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The temperature distribution in a p-n thermoelectric module in quadratic approximation with respect to an electrical 
current, when the Joule and Thomson surface and bulk effects are presented, is studied. Here were taken into account the 
temperature dependences of the thermal conductivity and the Seebeck coefficient, the presence of the Peltier and Seebeck 
surface coefficients. The partial cases are considered and the applicability criteria of the quadratic approximation in these 
cases was established. 
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1. Introduction 
 

Nowadays thermoelectric cooling is associated 
exclusively with the Peltier effect, discovered in 1834 by 
Peltier [1]. The effect is usually defined as the absorption 
or evolution of heat (in addition to the Joule heat) at the 
junction between two conductors through which a dc 
electrical current passes (see, for example [2–6]). The 
absorption or evolution of heat depends on the direction of 
the electrical current, and it is equal per unit time to 
 

( )JQ 21 Π−Π=Π     (1) 
 
where Π1,2 are the Peltier coefficients of the conducting 
materials and J is the electrical current. 

However in [7–9] it has been shown that the 
thermodynamic process of cooling (heating) can be 
explained by considering the Le Chatelier–Braun principle 
[10]. To summarize the content of [7] and [9] the change in 
the drift heat flux 
 

dr = Πq j      (2) 
 
(j the electrical current density) in a heterogeneous system 
causes a thermodiffusion heat flux 
 

diff Tκ= − ∇q      (3) 
 
(where κ is the thermal conductivity and T the temperature) 
compensating this change. Due to this thermodiffusion heat 
flux, a temperature heterogeneity arises that means the 

cooling (heating) of the system depending on the electrical 
current direction and material properties. When the 
temperature in the system is below the equilibrium 
temperature, we have the effect of thermoelectric cooling, 
and when the temperature is above the equilibrium 
temperature, we have the thermoelectric heating effect. The 
full heat flux is 
 

dr diff= +q q q .     (4) 
 
In the linear approximation with respect to an electrical 
current the stationary energy balance equation is as follows 
[7]: 
 
div 0=q .     (5) 
 

In [7,11] on the basis of the energy balance equation (5) 
the investigation of thermoelectric cooling in the 
semiconductor structure in the linear approximation with 
respect to an electrical current is realized. 

In the quadratic approximation with respect to an 
electrical current the Joule heat must be taken into 
consideration: 
 

2
JQ jρ=      (6) 

 
(ρ is an electrical resistivity) and the Thomson heat too: 
 

ThQ Tα= ∇j      (7) 
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(α is a Seebeck coefficient) [8]. It is important to remember 
that the Thomson heat arises not due to the temperature 
gradient externally caused but due to the temperature 
gradient induced by the Peltier effect that acts in the 
sample. In this case the stationary energy balance equation 
is as follows [8]: 
 

J Thdiv Q Q= +q .    (8) 
 

In [8] on the basis of the energy balance equation (8) the 
thermoelectric cooling in the quadratic approximation with 
respect to an electrical current in a homogeneous sample is 
studied. In this work the temperature dependences of heat 
conductivity κ and the Seebeck coefficient α are taken into 
account. Also in [8] the surface Peltier effect is taken into 
consideration. 

In [12] the precise temperature distribution in the single-
stage p-n thermoelectric module is established in the case 
when the kinetic coefficients are constants and the value of 
the temperature minimum at a p-n junction is found. 
However, this result is just erroneous. As will be shown 
below, it is impossible to find the temperature minimum at 
the interface in the quadratic approximation with respect to 
an electrical current. 

In general case of the thermoelectric cooling in a p-n 
structure the electrons (holes) and phonons can have 
different temperatures [13]. In order to be able to use the 
one-temperature approximation the certain conditions must 
be carried out. One of these conditions is when the sample 
thickness of a p-n structure is much larger than the cooling 
length of electrons (holes) [13, 14]. 

A one-temperature approximation under certain 
conditions can be utilized for the thin samples when its 
thicknesses are of the cooling length order or much thinner 
than the cooling length [15]. In this paper we shall 
investigate the case when the conditions of the one-
temperature approximation are carried out. 

Traditionally studies of the Peltier effect do not consider 
the nonequilibrium charge carriers [3, 4, 6–8, 16, 17] so 
that only majority charge carriers and their electrical 
current are taken into account in the expressions for 
thermal fluxes in n- and p-regions, in spite of the fact that 
the current of minority charge carriers near the p-n junction 
has the same order of magnitude as the current of majority 
charge carriers [18]. In this way, the thermal generation 
and extraction of minority charge carriers must take place 
near the interface to allow the flow of electrical current 
[18]. As a consequence, nonequilibrium charge carriers 
will arise. In [19] the full system of equations, which 
describes the thermoelectric cooling in a p-n semiconductor 
structure and takes into account the presence of 
nonequilibrium charge carriers, is established. The 
influence of the nonequilibrium charge carriers can be 
ignored if the rate of electron (hole) recombination [20] is 
sufficiently large. In this paper we assume that the electron 
(hole) recombination rate is sufficient to neglect by the 
influence of the nonequilibrium charge carriers upon the 
thermoelectric cooling phenomenon. 

At the present time the general structure of the boundary 
conditions in an electrical current contact has been already 
established [21, 22]. This structure of boundary conditions 
takes into account the presence of the nonequilibrium 
charge carriers and the opportunity that the electrons and 
phonons can have different temperatures. Since in this 
paper we consider a one-temperature approximation and 
neglect the presence of nonequilibrium charge carriers, the 
structure of boundary conditions in an electrical current 
contact simplifies to the equality of the electrical currents 
from two sides of the interface [9]. 

The purpose of this paper is to obtain the temperature 
distribution in the single-stage p-n thermoelectric module 
in the quadratic approximation with respect to the electrical 
current taking into account the temperature dependence of 
the kinetic coefficients, the surface Peltier and Thomson 
effects, and to obtain the criteria of utilizing this quadratic 
approximation. 
 
2. Heat balance equation and boundary conditions 
 

Let us represent a thermoelectric module (TEM) by the 
structure composed of two uniform different 
semiconductors of n- and p-types (see figure 1). The metal 
plate between two branches of TEM can be ignored for the 
thermoelectric processes, since the Seebeck coefficient for 
metals is negligibly small in comparison with that of 
semiconductors [17]. For this reason, we do not take the 
metal plate at 0x =  into consideration. 
We suppose that the electrical contacts x d= ±  are kept at 
the equilibrium temperature T0: 
 

( )n
0T d T− =      (9a) 

( )p
0T d T=      (9a) 

 
(here and below in the text the overhead characters “n” and 
“p” mean n- and p- semiconductors accordingly), the 
lateral surfaces are adiabatically insulated, and the 
structure’s cross-sectional area is equal to the unit 
measurement everywhere. The current flows along the 
normal to the interface ( 0x = ) between the layers 
(direction x -axis). In this case, the problem becomes one-
dimensional. 

The temperature distribution in the one-dimensional case 
can be obtained from the heat balance equation (8): 
 

n,p n,p
n,p 2 n,pd d

d d
x

x x
q Tj j
x x

ρ α= + .   (10) 

 
Taking into account (2), (3), and the equation 
n,p n,p n,pTαΠ = , (10) transforms to the following 

equation: 
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⎝

⎛
+−

.      (11) 
 
Here we need only to pay attention to the fact that there is 
not the Thomson heat in the right side. This term was 
reduced with the term in the left side of the equation that 
we obtain from  
 

( )
x

Tj
x

T
T

jTjT
xx

q
xxx

x

d
d

d
d

d
d

d
d

d
d pn,

pn,
pn,

pn,

pn,
pn,pn,pn,

pn,
dr ααα +== .  

 
The boundary conditions at the interface ( 0=x ) are as 

follows (see [9]): 
 

( ) n
s

n
s 0 Qqq xx =−     (12a) 

p
ss

p Qqq xx =− .     (12b) 
 
Here 
 

( ) ( )( )00 pn
ss TTjq xx −+Π= η    (13) 

 
is the thermal flux at the surface 0x =  ( sΠ  is the surface 
Peltier coefficient [9], η  is the surface thermal 
conductivity [23]); 
 

( ) ( )( )n,p 2 n,p n,p p n
s s s 0 0x xQ j j T Tρ α= + −  (14) 

 
is the heat dissipation power at the interface. In this 
equation n

sρ  ( p
sρ ) and n

sα  ( p
sα ) are the surface electrical 

resistance and the surface Seebeck coefficient from the side 
of n- (p-) material respectively. n

s
n
ss ρρρ +=  is an electrical 

surface resistance and p
s

n
ss ααα +=  is the surface Seebeck 

coefficient [9,20]. It is worth to notice that 0ss Tα≠Π  in a 

general case [8]. The first term ( pn,
s

2pn,
sJ ρxjQ = ) in the right 

side of (14) is the Joule heat that is being dissipated at the 
interface from the side of n- (p-) material, and the second 
term ( ( ) ( )( )00 nppn,

s
pn,

sTh TTjQ x −= α ) is the Thomson heat 
which is being dissipated from the side of the n- (p-) 
material [9]. 

Hence, the boundary condition for (11) are (9a), (9b), 
(12a), and (12b). 
 
3. Temperature distribution in the thermoelectric 
module 
 

The solution of (11) in the quadratic approximation with 
respect to an electrical current is as follows: 
 

( ) pn,
2

pn,
10

pn, TTTxT δδ ++= .   (15) 
 
Here xjT ~1δ  and 2

2 ~ xjTδ . 
 
3.1. Temperature distribution in the lineal approximation 
 

In the lineal approximation with respect to the electrical 
current equation (11) is as follows: 
 

0
d

d
2

pn,
1

2
pn,

0 =
x
Tδκ .    (16) 

 
Here ( )0

pn,pn,
0 Tκκ = . 

In this approximation the boundary conditions (9a), (9b), 
(12a), and (12b) simplify to 
 

( ) 0n
1 =− dTδ      (17a) 

( ) 0p
1 =dTδ      (17b) 

( )( )p
1

n
1s

n
1n

0
n
0 0

d
d TTj

x
Tj xx δδηδκ −+Π=−Π  (17c) 

( )( )p
1

n
1s

p
1p

0
p
0 0

d
d TTj

x
Tj xx δδηδκ −+Π=−Π . (17d) 

 
Here ( )0

pn,pn,
0 TΠ=Π . The surface coefficients pn,

sα , 
pn,

sρ , η , sΠ  are considered to be constants. This is 
related to the situation that the microscopic theory, which 
would give the dependences of these coefficients upon the 
temperature (upon ( )+0T  and upon ( )−0T ), is not now 
presented. Therefore, the dependences of these coefficients 
upon the temperature are not known at present. 
 The solution of (16) with boundary conditions 
(17a), (17b), (17c), and (17d) is as follows: 
 

( ) ( ) ( )
( ) ( )dx

d
djxT s

x ±
++

Π−Π+Π−Π
= p

0
n
0

p
0

n
0

np,
0

pn,
0

pn,
0

pn,
0pn,

1 κκκκη
ηκδ

.      (18) 
 

In (18) the upper sign (in this case the sign “+”) 
corresponds to the first index (in this case the index “n”) 
and the lower sign (in this case the sign “-”) corresponds to 
the second index (in this case the index “p”). This 
distribution of the temperature coincides with the one 
obtained in the works [7] and [9]. 

 
3.2. Quadratic part δT2 of the temperature distribution 
 

In the quadratic approximation with respect to the 
electrical current equation (11) is as follows: 
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⎠

⎞
⎜⎜
⎝

⎛
+− .

      (19) 
 

Here 
0

pn,

pn,

d
dpn,

0t
TTT =

= αα , 
0

pn,

pn,

d
dpn,

0t TTT =
= κκ , ( )0

pn,pn,
0 Tρρ = . 

We have not written the term 2

pn,
1

2

d
d

1
pn,

0t x
TT δδκ  in (19) 

because, as follows from (18), pn,
1Tδ  is a linear function of 

x , and therefore, the second derivative of pn,
1Tδ  with 

respect to x  is equal to zero. 
In this approximation the boundary conditions (9a), (9b), 
(12a), and (12b) are being simplified to: 
 

( ) 0n
2 =− dTδ      (20a) 

( ) 0p
2 =dTδ      (20b) 

 
( ) ( ) ( )( )++−⎟

⎠
⎞⎜

⎝
⎛ − n

0t0
n
0

n
1

p
2

n
2 000 ααδδδη TTjTT x  

 

( ) ( )⎟
⎠
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⎝
⎛ −+=++

==
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      (20c) 
 

( ) ( ) ( ) −⎟
⎠
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⎝
⎛ ++⎟

⎠
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⎝
⎛ −− p

0t0
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0

p
1
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( ) ( )⎟
⎠
⎞⎜

⎝
⎛ −+=−−

==

00
d

d

d

d n
1

p
1
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s

p
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0
0
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1
p
t0 TTjj
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x
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      (20d) 
 

Taking into account (18), the solution for ( )xT pn,
2δ  of 

(19) with boundary conditions (20a), (20b), (20c), and 
(20d) is as follows: 
 

( ) ( )×±= dxjxT x
2pn,

2δ  

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−++×

2
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0t
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pn,
0t
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Z

KTxxdR καρ
κ

m .

      (21) 
 
Here 
 

⎪
⎩

⎪
⎨

⎧

⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛ ++

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+⎟

⎠
⎞⎜

⎝
⎛ +±= pn,

0
pn,np,

0
np,

pn,
0

pn,
0

pn,pn,
0

pn,
0s

pn, 1 ααη
κ

ηρρκρρη KKd
Z
ddddd
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R s

 

( )
⎭
⎬
⎫
⎥⎦
⎤++⎟

⎠
⎞⎜

⎝
⎛ +− np,

0
pn,pn,np,pn,

s
np,

0s κακαη KKKd .  (22) 

 

In (21) and (22) p
s

n
ss ααα += , p

s
n
ss ρρρ += , 

( ) p
0

n
0

p
0

n
0 κκκκη ++= dZ , 

⎟
⎠
⎞⎜

⎝
⎛ Π−Π+⎟

⎠
⎞⎜

⎝
⎛ Π−Π= np,

0
pn,

0s
pn,

0
np,

0
pn, dK ηκ . 

 
The interesting fact follows from (21): the temperature at 

the interface ( 0=x ) does not depend upon the derivatives 
of both heat conductivity and Seebeck coefficient with 
respect to the temperature ( pn,

t0κ , pn,
t0α ). 

The criteria of the justice of the quadratic approximation 
use (see (15)) are following 
conditions: 
 

( ) 0
,

1 TxT pn <<δ     (23) 

 
( ) ( )xTxT pn,

1
pn,

2 δδ << .    (24) 

 
It follows from criteria (23, 24) that the quadratic 

approximation can not be used for finding the extreme 
current (minimum in our case). Actually let us present 

( ) xjaT ±=±01δ  and ( ) 2
2 0 xjbT ±=±δ . Then the temperature at 

the interface ( ) 2
00 xx jbjaTT ±± ++=±  gets to its extremum at 

the current ±

±
−=

b
a

xj 2
m . Under these circumstances the 

criteria (23, 24) reduces to the following criteria for the 

electrical current: 1jj <<  (
±

=
a
Tj 0

1 ) and 2jj <<  ( ±

±=
b
aj2 ) 

(here xjj = ). As we can see, the extreme electrical current 
m
xj  is of the same order as 2j . Hence, it is possible to 

state: 1) the necessary condition for the quadratic 
approximation is the requirement that the electrical current 
must be less than the extreme electrical current (the 
electrical current at which the temperature gets to its 
minimum value in the case of the thermal cooling); 2) the 
minimum temperature value and the electrical current at 
which the temperature gets its minimum can not be found 
in the limits of the quadratic approximation with respect to 
the electrical current. 
 
4. Partial cases 
 

To analyze the results obtained above let us consider 
estimating expressions, when 0

pn,
0 ~ κκ , 

0
n
0

p
0 ~~ ααα −  

( 0
n
0

p
0 ~~ ΠΠ−Π ), 0

pn,
0 ~ ρρ , and s

pn,
s ~~ ρρ . In this case the 

temperature distributions (see (18) and (21)) are as follows: 
 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
Π

−
Π

±=
d

dxjxT s
x ηκκ

δ
200

0pn,
1 m  (25a) 
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      (25b) 
 
where 
 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

±⎟
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( ) s000

pn, 2~ Π−Π+= κηκ dK m     (27) 
 

( )dZ ηκκ 2~
00 += .    (28) 

 

0

s

0
,1 Π
Π>> κ

ηd  

 
In this partial case the linear part of the temperature 

distribution (25a) simplifies to the following equation: 
 

( ) ( )dxjxT x ±
Π

=
0

0pn,
1 κ

δ m .    (29) 

 
The result (29) can be explained easily. The reason of the 
coincidence of the temperatures on the contact in this case 
is the smallness of sΠ . 
The quadratic part (see (25b)) of the temperature 
distribution simplifies to the following equation: 
 

( ) ×
±
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0
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2 κ

δ dxjxT x  
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⎥
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As we can see from (29) and (30), the linear part of the 
temperature distribution is determined by only bulk Peltier 
coefficient, whereas the quadratic one is determined by 
both bulk and surface Peltier coefficients. 

As it follows from the same equations the temperature at 
the interface ( 0=x ) in this partial case has the following 
form: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ Π+Π±+±±
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0
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dddj
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jTT xx

.      (31) 
 

As we can see from this formula the quadratic part of the 
temperature distribution can be discontinuous. 

The criteria, (23) and (24), on the base of (29) and (30) 
induce the criteria for this partial case: 
 

dddd
T

j
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0
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00 ,,~,
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α
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ρρ
κ

Π

Π
+
Π
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00
1 κ

ηds >>>>Π
Π  

In this partial case the linear part of the temperature 
distribution (25a) simplifies to the following equation: 
 

( ) ( )dxjxT x ±
Π

−=
0

spn,
1 κ

δ     (33) 

 
The quadratic part (see (25b)) in this partial case 

simplifies to the following equation: 
 

( ) ×
±

=
0
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δ dxjxT x  
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⎤
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⎢

⎣
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2
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0
0

0
,

0
,
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κ

κ
κ
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t
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t
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ss xTxdxd m .

      (34) 
 

As we can see from (33) and (34) the temperature 
distribution in this partial case does not depend upon the 
bulk Peltier coefficient. As it follows from (33) and (34) 
the temperature at the interface ( 0=x ) in this partial case 
is as follows: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡ Π
⎟
⎠
⎞⎜

⎝
⎛ ±++±±
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κ

ααρρ
κκ

d
ddj

d
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      (35) 
 

As we can see from this formula the temperature 
distribution in the linear approximation undergoes the 
discontinuity at the interface ( 0=x ), whereas the 
quadratic part of the temperature distribution can be both 
discontinuous and continuous function at the interface. 
The criteria (see (23) and (24)) on the base of equations 
(33) and (34) induce the criteria for this partial case: 
 

⎟
⎠
⎞

⎜
⎝
⎛ ++

Π

Π
<<

pn,
s0

0

0s

s

s

00 ,~,
αα

κ
ρρ

κ

ddd
T

j .   (36) 

 

00
,1 Π
Π

>> sd
κ
η  

In this partial case the linear part of the temperature 
distribution (25a) simplifies to the following equation: 
 

( ) ( )dxjxT x ±
Π

=
0

0pn,
1 κ

δ m .    (37) 

 
The result (37) can be explained easily. The reason of the 

coincidence of the temperatures on the contact in this case 
is a large surface heat conductivity which is equalizing the 
temperatures at the contact. 
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It is interesting that the linear temperature distribution in 
this case is the same as in the first partial case. The reason 
of this is coincidence of the temperatures at the contact 
which takes place once because of small sΠ , another time 
because of large η . 

The quadratic part (see (25b)) of the temperature 
distribution in this partial case simplifies to the following 
equation: 
 

( ) ( )[ ±+±
±

= xddxjxT x m0s
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κ
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κ
α

xTx
d

d
d m

.      (38) 
 

As we can see from (37) and (38) the temperature 
distribution in the linear approximation is determined by 
the bulk Peltier coefficient whereas the quadratic part of 
the temperature distribution is determined by both surface 
and bulk Peltier coefficients. 

As it follows from (37) and (38) the temperature at the 
interface ( 0=x ) in this partial case is as follows: 
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As we can see from this formula the temperature 
distribution in the linear approximation is a continuous 
function at the interface ( 0=x ), whereas the quadratic part 
of the temperature distribution can be both continuous and 
discontinuous one at 0=x . 

The criteria (see (23) and (24)) on the base of (37) and 
(38) induce the criteria for this partial case: 
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In this partial case the linear part of the temperature 
distribution (25a) simplifies to the following equation: 
 

( ) ( )dx
d
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The quadratic part (see (25b)) of the temperature 

distribution in this partial case simplifies to the following 
equation: 
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      (42) 
 
As we can see from (41) and (42) the temperature 
distribution in the linear approximation is determined by 
the surface Peltier coefficient, whereas the quadratic part of 
the temperature distribution is determined by both the bulk 
Peltier coefficient and the surface one. 
As it follows from (41) and (42) the temperature at the 
interface ( 0=x ) in this partial case is as follows: 
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As we can see from this formula the temperature 
distribution in the linear approximation is the discontinuous 
function at the interface ( 0=x ), whereas the quadratic 
part of the temperature distribution can be both continuous 
and discontinuous function at 0=x . 
The criteria (see (23), (24)) on the base of (41) and (42) 
induce the criteria for this partial condition: 
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It follows from (39) and (43) that the quadratic parts of the 
temperature distribution in the third and fourth partial cases 
are identical at the interface ( 0=x ). 
It follows an interesting result from all these partial cases: 
the temperature distribution in the second partial case 
depends upon only one Peltier coefficient, in this given 
case, upon the surface Peltier coefficient sΠ , whereas in all 
other partial cases the temperature distribution depends 
upon the both surface sΠ  and bulk 0Π  Peltier coefficients. 
 
5. Conclusions 
 

The temperature distribution in the p-n thermoelectric 
module in the quadratic approximation with respect to the 
electrical current is obtained. The temperature dependences 
of the heat conductivity and the Seebeck coefficient, as 
well as the surface Seebeck coefficient, thermal 
conductivity and resistivity, have been taken into account. 
It is shown that the temperature dependences of the thermal 
conductivity and the Seebeck coefficient do not influence 
upon the value of the temperature at the p-n junction. 

It is established that the quadratic approximation with 
respect to the electrical current is acceptable for electrical 
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current values, which are much less than the electrical 
current at which the temperature reaches its minimum 
value. Therefore, it is impossible to find both the extreme 
current and the value of the minimum temperature at the p-
n junction using the quadratic approximation with respect 
to the electrical current. 

The detailed temperature distributions in the quadratic 
approximation with respect to the electrical current in 
certain partial cases are obtained and the criteria, which 
determine the limits for the electrical current within which 
these distributions are acceptable, are established. 
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