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Anisotropia en la propagacién del sonido de un cristal fononico desordenado

J. A. Vargas*, J. Arriaga
Instituto de Fisica, Benemérita Universidad Autonoma de Puebla
Apartado postal J-48 72570, Puebla, México
(Recibido: 28 de septiembre de 2008; Aceptado: 27 de febrero de 2008)

En este trabajo se presentan resultados de célculos tedricos de la velocidad efectiva del sonido de un sistema
bidimensional desordenado de cilindros de aluminio en aire en una estructura hexagonal. Al comparar con el caso
simétrico se encuentra una ligera anisotropia inducida por el desorden. También se analiza el caso en el que el desorden se
introduce mediante una variacion aleatoria de los radios de los cilindros y se encuentra que la anisotropia es mas marcada
en este ultimo caso. Utilizando el método de expansion de ondas planas en el limite de grandes longitudes de onda
(homogenizacion) desarrollado previamente y, tomando una supercelda de 25 cilindros ligeramente desordenados,

calculamos la velocidad del sonido en sistemas periddicos.
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We present theoretical results for the effective sound velocity of a two-dimensional disordered system composed by a
hexagonal array of aluminum cylinders in air. Compared with the symmetric case we observe a small anisotropy induced
by the disorder. We analyze a different type of disorder considering a random variation of the cylinders radii and we
observe a bigger anisotropy for this case. Using the plane wave expansion method in the long wavelength limit
(homogenization) previously developed together with a supercell containing 25 cylinders lightly disordered, we calculate

the sound velocity in periodic systems.
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1. Introduccién

La propagacion de ondas acusticas y elasticas en medios
heterogéneos es un problema que desde hace muchas
décadas ha mantenido un constante interés entre la
comunidad cientifica [1 4]. Mucho del trabajo
desarrollado ha sido el calcular y controlar los rangos de
frecuencia dentro de los cuales se prohibe la propagacion
de ondas acusticas. Sin embargo, mucho menos atencion se
le ha dedicado a las regiones muy por debajo de los gaps.
En estas regiones, la relacion de dispersion de las ondas es
lineal, ® = c.yk; siendo la constante de proporcionalidad,
(cep) la velocidad de propagacion efectiva de la onda, ya
que una longitud de onda cubre muchos periodos de la
estructura y, por consiguiente, la onda se promedia en el
medio in homogéneo.

A bajas frecuencias (grandes longitudes de onda) un
medio elastico in-homogéneo se comporta como un medio
homogéneo. Las ondas elasticas propagandose en el medio
actian como si se propagaran en un medio homogéneo con
ciertos parametros caracteristicos. Un problema
fundamental en el estudio de estos sistemas ha sido el
calculo de dichos pardmetros efectivos; es decir, velocidad
del sonido efectiva y densidad de masa efectiva. Varios
grupos utilizando diferentes métodos han reportado los
valores de dichos parametros caracteristicos. Sin embargo,
la mayoria de los resultados teoricos reportados no son
capaces de reproducir totalmente los resultados
experimentales [5 — 8].

Entre los sistemas bidimensionales mas estudiados, se
encuentra la propagacion del sonido a través de un sistema
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periddico de cilindros metalicos en aire. Incluso, se ha
comenzado a explorar, tedrica y experimentalmente [9,10],
el efecto que tiene en la velocidad de propagacion, el hecho
de que el sistema se encuentre ligeramente desordenado.
En esos trabajos se reporta el cambio que tiene la velocidad
de propagacion al desordenar el sistema, pero no se habla
de una anisotropia inducida por el desorden. Ademas, los
calculos tedricos no reproducen satisfactoriamente los
resultados experimentales en todo el rango de fracciones de
llenado. En este trabajo utilizando los resultados de la
teoria de homogeneizacion de sistemas periodicos
bidimensionales reportada previamente [2], adaptamos los
resultados para considerar un sistema desordenado
tomando en cuenta una modificacion aleatoria tanto de la
posicion de los cilindros dentro de la celda unitaria, como
de los valores de los radios. De esta manera, somos capaces
de considerar un sistema desordenado y estudiamos la
velocidad efectiva de propagacion del sonido en un arreglo
de cilindros metalicos en aire. Analizamos la anisotropia en
la velocidad de propagacion debido al desorden.

2. Marco Teérico

El estudio de la propagacion de ondas acusticas en un
arreglo periddico de cilindros de aluminio en aire se
encuentra desarrollado en las referencias [1,2]. El analisis
se basa en resolver la ecuacion de onda (1) para los modos
longitudinales (ya que los modos transversales no se
propagan en el aire), la cual se escribe como,
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Figura 1. Velocidad de propagacién como funciéon de la fraccion de
llenado calculada para el caso simétrico (cuadrados) y para el caso
ligeramente desordenado (triangulos). Mostramos ademas la funcion (1 +
)2 (rombos), propuesta por Cervera et al. en la Ref. [9].

1.00
0.99 ——(1+1)-1/2
8 Simétrico
0.98 —a—DD=2
weill——DD = 4
0.97 —W—DD=6
,0.96 —e—oo=e
)
~0.95
g
0.94
0.93
0.92
0.91
0.90 T T T T DN
0 0.05 0.1 0.15 0.2 0.25

Fraccion de llenado

Figura 2. Velocidad de propagacion como funcion de la fraccion de
llenado para diferentes grados de desorden. Esta es una ampliacion de la
Figura 1.
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Figura 3. Velocidad efectiva como funcion de la fraccion de llenado,
permitiendo que los radios de los cilindros cambien aleatoriamente de
manera que el drea su seccion transversal se incremente o disminuya
como méximo el porcentaje indicado.
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Debido a que el sistema es periddico, podemos utilizar el
teorema de Bloch y expandir en series de Fourier los
inversos de la densidad y el modulo de compresi-bilidad,
como aparecen en las siguientes ecuaciones:

1
A(F)
p(lF) = ;v(é) exp(iC—rv -F)

p(r,t)= exp(ilg F - iwt)z D (G) exp(ié -F),

~
~

=> 7(G)exp(iG -7
‘ (2)

de manera que (G), UG) y pi(G) son los coeficientes de
Fourier respectivos y los vectores G son los vectores de la
red reciproca. Al introducir estas ecuaciones en (1), se
obtiene una ecuacion generalizada de eigenvalores para los
coeficientes de Fourier de la presion, de la cual podemos
obtener la relacion de dispersion o=, (K) (n =1, 2, ...)
siempre y cuando el sistema tenga soluciones no triviales.
Es aqui cuando se toma el limite @, £ — 0, logrando asi la
homogenizacion. En este limite la velocidad de grupo es
igual a la velocidad de fase la cual se calcula como c.; =
w/k. Una vez hecho lo anterior se obtiene la siguiente
formula para la velocidad efectiva del sonido, ver
referencias [1,2]:

(k)= }1/{1/ - 3 (k-G)k-G'W(GWV(-G") 3)

G- ewa-a)'|

la cual, depende no solo de los promedios sobre la
estructura periddica de los inversos de los parametros vV y

7 (V = Ipat (1= Nlpsi ¥ =f/ ha+ (1= f)/ d, siendo fla
fraccion de volumen ocupado por los cilindros), sino
también de los detalles y la geometria de la celda unitaria a
través de v (G). Podemos notar que en general la velocidad
de propagacion es anisotropica, ya que depende de la

direccion de propagacion (/3 ). Por lo tanto, esta ecuacion
desarrollada por 4. Krokhin et al. en [2], nos sirve para
hacer el estudio de anisotropia que nos interesa.

El término de la sumatoria de la ecuacion (3) representa
la correccion al inverso de la densidad que se obtiene

mediante este método, es decir, 1/,,= vV — XZ. Obteniendo
asi, también una expresion analitica para la densidad
efectiva.

Para tomar en cuenta el desorden, lo que hacemos es
utilizar una supercelda que contenga varios cilindros, los
cuales movemos aleatoriamente a partir de una estructura
hexagonal. Podemos inducir dos tipos de desorden:
moviendo las posiciones de los cilindros o cambiando los
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radios de estos. El efecto del desorden se refleja a través de
v(G), que se encuentra definido de la siguiente manera:

exp(—ié -F)dr 4)

— 1 1
G)=—
M= ;[p(f)

La integral se hace sobre toda el area de la supercelda
bidimensional, la cual tiene regiones metalicas y regiones
de aire de densidades p, y p, respectivamente. De manera
que los coeficientes G) se pueden rescribir de la
siguiente forma:

yo =S
] 5
Y(G) = 1p"1 P ®)
i
. P

donde F(G) es lo que hemos llamado el factor de forma,
que para el caso de una supercelda de N cilindros, el
calculo de la integral resulta:

- Ng JlQé‘r[) -
F(G)=2 fOZTexp(—iG ‘R))

G

(57

i=1

siendo R; las posiciones de los centros de los cilindros
dentro de la supercelda, »; son los radios de cada uno de
ellos y J es la funcion de Bessel de orden 1.

3. Resultados y discusién

Los calculos se hicieron mediante un programa en
Fortran 90 que tiene como datos de entrada: las densidades
y los médulos de compresibilidad de ambos medios, el
nimero de cilindros dentro de la supercelda, la constante
de red, el nimero de ondas planas, el intervalo de la
fraccion de llenado a considerar, la direccion de
propagacion, el grado de desorden de las posiciones de los
cilindros y el porcentaje maximo que puede cambiar el area
de cada cilindro respecto del promedio. El programa genera
primero los vectores de la red reciproca (G) y las
posiciones aleatorias de los cilindros y calcula la velocidad
efectiva mediante la ecuacion (3), para cada una de las
fracciones de llenado consideradas.

La supercelda se divide en Ny pequeiias celdas iguales,
siendo Ny el numero de cilindros. Las posiciones de los
centros de los cilindros se mueven de tal manera que no se
salgan de esas pequefias celdas y el grado de desorden
determina cuanto puede moverse aleatoriamente cada
cilindro alrededor del centro de esas celdas. El grado de
desorden lo introducimos a partir de una parametro que
varia entre 0 y 10. El maximo grado de desorden que
consideramos corresponde a 10 y el cero corresponde al
caso totalmente simétrico.

Primero analizamos el efecto que tiene mover
aleatoriamente el centro de los cilindros dentro de sus
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Figura 4. Velocidad de propagacion en funcion de la direccion de k.
Se grafica un circulo de referencia para observar mejor la anisotropia
de la velocidad efectiva inducida por el desorden.

pequeiias celdas. En la figura 1 mostramos la funciéon (1 +
) ', que fue propuesta por Cervera et al. en la Ref. [9], la
cual se mantiene pegada a la linea del calculo del caso
simétrico hasta una fraccion de llenado de 0.6. Al
desordenar ligeramente los cilindros (DD = 2), la velocidad
efectiva cruza la linea del caso ordenado, pues primero va
por encima y a mayores fracciones de llenado queda por
debajo. En la figura 2 se hace una ampliacion del recuadro
de la figura 1 incluyendo los calculos para el mismo
sistema cada vez mas desordenado (DD = 2, 4, 6, 8). En
este rango, las lineas de los casos desordenados quedan por
encima del caso simétrico, pero sigue estando por debajo
de la velocidad del sonido en el aire, observando que los
valores obtenidos para el caso mas desordenado no son los
que mas se alejan del caso simétrico.

Otra forma de obtener desorden en el sistema es variando
aleatoriamente los radios de los cilindros dentro de cierto
rango, manteniendo sus centros en las posiciones
simétricas. En la figura 3 mostramos los resultados
obtenidos. Observamos que la velocidad efectiva esta por
encima del caso en el que todos los radios son iguales y se
alcanza una estabilizacion en el valor de la velocidad
efectiva a mayores fracciones de llenado. Recordemos que
la fraccion de llenado se ve limitada por el contacto de al
menos dos cilindros. Entre mayor es la libertad de
variacion de las areas transversales, mayor es la diferencia
entre las velocidades efectivas al ir aumentando la fraccion
de llenado.

Como mencionamos en la seccion II, en general, la
velocidad del sonido sera anisotropica, es decir, su valor

depende de la direccion de propagacion k.Enla figura 4
mostramos la velocidad efectiva para el caso con mayor
anisotropia en los calculos que realizamos. Esto lo
obtenemos al permitir que las areas transversales de los
cilindros cambien hasta en un 90 %. La velocidad efectiva
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(graficada en rojo) de la figura 4 corresponde al punto
seflalado con una flecha en la figura 3. Cabe sefialar que las
velocidades efectivas graficadas en las figuras 1, 2 y 3

fueron con £ paralelo al eje de las x, pero también
presentaban una ligera anisotropia.

4. Conclusiones

Estudiamos como se ve afectada la velocidad de
propagacion del sonido en un sistema de cilindros
metalicos que se desordenan a partir de un sistema
periddico hexagonal. En este modelo, la velocidad efectiva
de propagacion de ondas acusticas tiene una dependencia
de la direccion de propagacion, por lo que se puede
estudiar la anisotropia inducida por el desorden.

Se analizaron dos formas de generar desorden: mover
aleatoriamente los cilindros dejando sus radios iguales y;
cambiar aleatoriamente los radios de los cilindros, dentro
de cierto rango, dejando sus centros en sus posiciones
siméticas. Se observa un mayor efecto sobre la velocidad
efectiva en el segundo caso. La anisotropia inducida por el
desorden es ligeramente mas marcada cuando se cambian
los radios, que cuando se mueven los centros de los
cilindros. En el caso mas general, en el que se desordena el
sistema de las dos formas simultaneamente, la anisotropia
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sera ain mas marcada. Esto es un trabajo que estamos
desarrollando actualmente.

Los resultados de este trabajo pueden dar mayor
confianza a los experimentales, pues les dan cierto rango
de confiabilidad a los estudios de sistemas periddicos, a
pesar de que estos no sean “perfectos”. También les pueden
servir para saber de que orden son las variaciones en la
velocidad efectiva al desordenar el sistema.
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