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Abstract. We analyze the notion of Density Functional Theory from
the definition of a density of action over spacetime. We derive a theo-
ry to obtain the energy as a function of particle density, which con-
tains the standard Density Functional Theory (DFT) and enlarges it
by considering in one functional both the density of particles and the
energy density per particle. The formulation presents a mathematical
structure where the particle density is a factor of the energy per parti-
cle. The starting point is the definition of a global action density K(x)
from which, by successive projections, the density Kj for a given type
j of particles is projected. This density is then factorized into gauge
dependent factors, which are shown to generate known relations and
structures of quantum mechanics. Within DFT the minimization of
the energy density functional, with respect to changes in the density,
contains as a consequence two terms: the first corresponds to the
standard density functional theory for non-interacting particles, and
the second to the optimization of the kinetic and the interparticle
interaction energy, terms that go beyond the standard DFT. We show
explicitly the relation of the present approach to standard Wave
Quantum Mechanics and show explicitly the reasons within space-
time-action of several basic postulates of Quantum Mechanics.
Keywords: Density functional theory, fundations of quantum mecha-
nics, principle of choice (PC).

Resumen. Analizaremos los fundamentos de la teoría de los funcio-
nales de la densidad (DFT) a partir del concepto de una distribución
de acción en el espacio-tiempo. Al hacerlo se aclaran sus principios y
su relación con la Mecánica Cuántica formulada a partir de ecuacio-
nes y funciones de onda. Se encuentra que en principio el concepto
de DFT es más fundamental y como consecuencia que varias relacio-
nes fundamentales de la mecánica cuántica están basadas en las pro-
piedades de esta descripción. Proponemos y discutimos el principio
de libertad para escoger descripciones aceptables equivalentes (prin-
ciple of choice of acceptable equivalent description, in short, princi-
ple of choice, PC).
Palabras clave: Funcionales de la densidad, fundamentos de la me-
cánica cuántica, principio de selección.

1. Introduction

The applicability of Quantum Mechanics to study the proper-
ties of matter at the level of nuclear, atomic, molecular and
condensed matter physics is both universal and thus far
unquestionable. Otherwise in the calculation of the properties
of many particles systems the methods based on the use of the
particle density as the basic variable have been specially suc-
cessful. The method started with the suggestions of Thomas
(1927) and of Fermi (1927, 1928) to use the density as the
variable to compute the total energy as a functional of this
density. The original idea was considered to be an approximat-
ed method where the guidance could come from wave func-
tions quantum mechanics (see [1-8]). These ideas have also
been extended to the calculation of transition probabilities and

response functions. (see for example Parr and Yang and refer-
ences therein [7] also [4]). In a series of papers [3] we have
stated that the theory required a third theorem which intro-
duces the correct boundary conditions and the poles of the
Green’s function of the system. Here we show the universality
of DFT and in fact present it from first principles.

In practice the use of DFT has been very successful be-
cause, besides the use of the density functional equations, an
auxiliary set of equations were introduced by considering that
the density could have been constructed from a set of auxiliary
functions and occupation numbers. The analysis of this proce-
dure, now known as the Kohn–Sham equations, revealed that
the set of eigenfunctions and eigenvalues are related to the ele-
mentary excitation of the system where one particle was
removed at a time [2]. This is quite similar to the case of stan-



dard quantum mechanics with wave functions, where in the
Hartree approximation the different states also are in one to
one correspondence to the same type of excitations of the sys-
tem or in the Hartree–Fock method where, according to the
Koopmanns theorem, the eigenfunctions and the eigenvalues
correspond to this, removal of one particle, elementary excita-
tions of the system. It has been clear from the analysis of these
cases that the inclusion of these excitations correspond to the
more significant contributions to the density. Other elemen-
tary excitations contribute by amounts that are one or two
orders of magnitude smaller, for example in the case of reso-
nance energies and densities in polycyclic hydrocarbons [8].

In our present paper we will take a different starting
point. The equations will be a systematic derivation from the
consideration of the existence for any physical system of a
density of action in spacetime and a theory relating that densi-
ty of action (to the desired degree of complexity) to a repre-
sentation of the physical system to which that action corre-
sponds.

In section 2 we present the concept of a spacetime-action
geometry in a form suitable for our purposes. In section 3 we
define the action distribution function and its main properties.
In section 4 we derive the equations for the new description of
matter and interactions fields. In section 5 we will analyze the
procedure and in fact show that Space-Time-Action Relativity
Theory (START) [9] contains a fundamental formulation of
Quantum Mechanics and DFT.

2. Spacetime Action Geometry

In mathematical physics it is usual to consider spacetime as a
frame of reference for the description of matter and the inter-
action fields, its use corresponds to postulating a specific
approach to Geometry and in particular to Geometrical Analy-
sis [10]. In fact spacetime, having a multivector structure and
containing a spinor (and dual spinor) space, not only describes
our perception of the physical nature but is also a powerful
mathematical tool. Here we present both, a motivation for the
use of a more general geometry, corresponding to space-time-
action (STA) and the basic idea to describe matter in this
geometry.

From a series of considerations [9,10], we have conclud-
ed that action has  Spacetime Geometry pseudoscalar proper-
ties. Our analysis have shown that, if considered jointly with
spacetime, this option is the more useful identification of the
geometric properties of the action. Otherwise, when action is
considered separately, it is always properly represented as a
scalar quantity. The action constant is then, geometrically,
both the constant relating energy-momentum to spacetime and
the key to the construction of an unified geometry of space,
time and action. The new geometry is derived from the intro-
duction of an action coordinate x5 = a(x) — where a is the
density of action at a given point x of spacetime, h Planck’s
constant and d0 an invariant basic length to be determined
below, basically x5 = κa (x). We use the traditional indexes

0,1,2,3 for time and space and, also, the isomorphism between
the Dirac gamma symbols γµ with the vectors in the geometry
of spacetime.

In fact the special property of the pseudoscalar in space-
time (in the notation above e5 = ie0e1e2e3) is that e5eµ = –eµe5
(from eµeν = –eνeµ , µ ≠ ν ) and then it has the same commut-
ing properties with the generating vectors than the generating
vectors among themselves. The linearly independent multi-
vector e5 = iγ5 is then the immediate candidate to introduce an
additional basis vector, adding one more dimension and,
through its use, obtain the five dimensional carrier space
spanned by the basic vectors ev , v = 0,1,2,3,5 with metric guv =
diag (1,–1,–1,–1,1). Its use allows the construction of a geo-
metrical frame of work for the description of physical process-
es: a unified space-time-action geometry GSTA.

The product of e5 = ieps with any element of the original
Spacetime Geometry GST is a purely imaginary quantity with
the result that the elements of the new (space-time-action)
geometry are equivalent to GSTA = GST ⊗ C.

The value of d0 we use (taken from the theory of the elec-
tron) is d0 = r0/2α, the Compton radius, where r0 = e2/m0c2,
the radius that relates the mass of the electron to an electro-
magnetic equivalent energy and also r0 = µ/gDc the ratio of
the electron magnetic moment to the Dirac monopole magnet-
ic charge. With this choice the presentation of the theory will
immediately be suitable for the study of elementary particles.
Nevertheless we have shown that the same units are practical
in the study of gravitational interactions.

There is a simple picture of STA: it consists of the space-
time continuum with an action density at every point of space-
time. This should be in fact the description of the space of phys-
ical phenomena. A full theory has been described elsewhere
[10] as Space-Time-Action-Relativity-Theory (START). In
spacetime, even if a geometrical unity has been achieved, space
and time coordinates are not really equivalent for physical phe-
nomena. While we can move in space in any direction and we
can place systems in different points of space which can be
changed according to the physical circumstances, time is
always flowing, for all observers and systems, without any pos-
sibility of a back in time displacement. Even for an event as a
light ray, where a congruence of points is defined from the
property ds2 = gµνdxµdyν = (ct)2 – x2 = 0, that is points where
the spacetime distance vanishes, there is an evolution in time
which can not be either put to zero or, even less, made negative.
Then to have an action defined at every point of spacetime cor-
responds in practice to an energy ε defined at each point of
space for a given observer, because the observer has to consider
the local and relative rate of change of action A: ∂A/∂ t = ε, as
far as for it time is always flowing. A density of action in space-
time corresponds to a density of energy in space for a given
observer. Of course density of action in spacetime is a relativis-
tic covariant expression. In fact for another observer in relative
motion with respect to the first the energy density will appear as
a fourvector energy-momentum density.

Below we will call this density K = K(X, µ, ν) where the
arguments of the function are the spacetime coordinates X,
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and two collective indexes, not used in this paper, for each
one of the factors of action (energy-momentum) and (time-
space). Here we should remind the reader that the Lagrangian
function corresponds to the time-density of action, related but
not equal to K(X).

3. Action Density Functional Theory 
and Wave Function Theory

In the space defined above we now introduce a dimensionless
function K = K(X) defined at each point X of spacetime.

Here we have to make two crucial considerations about
what we know about action and about quantum mechanics
that will be basic for the systematic procedure presented in
this section.

As we mention in the previous section for each observer
the concept of action is locally the study of the energy attrib-
uted to physical phenomena. Relativity theory showed that an
energy-momentum content in a given volume presents an
inertia M, mass, through the basic relation M = E/c2, this total
energy content is independent of the form we have chosen to
describe that matter. Let us for example start by considering
that we have a free particle of a solid material. Which means
that we have chosen a macroscopic point of view and a sepa-
ration into the material itself and some external forces repre-
senting the mutual interaction between the material and the
rest of the physical system. For some practical purposes this
could be a sufficient degree of description where only shape
and density will be required. We also know that if we consider
that this piece of material is in movement relative to some
measuring device, quantum mechanics can be applied to the
material as a unit. Otherwise we may consider that the solid
particle consists of molecules in interaction, and that there is
an effective interaction potential between the molecules (this
is a very common case in the study, for example, of rare gas
solids). Quantum mechanics should be applied again for this
system of interacting molecules. If our decision is to describe
the material as electrons and nuclei we will again apply quan-
tum mechanics at this level of detail in the description. The
next steps, the study of the nucleus or the study of the nucle-
ons are again admissible. In every case we will have a total
energy which should be equal to the total energy of the previ-
ous steps and we will have the practical choice of separation
at any degree of description into: constitutional energy or
mass, kinetic energy and interaction energy.

That is: quantum mechanics is a universal description of
the phenomena, valid for any degree of detail we might have
chosen for the description and can not be a property of the
components but a basic property for the description of nature.
Action and spacetime are fundamental concepts in the
description of nature and not concepts dependent on the sys-
tem we are describing.

But, because particle density and density of action are
gauge invariant physical quantities, we need to develop a pro-
cedure which can allow gaugefreedom, that is allow for arbi-

trary but correct and useful descriptions. This is possible with
the introduction of the probability amplitude known as wave
function ψ, required to contain the necessary information in a
form compatible to the basic concept that the energy-momen-
tum components are obtained by using the operator ih- ∂µ
applied to the function which describes the splitting of the
action density into a particle density ρ and the action per parti-
cle. The definition ρ = ψ 2 allows gauge independence. This
procedure can be carried at any level of description, hence the
universality of the possibilities to use Wave Equations in
Quantum Mechanics.

Once we have established that we are: 1.- defining a den-
sity of action in spacetime which corresponds to an energy
density in space E(x) = ih- ∂ K(X)∂ t for a fixed observer, for
the reason to use i see below in this section, and 2.- the uni-
versality of the description, which allows a choice of the level
of detail (for example: molecules → atoms → electron and
nuclei to nucleons → quarks, provided that at each step the
decision is formally made by selection of the type of “parti-
cle” and by the type of interaction between particle and the
internal energy of the particles) we can now proceed to the
steps creating a practical density functional theory:

The energy density is written as a product of a particle
density and a (global) energy per particle.

E = ∫ E(x)dv = ∫  ρ(x)εdv = ∫ ρ(x)(kin(x) + V(x) + 

Vxc(x)) + ε0 (x))dv , 

where we have defined the energy density E(x), the particle
density ρ(x), the actual kinetic energy per particle kin(x), the
external and average internal potential energy per particle
V(x), the correction to the average kinetic and potential ener-
gy per particle arising from the statistics of the type of parti-
cles under consideration Vxc(x), and a local energy ε0(x), basic
term required to compensate for any difference in the sum of
the previous terms with respect to the average energy per par-
ticle ε. Density functional theory describes the self organiza-
tion of the system with density ρ (x).

The fact that we are arbitrarily defining the terms above
requires the possibility of changing the description of the
energy partitioning without changing the description of the
density. That is that the density ρ (x) is required to be gauge
invariant whereas the description of the energy (action) is
gauge dependant. This is achieved by constructing the energy
density as the product of two conjugated quantities Ψ(x) and
Ψ†(x) such that ρ (x) = Ψ†(x) Ψ(x) is gauge invariant. Here we
have defined an auxiliary quantity which can be essentially
written in terms of the basic action a(x) and the action intro-
duced by the gauge freedom φ (x) in units of h- , as

Ψ (x) = √ ρ (x) e–ia(x) + iφ (x) ,

where we are restricted, by definition, to

h- ∂(a(x) + φ (x))/∂t = ε ,
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showing the gauge freedom of the description of the energy
associated with the particle. In a sense at all position points x
we have the same energy per particle ε which only in the sim-
plest cases would be the sum of a kinetic and a potential ener-
gy part in the traditional sense. A well known example is the
case of electron density functional theory where the kinetic
energy is assumed the kinetic energy of the free electron gas
and then our term ε0(x) will contain, among other terms the
difference between the actual kinetic energy and the free elec-
tron gas term. The term ε0(x) exists either from the incomplete
description of the other terms, the usual case, or from inaccu-
racies in the computational procedure. It acts locally to dis-
tribute the density in the form which minimizes the total ener-
gy and corresponds then to a variational procedure in the for-
mulation of the theory. In the definition above if kin(x)  +
V(x) + Vxc(x)) + ε0(x) are properly defined, then we should
require that ∫ ρ(x)ε0(x)dv = 0. The use of the Hohenberg-Kohn
Theorems [1] and the Kohn-Sham minimization procedure [6]
for the definition of this two terms

 
δ (E [ρ] – ε ∫ ρ (x),dv – 1  ) = 0 , 

 

allows the direct self-consistent determination of ρ (x) and ε
(see [2]).
In the formalism we have a very useful self-consistency rela-
tion

Ψ (x) = ∫ w(x) G(x, x′) Ψ(x′) + Ψ0(x)

where             w (x) = ∆ρ (x)ε + ρ (x) ∆ε(x) .

We have introduced both, the response function of the
system G(x, x′), and the effective potential which would be
caused either by fluctuations of the density or by differences
in the local definition of energy per particle. This reaction
would propagate to all points of the distribution to achieve
stability. We have used elsewhere an approximation for the
response function G(x, x′) in terms of the lowest elementary
excitations of an electron gas.

3.1 Restriction to Standard DFT

The auxiliary function Ψ in (1) is identical to the standard
quantum mechanical ψ in the case of a “one” particle system,
otherwise we should consider it as the function which repre-
sents the gauge dependent square root of the density of action,
obeying the equations 

heff Ψ (r) = µ Ψ (r) , (5)

where we have defined an effective operator

heff = –∇2 + υ (r) + υeff (r) , (6)

such that the system’s energy

Ts[ρ] = ∫ Ψ†(r) (–∇2) Ψ(r) + Tθ [ρ] , (7)

defining, variationally, the effective potential

——— = –—— + υθ([ρ]; r) + Vss([ρ]; r}), (8)

∆ε−(r)υθ ([ρ]; r) + Vss([ρ]; r) = ——— ,   ——— +

υKS([ρ]; r) = εM . (9)

then (5) reads

–∇2Ψ + υKS([ρ]; r)Ψ + {υθ ([ρ]; r) + Vss([ρ]; r)} Ψ. (10)

and

∆ε−(r)ρ(r) = ∑
i

εiψi(r)2 – ε−ρ(r) , (11)

which is equivalent to the optimization of 

Ω = E[ρ] – µ 
 ∫ ρ (r)dr – N 


– λ 

 ∫ ∑εiψi(r)2 dr 

– ∫ ε−ρ (r)dr


(12)

using a set of auxiliary functions ψi, with the index i running
through all possible forms of extracting one particle from the
system

–∇2φi + [υxc(r) + υCoul(r) + υext(r)] φi = εiφi. (13)

which will define the elementary excitations of the system
corresponding to the removal of one particle with rate of
change of the energy εi

∑
i

hi(r)KS = ∑
i

εiφi2, (14)

this is equivalent to the Kohn-Sham procedure and the use of
the Kohn-Sham effective hamiltonian hi(r)KS

hi(r)KS = –φ*
i∇2φi + φ*

i[υxc(r) + υCoul(r) + υext(r)] φi . (15)

and then for the gauge dependent square root of the density
auxiliary function (see [3,4a])

–∇2Ψ + υ FK(r)Ψ = ε− Ψ, (16)

υFK(r) = υxc(r) + υCoul(r) + υext(r) + Ψ†,2Ψ 
+ k(r) – ∆ε−(r). (17)

The last three terms correspond, the first two to the correct
kinetic energy density and the last one, as above, the symme-
try constraint potential arising from the actual values of the

(4)

δTs[ρ]

δTs[ρ]δTθ [ρ]

Ψ†∇2Ψ
Ψ†Ψδρ(r)

δρ (r) δρ (r)
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energy necessary to remove one electron from the system and
the average energy per electron: 

∆ε−(r) = ∑ niεi φi(r)2 / ρ (r) – ε− (18)

4. From Action Density Functional to Wave
Mechanics

We now proceed formally to show that the procedure within
START described here is equivalent to the usual postulation
of the principles of the wave equation approach to quantum
theory.
(1.) We have defined, for the representation of the physical
system an (complex function) adimensional density of action
K(X) at each space-time point X = γµ Xµ .
(2.) The action is factorized, for its study, into a carriers densi-
ty n(X) and a local average action per particle k(X) 

K(X) = n(X)k(X). (19)

(3.) The energy of the system E(X) = ih- ∂ K(X)/∂ t is obtained
from this action density or in general

Πµ (X) = [ih- ∂ K(X)/∂ Xµ]R = n(X)pµ (X), (20)

for the energy momentum four vector Π. This equation is in
fact the defining equation for K.
(4.) To see the correspondence to the space-time-action geom-
etry (STA) we remind the reader that the fifth axis of this
geometry was labelled by iγ5 and that γ5 is the unit four-vol-
ume in spacetime, then the density

K(X) = (i/h- )A(X) = –a(X)iγ5γ5 = –ia(X), (21)

per unit spacetime volume. We see that this quantity is a pure
imaginary complex number. Note that action acquires a nega-
tive sign from ( iγ5) (–iγ5) = (γ5)2 = –1
(5.) This action distribution representing the physical system
has two sources of gauge dependence. (a) the dependence on
the definition of the reference spacetime hypersurfaces in the
STA space, a dependence related to gravitation, and (b) the
dependence on the arbitrary (either by incomplete knowledge
or by practical decision) choice of the type(s) of field(s)
whose density is represented by n(X) and, by definition of the
fields, their energy contributions. Here we should consider
from very simple, one type of action carriers, to complicated
cases like a system of an electron e– and a W+ (which could
also be a neutrino ν), where the description of the system
should include the complete range of possibilities. To solve
this description problem we now introduce a description and
gauge dependent auxiliary function

Ψ(X; {xi, ti; i = 1, …, n}), (22)

which allows to write for the action density

{i}
K(X) = tr Â(Ψ(X)Ψ†(X)), (23)

which for a single element n = 1 is

K(X) =  Â(Ψ(X)Ψ†(X)). (24)

(6.) The self-consistent properties of Ψ(X; {xi, ti; i = 1, …, n})
from (19)-(24) are then
a.) From the simplest case, that of the homogeneous distribu-
tion of action with an assumed single carrier, where (defining
k = Π/h- )

Ψ(X) = ρ1/2e–ik•X, (25)

and therefore

Πµ = [Ψ†ih- ∂ µΨ]R = h- ρkµ = ρpµ. (26)

Now, defining the auxiliary reference energy-momentum m

m = (ΠµΠµ)1/2, (27)

then

D0D0Ψ = m2Ψ, (28)

where we have used the notation, in space-time-action geometry

ih- γµ∂ µΨ = D0Ψ = mΨ, (29)

which shows that the auxiliary function Ψ has the same initial
properties as the standard wave function in quantum mechan-
ics. It is now immediate that the description freedom corre-
sponds to the gauge theory approach, where the “Lagrangian”
density is proportional to K(X), the Ψ are gauged and the D0
operator is enlarged to the covariant derivative D, to keep
K(X) gauge invariant.
b.) In the case of several identical among themselves carriers
we can now construct the Ψ as Ψ = Π

i
φi(xi, ti) and define the

potentials V and Vxc accordingly or use a more complicated
expression for Ψ and a (simpler) expression for V and Vxc.
Otherwise a more complicated, interacting particles, definition
of Ψ and V should contain the sum of the interparticle interac-
tions. See next section.
c.) The case of several types of carriers corresponds to (sums
and) products of descriptions of type b).
d.) The use of a description of an evolving system with chang-
ing types of carriers defines interaction Lagrangians where the
sum of products of descriptions of type b) are used to repre-
sent our uncertainty in the actual distribution of action, keep-
ing nevertheless the K(X) invariant.

All these descriptions obeying the principles above, show
the intrinsic connection between the postulates of START and
the structure and interpretation of wave quantum mechanics.
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Description in Terms of Interacting Carriers

The basic description in terms of particles (particle fields in
practice) is that of interacting carriers:
1) Each point of the particle field i is endowed of a self ener-
gy, expressed as its mass mi, and spin si and a collection of
charges {q(g)

i }, one for every gauge field g, 
2) all particles i are subjected to local external potentials Vi (x)
representing the “rest of the universe” effects where 

Vi(x) = miVgrav(x) + ∑
g

q(g)
i V(g)(x)

3) all particles i are supposed to have a kinetic energy contri-
bution kini(x)
4) there is an interparticle pairwise potential energy

∑
g

– ∑
i

∑
j

q(g)
i q(g)

j f (rij)

which is proportional to the products of the charges and to a
function of the distances rij between points of the fields relat-
ed to the particles, the basic example being the electromagnet-
ic case q(e)

i q(e)
j /rij .

5) Other interaction terms, depending on the masses or spins of
the particles. Until now there has been no practical use of more
complicated terms, like terms depending on products of charges
of different gauge fields q(g)

i q(g´)
j . In practice, for non elementary

particles, three body terms and “effective” charges have been
used, this being perhaps a guide to establish that a particle is not
elementary. When rij is large, with respect to a measure of the
extent of the distribution of both the i and the j field, a center of
distribution interdistance ro

ij can be used in practice, fact that
allows to consider the fields i and j as point-like objects.

The use of (at least) 1), 2), 3) and 4) induces either
a) the use of a non local Ψnl = Ψnl ({xi}) or
b) the local formulation obtained by the introduction of this
non locality as a self consistent local potential (which requires
for its calculation the knowledge of Ψnl, considered now as an
auxiliary calculation procedure).

Case a) corresponds to standard quantum mechanics
where the auxiliary function Ψ is constructed as sums of prod-
ucts of sums of basic functions. The last sum corresponds to
an assumed distribution in space. The products to considering
a set of those sums as an independent particle field scheme
and the first sum to account both for the statistics of the auxil-
iary fields and for all possible forms of response of the system
to the possibility of removing one particle from it.

Case b) corresponds to keeping the local Ψ(x) and intro-
ducing the result of the non local interaction as corrections to
the kinetic energies obtained from ψ (x) and as an equivalent,
average, local, interparticle potential where also the effect of
the statistics and of the full response of the system are includ-
ed. This last term is well known [5] as the local exchange-cor-
relation potential in standard DFT. The remaining term was
introduced [4] in the study of Ψ(x) for a many electron system.

This is not the only set of possibilities, a third major line
of approach has been developed mainly in connection with

high energy physics and the study of elementary particles. It
consists in formulating an independent particle approach using
an action related to the local effect of the gauge fields into the
particle fields through terms q(g)

i A(g)(x).dxi, the scalar product
of the vector A(g) and the vector dxi. This is achieved at the
expense of allowing independent existence to the gauge inter-
action fields. This has the advantage of allowing the possibility
of describing the gauge fields independently of the source or
target particle fields, introduce the quantization of this gauge
interaction fields which carry energy-momentum, spin and
geometrical information of the possible source or target fields.
The gauge interaction fields are assigned a gauge independent
field strength 

Fµν
(g) = ∂µAµ

(g) – ∂µAµ
(g)

and a local action of the gauge field itself

a(g)(x) = – — F (g)
µν(x) Fµν

(g)(x) (30)

to be added to the particle’s field action. The sum is a local
action and a local energy-momentum by consequence. The
pass from case 1) to case 3) is straightforward by partial inte-
gration using a source equation

A(g)(x) = ∑
i

∇2 ji
(g)(x)   .

But it must be stressed that the energy related to (25)
requires in general the integration over volumes much larger
than those of the integration of ρi(x). Then in case 1) the ener-
gy related to external sources of gauge fields should be added,
because only the action related to the system of particles {i}
has been included.

There are many technical difficulties in this approach,
which is in principle quantum field theory based in quantum
electrodynamics as the simplest case and in the Maxwell theo-
ry in the classical formulation, some of them would disappear
if a hybrid approach is taken, using 1) and allowing for (25)
for the description of the external influences. The problems
related to the non-abelian character of the gauge fields would
require nevertheless the use of the special mathematical tech-
niques now in use in the standard model of elementary parti-
cles. This considerations do not apply to the use of DFT to the
many electron system, the most common example. Pairwise
interactions and gauge fields are equivalent dual formulations
which should be explicitly followed.

A note in the probabilistic interpretation of Ψ. Because
the auxiliary functions describing the action contributions will
either appear as products of functions ϕ1ϕ2… or as sums of
functions φ1 + φ2 + … the use of derivatives D as operators
originate both a probabilistic interpretation and, in fact as a
consequence, a systematic method to obtain Ψ. 

In fact for a product ϕ1ϕ2, because D (aϕ1ϕ2) = a[(Dϕ1)ϕ2 +
ϕ1(Dϕ2)] the energy-momentum contributions will appear as
sums of independent terms. Also, because D (aφ1 + φ2) = aDφ1
+ bDφ2, the energy contributions from a sum of functions

1
2

1
4
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appears as a weighted sum of dependent contributions. This is
typical of probability theory and a probabilistic language will
faithfully be useful to describe the total action. 

An additional probabilistic concept, different from the
one described above, arises from the algebra of the operators
themselves, because the action being xµpµ, and its operator â =
xµp̂µ = xµ (ih-∂ xµ), then we, from the chain rule for derivatives,
obtain the operator

[xµ, p̂µ] ≡ xµ p̂µ – p̂µ xµ = ih-

with the well known Heisenberg limitation, introducing an
uncertainty in our possibilites to know (not the action but) the
factors of the action, separately, for a given action distribu-
tion, up to the small but highly significant value of h-. Because
this is a fundamental restriction on the description of the
action distribution as that of point like carriers this uncertainty
is presented as a basic property of matter, independent from
our choice to describe the matter.

We can then conclude that the action distribution in
spacetime description of matter agrees, without actual limita-
tions, with our present experimental and theoretical knowl-
edge of matter and interaction fields.

In space-time-action geometry the main dynamical princi-
ple is that all trajectories should be minimal, then defining the
(square of the) differential dS2 = ds2 – (da)2, where dS2 =
gµν dxµdxν is the spacetime differential and (da)2 the action
differential. In a first, non united geometry, approximation the
minimal principle

δ (dS2) = 0 (31)

can be separated into the kinematical principle of (general)
relativity 

δ (ds2) = 0, (32)

and the principle of minimum action

δ (da2) = 0. (33)

For some phenomena, light as the main example, (32) and
(33) are separately obeyed given that (cdt)2 – (dx)2 = 0 and
gµνpµxν = 0 because gµν = diag(1, –1, –1, –1) and ε = pc = hν =
hc/λ. Otherwise the principle of minimal action is universally
accepted in the formulation of physical principles. If (31) is
accepted a geometrical model for mass appears in our theory [9].

In relation to our construction of the auxiliary function Ψ
we can then use a trial set of contributions to the action

Ψt = ∑
i

ai


Π
j ∈{j}i

ϕj



with the ϕj also a composition of functions representing some
contributions to the action. A chain derivative

∑
i

——  —— = 0

will allow the optimization of the description, then a varia-
tional principle for energy exists which is, in Action Density
Functional Theory, the equivalent to the Hohenberg-Kohn
Theorems [1].

Conclusions

We have presented an action-density functional formalism,
developed it and shown that not only the standard density
functional theory is recovered and that in a sense it is more
fundamental than wave function wave mechanics, but also
that the analysis of the mapping of the density matrix into a
density allowable for density functional theory [11], requires
the introduction of auxiliary terms which represent the inter-
nal symmetries of the system.

Several basic principles of quantum mechanics are shown
to be natural structures in the approach developed here to
describe matter as a distribution of action in space-time (ener-
gy distribution over space).
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