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Abstract 

In order to study the spatial changes in the Yellow River basin, a new 

nonparametric method called the 0-1 test algorithm is introduced to 
detect the change rule between runoff and basin area. The test 

approach has the virtue of applying directly to the time series without 
phase-space reconstruction. This thesis takes the logistic map as an 

example, the numerical results demonstrate the advantages of the 
method. Then, the runoff time series (2002-2009) collected by the six 

hydrologic stations (Tangnaihai, Lanzhou, Toudaoguai, Longkou, 
Sanmenxia and Huayuankou) of Yellow River, are selected to analyze 

the laws of evolution in different spatial scales. The asymptotic growth 
rates of Kc are 0.8751, 0.8985, 0.9783, 0.9793, 0.9848 and 0.9976, 

respectively. Multiple spatial scales runoff data of Yellow River Basin 
shows chaotic characteristic. The minimum value of Kc is in the upper 

reaches of the Yellow River (Tangnaihai). The maximum value of Kc is 
in the lower reaches of the Yellow River (Huayuankou). The spatial 

runoff process changes greatly in temporal and spatial scales. And the 

drainage area is an important factor in causing chaos variation. The 
conclusion illustrates the feasibility of this method and provides 

scientific data for runoff prediction. 

Keywords: 0-1 test, chaos, runoff, the asymptotic growth rate, 
spatial scales. 
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Introduction 

 

 

Runoff process is the product of the interaction of factors such as the 
climate of the water basin, complex underlying surface conditions, 

natural environment and geographic condition (Cao et al. 2011; 
Sivapalan M et al. 2015). It is a special hydrographic phenomenon; it 

has such characteristics as multi-dimensional, multiple and hierarchy 
variability. The development of nonlinear characteristics and its 

multi-scale study method will become the key point in the current 
study (Deman G et al. 2016; Shao Q et al. 2017). During the past two 

decades or so, studies on the application of the concepts of nonlinear 
dynamics and chaos to hydrologic systems and processes have been 

on the rise (Sivakumar 2000, 2004, 2009; Hu Z et al. 2013). A variety 
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of techniques developed in the context of nonlinear and chaotic 
dynamics have been employed to hydrological processes to identify 

their dynamics (Sivakumar 2001; Dhanya et al. 2010; Li et al. 2014; 
Yan B et al. 2015).  

Runoff is a key factor in the hydrographic phenomenon. The 
traditional methods for identifying chaos of runoff time series are 

correlation dimension, Lyapunov exponent, false nearest neighbor 
and Kolmogorov entropy, etc. (Shevchenko I I. 2016; Faggini M. 2014; 

Kamizawa T T. 2014; Faure P and A Lesne. 2015). All of these methods 
demand the reconstruction of phase space, by determining an 

optimum embedding dimension and delay time. However, 
reconstruction of chaotic phase space is a long existing problem as 

argued in some papers (Casdagli et al. 1991; Aguirre et al. 2014). For 
example, there are two opposite opinions regarding the relationship 

between the two parameters involved in the processes of 
reconstructed embedding phase space. One is that delay time is 

correlative with the embedding dimension (Kim et al. 1999); the other 

is that they are irrelevant to each other (Grassberger and Procaccia 
1983a). These problems, in turn, result to some extent of uncertainty 

and subjectivity in determining the value of the two parameters. In 
addition, the lack of objective indicators which are required to 

measure the effect of phase space reconstruction may increase the 
uncertainty and subjectivity.  

Recently, a straightforward and effective method called 0-1 test was 

proposed (Gottwald et al. 2009). The input is the time series of a 
relevant variable and the output is zero or one (Sun et al. 2010). The 

test capable of may provide a clear-cut response on the chaotic 

behaviour of time series are effectively applied to both on basic 
theoretical data from various dynamical systems and on observational 

data bypassing the need for phase-space reconstruction (Falconer 
2007; Gottwald et al. 2004, 2005; Litak et al.2009; Xin 2015), such as 

hydrological data, rainfall, groundwater levels data and so on (Xiong 
et al. 2016; Li et al. 2012, 2014). In order to demonstrate the 

reliability and universality of the test, the chaotic character is proved 
by using a chaotic time series created by logistic map as an example, 

the monthly runoff time series with more than 8 years from eight 
hydrologic stations (Tangnaihai, Lanzhou, Toudaoguai, Longkou, 

Sanmenxia and Huayuankou) in Yellow River, China, are then selected 
to study the capability of the 0-1 algorithm to analyze the laws of 

evolution in different spatial scales. The space distribution 
characteristics of runoff from the Yellow River Basin are analyzed.  

 

 

0-1 Test of Chaos 
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Based on the one-dimensional observational data set φ(n) at time 

n=1,2,…, N. A random number c is generated in the 0-2π range, we 
use the data φ(n) to drive the 2-dimensional system, one defines the 

translation variables pc(n) and qc(n) (Grassberger, P., Procaccia, I. 
(1983a,1983b; Gottwald, Georg A., Melbourne, I. 2002, 2004, 2005): 

 

𝑝𝑐(𝑛) = ∑𝑗−1
𝑛 𝜑(𝑗) cos(𝜃(𝑗)) , 𝑛 = 1, 2, L, 𝑁                        (1) 

𝑞𝑐(𝑛) = ∑𝑗−1
𝑛 𝜑(𝑗) sin(𝜃(𝑗)) , 𝑛 = 1, 2, L, 𝑁                    (2) 

Where 

𝜃(𝑗) = 𝑗𝑐 + ∑𝑖−1
𝑗

 𝜑(𝑖), 𝑗 = 1, 2, 𝐿, 𝑁                      (3) 

 

The improved mean-square displacement of the translation variables 
pc(n) and qc(n) is defined as(Gottwald, Georg A., Melbourne, I. 2009; 

Litak, G., Syta, A., & Wiercigroch, M. 2009): 

 

𝑀 (𝑛) =  𝑀𝑐(𝑛) − (𝐸(𝜑))
2

(
1−cos 𝑛𝑐

1−cos 𝑐
)                        (4) 

Where 

 

𝑀𝑐 (𝑛) =  lim𝑁→∞
1

𝑁
 ∑𝑗−1

𝑁  [(𝑃𝑐(𝑗 + 𝑛) − 𝑝𝑐(𝑗))2 − (𝑞𝑐(𝑗 + 𝑛) − 𝑞𝑐(𝑗))2]        (5) 

𝐸(𝜑) =  lim𝑁→∞
1

𝑁
 ∑𝑗−1

𝑁  𝜑(𝑗)                              (6) 

 

If the behavior of p versus q is Brownian, the results strongly show 

that the data set φ(n) have chaos property, then M(n) increases with 
the increase of linear growth. If the trajectory of p versus q is limited 

the underlying characteristic of data set φ(n) is non-chaotic. Then the 

trajectory of M(n) is a limited(Sun K., Liu X., Zhu C. 2010; Xin, B. 2015; 
Xiong, X. Y., Li. W., and Lai. J. J. 2016): 

The asymptotic growth rate Kc is given by the definition: 

 

𝐾𝑐 =  lim
𝑛→∞

log 𝐷𝑐(𝑛)/ log 𝑛                                 (7) 

 

The test function Kc close to 0 means stable periodic orbits and Kc 

close to 1 implies a complicated non-linear system (Gottwald and 

Melbourne. 2005). According to these test results, a simple and rapid 
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detection criterion is put forward to chaos identification. 

 

 

An Example: The Logistic Map 

 

 

To demonstrate the validity of the algorithm, the Logistic map is 
chosen as an example, which has been widely studied in nonlinear 

dynamics. The dynamics may be chaotic or non-chaotic, which is 
depends on the value of parameter u. The plots of the bifurcation 

diagram and the largest Lyapunov exponents versus u are shown in 
Figure 1 (Li et al. 2012). 

 

Figure 1. Logistic map xn+1=1-uxn
2. (a) Bifurcation diagram; (b) 

Lyapunov exponent  

 

For the value of u∈(0, 0.729), logistic map converges to an 

equivalence-point as u is increased beyond 0.729 the trajectory 

vacillate between 2 points, then 4 points, 8 points and so on, there 
exists period doubling bifurcation. When the parameter u greater than 

uchaos=1.399, simulations show that the increase of the parameter u 
result in the appearance of chaotic gaits. The quasiperiodic interval 

1.75<u<1.781 is clearly visible. When u=1.2 the system is in the 
periodic state, then u=1.6, the system presents a chaotic state. Using 

the 0-1 test methods, the plot of p versus q, the mean square 
displacement M(n) and the asymptotic growth rate Kc are shown in 

Figure 2 (Li, X. J., Hu, T. S. et al. 2012): 
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Figure 2. The test patterns of Logistic time series. 
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Using the data set φ(n) consists of N=5000, phase plots are 
experimentally obtained for different values of the parameter of u. For 

the parameters (u=1.2), trajectories in p versus q stay bounded 
(Figure. 2(a)), M(n) is a limited and asymptotic growth rate (Kc 

=-0.003) implies that the underlying characteristic of Logistic time 
series (u=1.2) is cyclical.  

For the parameters (u=1.40), trajectories in p versus q coordinates 
show bounded (Figure. 2(b)), M(n) grows over time, the asymptotic 

growth rate is Kc =0, the underlying characteristic of Logistic time 
series (u=1.6) is 4-cyclical.  

 

Table 1. The asymptotic growth rate of Logistic time series. 

u 1.20 1.40 1.405 1.41 1.60 

Kc  -0.003 0 0.123 0.669 0.998 

 

For the parameters (u=1.405), trajectories in p versus q coordinates 
leap from periodic status to chaotic status, M(n) increases with time, 

and the asymptotic growth rate Kc is 0.123, the underlying 
characteristic of Logistic time series (u=1.405) is under weak chaotic 

condition, as shown in Figure 2(c). 

For the parameters (u=1.41), trajectories in p versus q coordinates 

leap from periodic status to chaotic status, M(n) increases with time, 
the asymptotic growth rate Kc is 0.669, the underlying characteristic 

of Logistic time series (u=1.41) is under chaotic condition, as shown in 
Figure 2(d). 

As shown in Figure 2(e), for the parameters (u=1.6), trajectories in p 

versus q coordinates show Brownian motion, M(n) increases with time 
the asymptotic growth rate is Kc =0.998, Kc close to 1 means that the 

underlying characteristic of Logistic time series (u=1.6) is chaotic. 

Compare Figure 1 and Figure 2, when Logistic time series is a periodic 

sequence, the asymptotic growth rate Kc is trending to zero when the 
time series is chaos time alignment, the asymptotic growth rate Kc is 

trending to one, the results of 0-1 test is consistent with the result of 
bifurcation graph. Figure 2 reveals that 0-1 test is an effective method 

to distinguish chaotic phenomenon in a specific range.   

 

 

Case Studies 
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Data Used. Monthly runoff data of the Yellow River in China are 
analyzed in this study. A total of 8 years (January, 2002-December, 

2009) of historic Monthly inflow data is used in the analysis, which is 
obtained by the Tangnaihai, Lanzhou, Toudaoguai, Longkou, 

Sanmenxia and Huayuankou, as shown in Figure 3. Tangnaihai 
hydrological station controls a drainage area of 121972 km2. Lanzhou 

hydrological station is situated in the lower reaches of Tangnaihai, The 

valley area is 222551 km2, the runoff is mainly supplied by mountains 
snowmelt and precipitations, there are no the effects of human 

activities, therefore, the runoff process at Tangnaihai and Lanzhou is 
in a basically natural status. 

Toudaoguai, Longkou, Sanmenxia and Huayuankou are sited at the 

middle or lower reaches of the Yellow River. There are many water 
projects, reservoir hydro-constructions in the river. Hydrologic 

characteristics are often influenced severely by human activities.  

 

 

Figure 3. The hydrological station of Yellow River. 

 

The statistical parameters of monthly runoff time series are shown in 
Table 2. The variation and skewness coefficients of runoff time series 

are high and these imply that the discharge data distribution is far 

from the normal distribution. 

 

Table 2. The statistical tables. 



 
 

 
 
2019, Instituto Mexicano de Tecnología del Agua 
Open Access, license CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

190 
Tecnología y ciencias del agua, 10 (4), 182-194. DOI: 10.24850/j-tyca-2019-04-09 

Runoff 

series 

Drainage 

area
（km2） 

Runoff series 

Min 

(billion 
m3) 

Max 

(billion 
m3) 

Mean 

(billion 
m3) 

Standar

d-D 

Skewn

ess 

Kurtosi

s 

Tangnaihai 121972 2.33 52.23 15.12 11.95 1.12 0.46 

Lanzhou 222551 7.66 40.44 22.71 8.25 -0.012 -1.16 

Toudaoguai 367898 2.00 29.03 12.64 6.19 0.79 -0.23 

Longmen 497552 4.98 29.03 14.67 5.99 0.71 -0.30 

Sanmenxia 688421 5.06 58.32 17.22 9.66 1.91 4.77 

Huayuankou 730036 3.70 67.91 19.64 11.49 1.49 2.94 

 

Chaotic Detection Results. The method is applied to the monthly 
runoff series of Yellow rivers. The plots of asymptotic growth rate Kc 

are shown in Figure 4. The minimum value of Kc is 0.8751 in the 

Tangnaihai hydrologic station, the maximum value of Kc is 0.9976 in 
the Huayuankou hydrologic station. Taking the data of Tangnaihai and 

Huayuankou hydrologic station as an example, trajectories in p versus 
q coordinates, the mean-square displacement M(n) and the 

asymptotic growth rate Kc are shown in Figure 5 and Figure 6. 

It is shown that the behavior of p versus q is asymptotically Brownian, 
the mean-square displacement M(n) grows linearly in time, and the 

asymptotic growth rate Kc is near to 1 for monthly runoff time series of 
Tangnaihai and Huayuankou hydrologic station in Yellow River which 

clearly indicates the presence of chaotic behavior in the runoff time 

series. Results from Figure 7 suggest that Drainage area is an 
important factor in causing chaos variation. 

 

 

Figure 4. The hydrological station of Yellow River. 
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Figure 5. Monthly runoff time series of Tangnaihai hydrologic station. 

 

 

Figure 6. Monthly runoff time series of Huayuankou hydrologic 
station. 

 

 

Figure 7. Relationship between Drainage area and the asymptotic 

growth rate. 

 

 

Conclusions 
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(1) This paper attempts to have a thorough study of the spatial 

changes in the Yellow River basin from a new perspective. The 
dynamical behavior of runoff is identified by 0-1 test method. The 

research offered a new way for the varying regular research and 
modeling of time-space of runoff dynamical systems.  

(2) Based on the testing result, the asymptotic growth rate Kc are 
0.8751, 0.8985, 0.9783, 0.9793, 0.9848 and 0.9976 respectively, 

multiple spatial scales runoff data of Yellow River Basin shows chaotic 
characteristic. The runoff data in the lower Yellow River has strong 

characteristics of chaos, and the middle reaches of the yellow river 
secondly, then to the upper Yellow River. From the spatial scale, the 

paper analysis variation rules of runoff with drainage area. Results 
from the runoff data of different hydrologic station show that the 

chaos characteristic of runoff depends on the meteorology, terrain 
factors and so on, drainage area is an important factor in causing 

chaos variation. 
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