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Resumen. Para analizar la especificidad hacia el sustrato de la lipasa
de Candida antarctica fracción B (CAL-B), se probó una serie de
amino ésteres seleccionados con diferentes grupos protectores para la
síntesis de las amidas N-protegidas, utilizando n-butilamina como
nucleófilo y dioxano como disolvente. La lipasa estudiada mostró una
mayor preferencia hacia los sustratos protegidos con benciloxicarbo-
nilo. Un incremento en la temperatura de la reacción de 28 a 40 °C
aumentó la aminólisis biocatalizada.
Palabras clave: Amino ésteres, aminólisis, lipasa, CAL-B, grupo
protector.

Abstract. A series of model amino esters containing different protec-
tive groups were tested to study the substrate specificity of the lipase
from Candida antarctica fraction B lipase (CAL-B) to perform the
synthesis of N-protected amino ester amides using n-butylamine as
the nucleophilic agent in dioxane as solvent. The lipase showed a
major preference toward substrates protected with the benzyloxycar-
bonyl group. An increase of reaction temperature from 28 to 40 °C
increased reaction rate and yield of biocatalysed aminolysis.
Key words: Amino esters, aminolysis, lipase, CAL-B, protective
group.

Introducción

Hace algunas décadas, se pensaba que las enzimas solamente
podían ser utilizadas en soluciones acuosas. Sin embargo,
Dastoli y Price en 1966 [1], observaron por primera vez que
algunas enzimas son activas en disolventes orgánicos. A prin-
cipios de la década de los ochentas, Klibanov demostró que
algunas hidrolasas pueden ser más activas y estables en disol-
ventes no acuosos, y que en éstos pueden catalizar nuevos pro-
cesos químicos [2, 3]. 

Las lipasas (EC 3.1.1.3) son hidrolasas que pueden catali-
zar diversas reacciones orgánicas y son adecuadas para la
resolución cinética de alcoholes, ácidos carboxílicos y ésteres
en agua como en disolventes orgánicos [4]. Por otro lado, la
química de amidas involucra condiciones de reacción drásti-
cas, que no son compatibles con compuestos funcionalizados,
como aminoácidos, sus ésteres y compuestos relacionados. Por
su parte, las lipasas pueden catalizar la condensación de éste-
res simples y funcionalizados con aminas en disolventes orgá-
nicos con buenos rendimientos y en condiciones suaves [5].
Asimismo, la lipasa de Candida antarctica fracción B es un
biocatalizador eficaz por su amplia especificidad hacía el sus-
trato y la que mejores resultados ha dado en la resolución de
ésteres quirales y aminas a través de reacciones de amonólisis
y aminólisis con una alta regio-, quimio- y estereoselectividad
[5, 6]. No obstante, que los aminoácidos y sus ésteres tienen
una gran importancia en la síntesis de compuestos naturales y
farmacéuticos en forma racémica como quiral, son pocos los
trabajos que muestran el uso de CAL-B en reacciones de ami-

nólisis de amino ésteres protegidos en el grupo amino. En la
literatura se ha descrito efecto del grupo protector en la aminó-
lisis de ésteres del ácido glutámico y derivados de este mismo
sustrato [7, 8, 9,], con CAL-B, por lo que se propuso probar
una mas amplia especificidad de esta lipasa por diferentes
amino ésteres conteniendo distintos grupos protectores, en la
aminólisis con n-butilamina en dioxano.

Resultados y discusión

El objetivo de este trabajo fue estudiar la actividad catalítica
de CAL-B en la aminólisis de amino ésteres N-protegidos con
n-butilamina en dioxano. Como sustratos se utilizaron los
amino ésteres de glicina, DL-alanina, β-alanina, DL-fenilglici-
na y DL-fenilalanina N-protegidos con uno de los siguientes
grupos: (a) formilo, (b) ftaloilo (c) acetilo y (d) benziloxicar-
bonilo, adquiridos comercialmente o preparados de acuerdo
con los procedimientos descritos en la literatura [10-13]. Los
grupos protectores se seleccionaron con base en su disponibili-
dad, uso, tamaño y polaridad.

1) Efecto del grupo protector en la especificidad
de sustrato de la lipasa de Candida antarctica
en la aminólisis de amino ésteres.

Las reacciones de aminólisis de los amino ésteres N-protegi-
dos (1 a 20) se muestran en la figura 1, y los resultados apare-
cen en la tabla 1. Del análisis de la tabla puede verse, que los
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Tabla 1. Aminólisis enzimática de amino ésteres utilizando diferentes grupos protectores en N.

1Tiempo en el que la reacción no enzimática empieza a ser apreciable por cromatografía en capa fina y/o cro-
matografía de gases-espectrometría de masas. 2Rendimiento químico. 3El producto se obtuvo a partir de la ami-
nólisis enzimática de los sustratos (1 mmol) con n-butilamina (1.05 mmol) como nucleófilo, utilizando CAL-B
(50 mg) en dioxano (2 mL) a 28 ºC.

Fig. 1. Aminólisis de aminoésteres catalizada por CAL-B en dioxano.
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sustratos (1) a (3) protegidos con el grupo formilo, no dieron
la aminólisis enzimática, posiblemente, debido a que éste es
un grupo polar que presenta interacciones polares (como enla-
ce de hidrógeno) con los sitios de naturaleza similar de la
enzima (por ejemplo el mismo sitio activo); lo cual dificulta
que realice su función catalítica [14]. Sin embargo, los sustra-
tos (4) y (5), aunque contienen el grupo formilo, introducen
un grupo fenilo y bencilo respectivamente, aumentando la
hidrofobicidad de los mismos, pero disminuyendo las interac-
ciones polares mencionadas, por lo que CAL-B cataliza la
aminólisis de estos sustratos. Asimismo, con el aumento de la
hidrofobicidad también aumenta el volumen molecular de los
sustratos (4) y (5), introduciendo un efecto de interacción
estérica sustrato-sitio activo de la enzima, que se refleja en los
relativamente modestos porcentajes de conversión, así como
en lo lento de la reacción [40% en (4) y 20 % en (5), respecti-
vamente]. Similarmente, el efecto hidrofóbico y estérico men-
cionados también se observaron cuando se utilizó el grupo
protector ftalimidoilo y, como puede notarse en los sustratos
(6), (7) y (8), la aminólisis enzimática procedió muy lenta-
mente y con bajos rendimientos de conversión, mientras que
con los sustratos (9) y (10), altamente sustituidos en la posi-
ción α (ya que introducen un grupo fenilo y bencilo respecti-
vamente), no hubo biotransformación.

En el mismo orden de ideas, se procedió a probar sustra-
tos con grupos protectores acetilo (11-15) y benciloxicarboni-
lo [Cbz, (16-20)], ampliamente utilizados en la química de
aminoácidos y sus derivados. 

En el caso del grupo protector acetilo, solo se observa el
proceso de aminólisis no enzimática con los amino ésteres ali-
fáticos: glicina (11), β-alanina (12), DL-alanina (13) en 8, 24
y 24 h respectivamente, sin apreciarse el proceso de biocon-
versión. En el mismo orden de ideas, con el mismo grupo pro-
tector, los amino ésteres aromáticos (14 y 15) dan lugar a la
aminólisis no enzimática mas lentamente (en 192 y 168 h res-
pectivamente), sin apreciarse el proceso catalizado por la enzi-
ma; en ambos casos posiblemente se deba al aumento de volu-
men estérico alrededor del grupo acilo, debido a la introduc-
ción de un grupo fenilo y bencilo respectivamente.

Los amino ésteres alifáticos protegidos con el grupo Cbz
[sustratos (16-18)] dan la aminólisis enzimática con rendi-
mientos moderados antes de apreciarse el proceso no biocata-
lizado. El rendimiento de la aminólisis catalizada por CAL-B
sobre (16-18), depende del sustrato: para el éster de glicina
(16) fue de 55% en solo 48 h (apreciándose la aminólisis no
catalizada en ese tiempo). No obstante, el derivado de β-alani-
na (17) mostró una reactividad más lenta, fue el mejor sustrato
para la enzima (72% de conversión en 504 h). Finalmente, en
el caso del éster de DL-alanina (18) más impedido esterica-
mente (por el grupo metilo en la posición α al éster), da la
aminólisis enzimática en 45% a las 192 h, tiempo en el cual el
proceso no biocatalizado empieza a apreciarse.

Asimismo, el aumento de volumen estérico en los sustra-
tos (19 y 20) que contienen un sustituyente fenilo y bencilo en
posición α, da como resultado que no sean biotransformados
por CAL-B, lo cual puede atribuirse al aumento en las interac-

ciones estéricas de dichos sustituyentes alrededor del grupo
acilo y el volumen crítico del sitio activo de la enzima. La
influencia de factores estéricos en el sustrato acilante, aparen-
temente similares a los mencionados arriba se encuentran
documentados en la literatura [8, 15].

2) Efecto del grupo protector en la especificidad
de sustrato de la lipasa de Candida antarctica
en la aminólisis de ésteres de β-alanina

En la Tabla 2, se compara el efecto de tres diferentes grupos
protectores en la aminólisis enzimática de β-alanina con CAL-
B y n-butilamina en dioxano. De acuerdo con los resultados,
CAL-B acepta como sustratos a los amino ésteres protegidos
con los grupos: acetilo (13), Cbz (17 y 21) y t-butoxicarbonilo
(22). Cuando el grupo protector es acetilo, empieza a obser-
varse la aminólisis no enzimática en 24 h, y el mismo proceso
no biocatalizado es del 15% de conversión a las 216 h. De
acuerdo con la tabla 2, los mejores sustratos de CAL-B fueron
los ésteres etílico y n-propílico de β-alanina (17 y 18) con los
cuales se obtuvieron los mejores porcentajes de conversión
(72 y 74% respectivamente), concluyéndose que la naturale-
za del alcoxilo (etiloxi o n-propiloxi) no tiene influencia en
la selectividad de la enzima por β-alanina N-Cbz.

Para el caso del grupo protector t-butoxicarbonilo el sus-
trato (22), mostró solo reacción enzimática con un bajo por-
centaje de conversión (33%), probablemente por el volumen
estérico introducido por el grupo t-Boc, que influyó en el
acceso del sustrato al sitio activo de la lipasa; por lo cual
podemos inferir que el grupo protector en el reactivo acilante
(β-alanina en éste caso) debe ser no muy largo como el grupo
ftalimidoilo, ni debe ser ramificado como el grupo t-butoxi
carbonilo: el grupo benciloxicarbonilo cumple con esta condi-
ción por lo que resulta el mejor grupo protector para llevar a

Tabla 2. Aminólisis enzimática de éster etílico de β-alanina utilizan-
do diferentes grupos protectores en N.

1Tiempo en el que la reacción no enzimática empieza a ser apreciable por cro-
matografía en capa fina y/o cromatografía de gases-espectrometría de masas.
2Rendimiento químico. 3El producto se obtuvo a partir de la aminólisis enzi-
mática de los sustratos (1 mmol) con n-butilamina (1.05 mmol), CAL-B (50
mg) dioxano (2 mL) a 28 ºC.
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cabo los procesos de aminólisis catalizados por la CAL-B
mencionados. Similarmente, Conde menciona [14], que los
volúmenes de los grupos protectores (t-Boc, de 92.79 Å3, y
Cbz de 109.82 Å3), no necesariamente están relacionados con
la interacción estérica que ejercen en las reacciones de aminó-
lisis de ésteres del ácido glutámico con CAL como cataliza-
dor. El grupo Cbz es un grupo más bien largo y por esto exhi-
be un mayor volumen que el t-Boc, pero ofrece menores inte-
racciones estéricas que éste grupo, que aunque más pequeño,
es más ramificado y susceptible a dichas interacciones. Es
conocido que CAL-B muestra una hendedura no muy ancha,
más bien alargada en el sitio enlazante donador de acilo y
parece ser determinante en las interacciones enlazantes entre
el grupo acilante del sustrato y la enzima, tanto para su especi-
ficidad como en la estereoselectividad del proceso que cataliza
[16]. Similares resultados debidos a constricciones estéricas y
geométricas han sido informados en la literatura para otras
enzimas y sustratos [7,8,13,17].

Sánchez et al. reportan, la reacción de aminólisis análoga
de N-Cbz-3-amino butirato de etilo (23), catalizada por CAL
en tolueno (Fig. 2) [18]. La conversión química para este sus-
trato fue de 47% en 13 h, reportado como el mejor resultado;
cuando se utilizó dioxano como disolvente los rendimientos
fueron más bajos aún (no se indican [18]), debido posiblemen-
te a la obtención del producto de la hidrólisis del éster (23).
De acuerdo con esto y como puede apreciarse de los resulta-
dos obtenidos en este trabajo, la baja conversión obtenida de
las reacciones de aminólisis de los distintos amino ésteres pro-
tegidos puede ser debida además de los efectos estéricos men-
cionados, a la proporción de agua que se encuentra asociada a
la enzima y al disolvente dioxano hidrofílico, permitiendo la
reacción competitiva de hidrólisis, a pesar del uso de mallas
moleculares en los procedimientos experimentales para mini-
mizar la reacción hidrolítica. Por otro lado, el átomo de oxíge-
no del carbamato juega un papel importante en las interaccio-
nes enzima-sustrato y debería producir un efecto positivo en la
velocidad de reacción respecto de otros grupos protectores [7].

3) Efecto del aumento de la temperatura de 28 a 40 ºC
en la aminólisis enzimática de aminoésteres N-protegidos

Los aminoésteres protegidos con el grupo Cbz que dieron los
mejores porcentajes de conversión enzimática en los experi-

mentos previos: ésteres etílicos de glicina (16), de β-alanina
(17) y de DL-alanina (18), se sometieron a la aminólisis enzi-
mática utilizando CAL-B y n-butilamina en dioxano como
disolvente, a 40 °C. Se seleccionó esta temperatura para evitar
la reacción de aminólisis química, ó no enzimática. En el caso
del sustrato (16), la conversión enzimática se aumentó del
55% (28 °C) en 48 h, a 84% a las 24 h (40 ºC), tiempo en el
que ya se presenta el proceso no enzimático. En el caso del
sustrato (17), derivado de β-Alanina se mejora la conversión
enzimática del 72% (28 ºC) a 86% (40 ºC), acortándose el pro-
ceso de 504 a 49 h por efecto de aumentar en 12 ºC la tempe-
ratura del proceso. En el caso del éster etílico de DL-alanina
(18), la conversión enzimática del 45% a (28 ºC) en 192 h, se
aumentó a 60% (40 ºC) en el mismo tiempo. En relación con
el efecto de la temperatura sobre las reacciones de amonólisis
y aminólisis mediante catálisis enzimática, los pocos trabajos
reportados se encuentran dirigidas a incrementar la enantiose-
lectividad de los procesos biocatalizados, en tanto que el enfo-
que del presente ha sido el de aumentar la conversión y redu-
cir el tiempo de los bioprocesos [19, 20]. 

Conclusiones

Los resultados de este estudio de especificidad de CAL-B
muestran que en las condiciones probadas, los sustratos prote-
gidos con un grupo protector voluminoso como ftaloilo, no
son sustratos adecuados para CAL-B. Con el grupo formilo
polar, se observa que la enzima puede aceptar sustratos aro-
máticos fenilalanina y fenilglicina, pero no cataliza la aminóli-
sis de los alifáticos: glicina, DL-alanina y β-alanina. Los sus-
tratos protegidos con el grupo acetilo producen el proceso de
aminólisis no biocatalizado con los amino ésteres alifáticos,
mientras que los amino ésteres aromáticos protegidos con ace-
tilo y Cbz no son sustratos para CAL-B. Son sustratos para la
lipasa, D,L-alanina, glicina y β-alanina protegidos con Cbz y
β-alanina con t-Boc, siendo este sustrato más favorablemente
aceptado por la enzima. Finalmente, la aminólisis de los
amino ésteres alifáticos se incrementó al aumentar la tempera-
tura de la reacción catalizada por CAL-B de 28 oC a 40 oC. Un
estudio más completo, deberá considerar la influencia del
disolvente orgánico en el proceso de aminólisis biocatalizado
de los sustratos arriba mencionados.

Parte experimental

La lipasa de Candida antarctica fracción B (CAL-B,
Novozyme SP-435, 7,000 unidades de laureato de propilo), se
obtuvo de Novo Nordisk (ciudad de México). La muestra a
utilizar se almacenó bajo atmósfera de nitrógeno a 10 °C o
menos. Todos los sustratos, disolventes y reactivos se adqui-
rieron de Sigma-Aldrich. El dioxano se destiló de mallas
moleculares de 4 Å y se almacenó en un recipiente con mallas
moleculares de 4 Å previo a su uso. Las reacciones se siguie-
ron mediante cromatografía en placa fina o cromatografía de

Fig. 2. Aminólisis de N-Cbz-3-aminobutirato de etilo con benzilami-
na catalizada por CAL en tolueno [17].
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gases-espectrometría de masas. Para cromatografía en placa
fina se utilizaron placas de aluminio recubiertas de silicagel 60
F254 de Merck y para cromatografía en columna se utilizó sili-
cagel 60/230-400 mallas de Merck. Los espectros de infrarrojo
se realizaron en un FT-IR Paragón 500 de Perkin-elmer, adap-
tado con dispositivo HATR y placa de ZnSe. Los espectros de
RMN de H1 y C13 se realizaron en un equipo Varian de 300
MHz. Los valores de desplazamiento químico se expresan en
ppm respecto al TMS, usado como la referencia interna y
como disolvente CDCl3. Los espectros de masas se realizaron
en un equipo de cromatografía de gases acoplado a espectro-
metría de masas de Shimadzu GC-MS 5050, de 70 eV y un
analizador cuadrupolar. La columna capilar utilizada fue
Supelcowax 10, de 30 m de largo × 0.32 mm de diámetro
interno.

Procedimiento general para la aminólisis enzimática
de los aminoésteres 1-22

Para la preparación de las amidas de los aminoácidos 1-22, a
un vial con la enzima (50 mg) y cada uno de los aminoésteres
N-protegidos (1 mmol) se secaron al vacío y a través de un
septum de hule sintético se adaptó un globo con N2 de alta
pureza, y mediante una microjeringa de silicato se adicionó 4
mL de dioxano. A la mezcla anterior se adicionó con microje-
ringa la n-butilamina (1.05 mmol). La mezcla de reacción se
incubó a 30 °C con agitación orbitálica. El curso de la reac-
ción se siguió, hasta el consumo completo del sustrato o la
aparición incipiente del producto del proceso no biocatalizado,
mediante CCF y/o CG-EM. Al cabo de la bioconversión, la
mezcla de reacción se filtró y se lavó con porciones de diclo-
rometano (3 × 10 mL). El filtrado se concentró en rotavapor y
el residuo se purificó mediante cromatografía en columna, uti-
lizando como eluyente mezclas de hexano-acetato de etilo
(desde 8:2, hasta 50:50) para obtener las amino amidas corres-
pondientes. La determinación estructural de los productos se
realizó mediante las técnicas espectroscópicas de FT-IR,
RMN de 1H y 13C y espectrometría de masas.
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