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En este trabajo se presentan resultados de cálculos teóricos de la velocidad efectiva del sonido de un sistema 
bidimensional desordenado de cilindros de aluminio en aire en una estructura hexagonal. Al comparar con el caso 
simétrico se encuentra una ligera anisotropía inducida por el desorden. También se analiza el caso en el que el desorden se 
introduce mediante una variación aleatoria de los radios de los cilindros y se encuentra que la anisotropía es más marcada 
en este último caso. Utilizando el método de expansión de ondas planas en el límite de grandes longitudes de onda 
(homogenización) desarrollado previamente y, tomando una supercelda de 25 cilindros ligeramente desordenados, 
calculamos la velocidad del sonido en sistemas periódicos. 
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We present theoretical results for the effective sound velocity of a two-dimensional disordered system composed by a 
hexagonal array of aluminum cylinders in air. Compared with the symmetric case we observe a small anisotropy induced 
by the disorder. We analyze a different type of disorder considering a random variation of the cylinders radii and we 
observe a bigger anisotropy for this case. Using the plane wave expansion method in the long wavelength limit 
(homogenization) previously developed together with a supercell containing 25 cylinders lightly disordered, we calculate 
the sound velocity in periodic systems.  
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1. Introducción 
 

La propagación de ondas acústicas y elásticas en medios 
heterogéneos es un problema que desde hace muchas 
décadas ha mantenido un constante interés entre la 
comunidad científica [1 – 4]. Mucho del trabajo 
desarrollado ha sido el calcular y controlar los rangos de 
frecuencia dentro de los cuales se prohíbe la propagación 
de ondas acústicas. Sin embargo, mucho menos atención se 
le ha dedicado a las regiones muy por debajo de los gaps. 
En estas regiones, la relación de dispersión de las ondas es 
lineal, ω = ceff k; siendo la constante de proporcionalidad, 
(ceff) la velocidad de propagación efectiva de la onda, ya 
que una longitud de onda cubre muchos periodos de la 
estructura y, por consiguiente, la onda se promedia en el 
medio in homogéneo.  

A bajas frecuencias  (grandes longitudes de onda) un 
medio elástico in-homogéneo se comporta como un medio 
homogéneo. Las ondas elásticas propagándose en el medio 
actúan como si se propagaran en un medio homogéneo con 
ciertos parámetros característicos.  Un problema 
fundamental en el estudio de estos sistemas ha sido el 
cálculo de dichos parámetros efectivos; es decir, velocidad 
del sonido efectiva y densidad de masa efectiva. Varios 
grupos utilizando diferentes métodos han reportado los 
valores de dichos parámetros característicos. Sin embargo, 
la mayoría de los resultados teóricos reportados no son 
capaces de reproducir totalmente los resultados 
experimentales [5 – 8]. 

Entre los sistemas bidimensionales más estudiados, se 
encuentra la propagación del sonido a través de un sistema 

periódico de cilindros metálicos en aire. Incluso, se ha 
comenzado a explorar, teórica y experimentalmente [9,10], 
el efecto que tiene en la velocidad de propagación, el hecho 
de que el sistema se encuentre ligeramente desordenado. 
En esos trabajos se reporta el cambio que tiene la velocidad 
de propagación al desordenar el sistema, pero no se habla 
de una anisotropía inducida por el desorden. Además, los 
cálculos teóricos no reproducen satisfactoriamente los 
resultados experimentales en todo el rango de fracciones de 
llenado. En este trabajo utilizando los resultados de la 
teoría de homogeneización de sistemas periódicos 
bidimensionales reportada previamente [2], adaptamos los 
resultados para considerar un sistema desordenado 
tomando en cuenta una modificación aleatoria tanto de la 
posición de los cilindros dentro de la celda unitaria, como 
de los valores de los radios. De esta manera, somos capaces 
de considerar un sistema desordenado y estudiamos la 
velocidad efectiva de propagación del sonido en un arreglo 
de cilindros metálicos en aire. Analizamos la anisotropía en 
la velocidad de propagación debido al desorden. 

 
2. Marco Teórico 
 

El estudio de la propagación de ondas acústicas en un 
arreglo periódico de cilindros de aluminio en aire se 
encuentra desarrollado en las referencias [1,2]. El análisis 
se basa en resolver la ecuación de onda (1) para los modos 
longitudinales (ya que los modos transversales no se 
propagan en el aire), la cual se escribe como, 
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Figura 1. Velocidad de propagación como función de la fracción de 
llenado calculada para el caso simétrico (cuadrados) y para el caso 
ligeramente desordenado (triángulos). Mostramos además la función (1 + 
f )–1/2 (rombos), propuesta por Cervera et al. en la Ref. [9]. 
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Figura 2. Velocidad de propagación como función de la fracción de 
llenado para diferentes grados de desorden. Ésta es una ampliación de la 
Figura 1. 
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Figura 3. Velocidad efectiva como función de la fracción de llenado, 
permitiendo que los radios de los cilindros cambien aleatoriamente de 
manera que el área su sección transversal se incremente o disminuya 
como máximo el porcentaje indicado. 
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Debido a que el sistema es periódico, podemos utilizar el 

teorema de Bloch y expandir en series de Fourier los 
inversos de la densidad y el modulo de compresi-bilidad, 
como aparecen en las siguientes ecuaciones:  
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de manera que γ(G), ν(G) y pk(G) son los coeficientes de 
Fourier respectivos y los vectores G son los vectores de la 
red recíproca. Al introducir estas ecuaciones en (1), se 
obtiene una ecuación generalizada de eigenvalores para los 
coeficientes de Fourier de la presión, de la cual podemos 
obtener la relación de dispersión ω=ωn (k) (n = 1, 2, …) 
siempre y cuando el sistema tenga soluciones no triviales. 
Es aquí cuando se toma el límite ω, k → 0, logrando así la 
homogenización. En este límite la velocidad de grupo es 
igual a la velocidad de fase la cual se calcula como ceff = 
ω/ k. Una vez hecho lo anterior se obtiene la siguiente 
fórmula para la velocidad efectiva del sonido, ver 
referencias [1,2]: 
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la cual, depende no solo de los promedios sobre la 
estructura periódica de los inversos de los parámetros ν  y 
γ  (ν  =f /ρa + (1– f)/ρb;γ  = f / λa + (1– f)/ λb, siendo f la 
fracción de volumen ocupado por los cilindros), sino 
también de los detalles y la geometría de la celda unitaria a 
través de ν (G). Podemos notar que en general la velocidad 
de propagación es anisotrópica, ya que depende de la 
dirección de propagación ( k̂ ). Por lo tanto, esta ecuación 
desarrollada por A. Krokhin et al. en [2], nos sirve para 
hacer el estudio de anisotropía que nos interesa. 

El término de la sumatoria de la ecuación (3) representa 
la corrección al inverso de la densidad que se obtiene 
mediante este método, es decir, 1/eff = ν  – Σ. Obteniendo 
así, también una expresión analítica para la densidad 
efectiva. 

Para tomar en cuenta el desorden, lo que hacemos es 
utilizar una supercelda que contenga varios cilindros, los 
cuales movemos aleatoriamente a partir de una estructura 
hexagonal. Podemos inducir dos tipos de desorden: 
moviendo las posiciones de los cilindros o cambiando los 
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radios de estos. El efecto del desorden se refleja a través de 
ν(G), que se encuentra definido de la siguiente manera: 
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La integral se hace sobre toda el área de la supercelda 

bidimensional, la cual tiene regiones metálicas y regiones 
de aire de densidades ρa y ρb respectivamente. De manera 
que los coeficientes ν(G) se pueden rescribir de la 
siguiente forma: 
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donde F(G) es lo que hemos llamado el factor de forma, 
que para el caso de una supercelda de NR cilindros, el 
cálculo de la integral resulta: 
 

( )
∑
=

⋅−=
RN

i
i

i

i
RGi

rG

rGJ
fGF

1

1
0 )exp(2)(

rr
r

r
r   (5’) 

 
siendo Ri las posiciones de los centros de los cilindros 
dentro de la supercelda, ri son los radios de cada uno de 
ellos y J1 es la función de Bessel de orden 1. 
 
3. Resultados y discusión 
 

Los cálculos se hicieron mediante un programa en 
Fortran 90 que tiene como datos de entrada: las densidades 
y los módulos de compresibilidad de ambos medios, el 
número de cilindros dentro de la supercelda, la constante 
de red, el número de ondas planas, el intervalo de la 
fracción de llenado a considerar, la dirección de 
propagación, el grado de desorden de las posiciones de los 
cilindros y el porcentaje máximo que puede cambiar el área 
de cada cilindro respecto del promedio. El programa genera 
primero los vectores de la red recíproca (G) y las 
posiciones aleatorias de los cilindros y calcula la velocidad 
efectiva mediante la ecuación (3), para cada una de las 
fracciones de llenado consideradas. 

La supercelda se divide en NR pequeñas celdas iguales, 
siendo NR el número de cilindros. Las posiciones de los 
centros de los cilindros se mueven de tal manera que no se 
salgan de esas pequeñas celdas y el grado de desorden 
determina cuanto puede moverse aleatoriamente cada 
cilindro alrededor del centro de esas celdas. El grado de 
desorden lo introducimos a partir de una parámetro que 
varía entre 0 y 10. El máximo grado de desorden que 
consideramos corresponde a 10 y el cero corresponde al 
caso totalmente simétrico. 

Primero analizamos el efecto que tiene mover 
aleatoriamente el centro de los cilindros dentro de sus  
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Figura 4. Velocidad de propagación en función de la dirección de k. 
Se grafica un círculo de referencia para observar mejor la anisotropía 
de la velocidad efectiva inducida por el desorden. 

 
pequeñas celdas. En la figura 1 mostramos la función (1 + 
f)–1/2, que fue propuesta por Cervera et al. en la Ref. [9], la 
cual se mantiene pegada a la línea del cálculo del caso 
simétrico hasta una fracción de llenado de 0.6. Al 
desordenar ligeramente los cilindros (DD = 2), la velocidad 
efectiva cruza la línea del caso ordenado, pues primero va 
por encima y a mayores fracciones de llenado queda por 
debajo. En la figura 2 se hace una ampliación del recuadro 
de la figura 1 incluyendo los cálculos para el mismo 
sistema cada vez más desordenado (DD = 2, 4, 6, 8). En 
este rango, las líneas de los casos desordenados quedan por 
encima del caso simétrico, pero sigue estando por debajo 
de la velocidad del sonido en el aire, observando que los 
valores obtenidos para el caso más desordenado no son los 
que más se alejan del caso simétrico.  

Otra forma de obtener desorden en el sistema es variando 
aleatoriamente los radios de los cilindros dentro de cierto 
rango, manteniendo sus centros en las posiciones 
simétricas. En la figura 3 mostramos los resultados 
obtenidos. Observamos que la velocidad efectiva está por 
encima del caso en el que todos los radios son iguales y se 
alcanza una estabilización en el valor de la velocidad 
efectiva a mayores fracciones de llenado. Recordemos que 
la fracción de llenado se ve limitada por el contacto de al 
menos dos cilindros. Entre mayor es la libertad de 
variación de las áreas transversales, mayor es la diferencia 
entre las velocidades efectivas al ir aumentando la fracción 
de llenado. 

Como mencionamos en la sección II, en general, la 
velocidad del sonido será anisotrópica, es decir, su valor 
depende de la dirección de propagación k̂ . En la figura 4 
mostramos la velocidad efectiva para el caso con mayor 
anisotropía en los cálculos que realizamos. Esto lo 
obtenemos al permitir que las áreas transversales de los 
cilindros cambien hasta en un 90 %. La velocidad efectiva 
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(graficada en rojo) de la figura 4 corresponde al punto 
señalado con una flecha en la figura 3. Cabe señalar que las 
velocidades efectivas graficadas en las figuras 1, 2 y 3 
fueron con k̂  paralelo al eje de las x, pero también 
presentaban una ligera anisotropía. 
 
4. Conclusiones 
 

Estudiamos como se ve afectada la velocidad de 
propagación del sonido en un sistema de cilindros 
metálicos que se desordenan a partir de un sistema 
periódico hexagonal. En este modelo, la velocidad efectiva 
de propagación de ondas acústicas tiene una dependencia 
de la dirección de propagación, por lo que se puede 
estudiar la anisotropía inducida por el desorden. 

Se analizaron dos formas de generar desorden: mover 
aleatoriamente los cilindros dejando sus radios iguales y; 
cambiar aleatoriamente los radios de los cilindros, dentro 
de cierto rango, dejando sus centros en sus posiciones 
siméticas. Se observa un mayor efecto sobre la velocidad 
efectiva en el segundo caso. La anisotropía inducida por el 
desorden es ligeramente más marcada cuando se cambian 
los radios, que cuando se mueven los centros de los 
cilindros. En el caso más general, en el que se desordena el 
sistema de las dos formas simultáneamente, la anisotropía 

será aún más marcada. Esto es un trabajo que estamos 
desarrollando actualmente. 

Los resultados de este trabajo pueden dar mayor 
confianza a los experimentales, pues les dan cierto rango 
de confiabilidad a los estudios de sistemas periódicos, a 
pesar de que estos no sean “perfectos”. También les pueden 
servir para saber de que orden son las variaciones en la 
velocidad efectiva al desordenar el sistema. 
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