not allow us to infer particular propositions from universal propositions 
due to issues with empty classes: in fact if, for instance, we try to get a 
Barbari syllogism in LEIB we will find that a such task is impossible and 
any attempt to build a Barbari necessarily yields a Barbara syllogism, due 
to autarchy, and the same happens with other syllogisms that require 
existential import.

In the opinion of Kneale and Kneale (1962), Leibniz was by no 
means an Aristotelian purist, but he was committed to the assumption of 
existential import (p. 322). Indeed, Leibniz thought that his diagrammatic 
system was capable of modeling and representing syllogisms with 
existential import such as Barbari, Cesaro, Fesapmo, Calemos, and so forth, 
which implies the possibility of deriving particular propositions from 
universal ones (Phil., IV, 50; Math., V, 27; Cf. New essays, IV, XVII, 4). 
Nevertheless, it is not clear how this is possible since LEIB is autarchic 
and equivalent to VENN3 and BOOL.

The previous situation leads to an interesting puzzle between 
consistency and eligibility: if Leibniz proposed his system only as a 
representation system, then it would be a trivial system because it 
would represent any syllogism, both valid and invalid; but it is quite 
clear that Leibniz himself argued against such a thesis. Therefore, his 
system was proposed rather as a non-trivial reasoning system, but then, 
by Propositions 1-6, by being equivalent to VENN3 and BOOL, it has 
a model in a modern interpretation of syllogistic that assumes empty 
terms. The puzzle is, thus: why would Leibniz argue that his system is 
capable of modeling such imperfect syllogisms (implying the acceptance 
of empty terms) when it actually does not (implying the rejection of 
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empty terms)? I believe the answer to this puzzle is beyond the logical 
scope, and so, we leave the question open.

5. Conclusions
Today the typical diagrammatic treatments of syllogistic include 

Venn-Euler diagrams (Venn, 1880), Carroll’s triliteral diagrams 
(Carroll, 1887), Karnaugh maps (Karnaugh, 1953), and more recently, 
Pagnan’s SYLL (Pagnan, 2012). In this paper I  have introduced another 
diagrammatic treatment of syllogistic by re(dis)covering Leibniz’s 
diagrammatic logic, which should be an interesting task historically and 
logically because this diagrammatic system has not been explored before 
in metalogical terms and because we have showed (our reconstruction 
of) LEIB has a sound and complete algorithm for syllogistic that provides 
more evidence on the thesis that diagrammatic reasoning is bona fide 
reasoning.

In sum, our results i) show formal evidence that LEIB is closer to 
the logical interpretations of BOOL (Boole, 1951) and VENN (Venn, 
1880) than to the medieval tradition, which is not a novelty, but is 
interesting nevertheless; ii) provide a formal approach to Leibniz’s linear 
diagrammatic logic in metalogical terms, which is something that, as far 
as I know, has not yet been accomplished; and iii) offer some sort of 
informal support for the thesis that some fragment of Leibniz’s mathesis 
has modern ontological commitments.

Finally, as part of our current and future work, I would like to 
add that I am developing similar metalogical reconstructions for other 
diagrammatic logical systems (old and new, traditional and original) in 
order to promote the study of mechanical and diagram-based reasoning 
as a research program with applications, mainly, in philosophy and 
Artificial Intelligence. In the meantime, I would like to reconsider 
Leibniz’ famous passage (emphasis mine):

L’unique moyen de redresser nos raisonnemens 
est de les rendre aussi sensibles que le sont ceux 
de Mathematiciens, en sorte qu’on puisse trouver 
son erreur à veue d'oeil, | et quand il ya des disputes 
entre les gens, on puisse dire suelement: contons, sans 
autre ceremonie, pour voir lequel a raison (Leibniz & 
Couturat, 1903, 176).
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And rewrite those insightful last words in order to restate: let us 
draw diagrams, without further ado, to see who is right!
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