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Abstract 
 
The Stefan-Maxwell equations represent a special form of the species momentum equations that are used to 
determine species velocities. These species velocities appear in the species continuity equations that are used to 
predict species concentrations. These concentrations are required, in conjunction with concepts from 
thermodynamics and chemical kinetics, to calculate rates of adsorption/desorption, rates of interfacial mass 
transfer, and rates of chemical reaction. These processes are central issues in the discipline of chemical engineering. 

In this paper we first outline a derivation of the species momentum equations and indicate how they simplify 
to the Stefan-Maxwell equations. We then examine three important forms of the species continuity equation in 
terms of three different diffusive fluxes that are obtained from the Stefan-Maxwell equations. Next we examine the 
structure of the species continuity equations for binary systems and then we examine some special forms associated 
with N-component systems. Finally the general N-component system is analyzed using the mixed-mode diffusive 
flux and matrix methods. 
 
Keywords: continuum mechanics, kinetic theory, multicomponent diffusion. 

 
Resumen 
 
Las ecuaciones de Stefan-Maxwell representan una forma especial de las ecuaciones de cantidad de movimiento de 
especies que son usadas para determinar las velocidades de especies. Estas velocidades de especies aparecen en las 
ecuaciones de continuidad de especies que son usadas para predecir las concentraciones de especies. Estas 
concentraciones son requeridas, en conjunción con los conceptos de termodinámica y cinética química, para calcular las 
velocidades de adsorción/desorción, las velocidades de transferencia de masa interfacial, y las velocidades de reacción 
química. Estos procesos son elementos centrales en la disciplina de la ingeniería química. 
 En este artículo presentamos primeramente un desarrollo de las ecuaciones de cantidad de movimiento de 
especies e indicamos como se simplifican a las ecuaciones de Stefan-Maxwell. Posteriormente examinamos tres formas 
importantes de la ecuación de continuidad de especies en términos de tres diferentes fluxes difusivos que se obtienen de 
las ecuaciones de Stefan-Maxwell. Más adelante examinamos la estructura de las ecuaciones de continuidad de especies 
para sistema binarios y examinamos algunas formas especiales asociados con sistemas de N-componentes. Finalmente se 
analiza el sistema general de N-componentes usando métodos matriciales y de flux difusivo de modo mixto. 
 
Palabras clave: mecánica del continuo, teoría cinética, difusión multicomponente. 
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1. Introduction 
 

Our derivation of multi-component transport 
equations is based on the concept of a species body. 
In Part I of Fig. 1 we have illustrated a system 
containing both species A and species B and these 
are illustrated as discrete particles. We have also 
illustrated a region from which we have cut out both 
a species A body and a species B body. In Part II of 
Fig. 1 we have indicated that the species A body will 
be treated as a continuum while the discrete 
character of species B is retained for contrast. As 
time evolves the two species bodies separate because 
their velocities are different. This separation is 
illustrated in Part III of Fig. 1 where we have also 
indicated that the species B body will be treated as a 
continuum. The continuum velocities of species A 
and species B are designated as vA and vB. In 
general, the continuum hypothesis should be 
satisfactory when the distance between molecules is 
very small compared to a characteristic length for 
the system. 
 
1.1 Conservation of mass 
 
In terms of the species A body illustrated in Fig. 1, 
we state the two axioms for the mass of multi-
component systems as 

Axiom I: 

( ) ( )

, 1, 2, ....,
A A

A A
t t

d dV r dV A N
dt

ρ = =∫ ∫
V V

 (1) 

Axiom II: 
1

0
A N

A
A

r
=

=

=∑  (2) 

Here Aρ  represents the mass density of species A 
and rA represents the net mass rate of production per 
unit volume of species A owing to chemical reaction. 
In Eqs. (1) and (2) we have used a mixed-mode 
nomenclature making use of both letters and 
numbers to identify individual species. For example, 
Axiom II could be expressed in terms of alphabetic 
subscripts as 

Axiom II: ..... 0A B C D Nr r r r r+ + + + + =  (3) 

or we could use numerical subscripts to represent 
this axiom as 

Axiom II: 1 2 3 4 ..... 0Nr r r r r+ + + + + =  (4) 

This latter result can obviously be compacted to 
produce Eq. 2; however, the use of alphabetic 
subscripts to represent molecular species is prevalent 
in the chemical engineering literature. Because of 
this we will use alphabetic subscripts to identify 
distinct molecular species, and we will use the 
nomenclature contained in Eq. 2 to represent the 
various sums that appear in this paper. 

 
 
Fig.1. Motion of species A and species B bodies 
 
In order to extract a governing differential equation 
from Eq. 1, we make use of the general transport 
equation (Whitaker, 1981, Sec. 3.4, with A=w v ) 

( ) ( )

( )

, 1, 2, ....,
A A

A

A
A

t t

A A
t

d dV dV
dt t

dA A N

ρ
ρ

ρ

∂
=

∂

+ ⋅ =

∫ ∫

∫ v n

V V

A

 (5) 

and the divergence theorem (Stein and Barcellos, 
1992, Sec. 17.2) 

( )
( ) ( )

,

1, 2, ....,
A A

A A A A
t t

dA dV

A N

ρ ρ⋅ = ∇ ⋅

=

∫ ∫v n v
A V  (6) 

in order to express Eq. 1 in the form 

( )
( )

0 ,

1, 2, ....,
A

A
A A A

t

r dV
t

A N

ρ
ρ

∂⎡ ⎤+ ∇ ⋅ − =⎢ ⎥∂⎣ ⎦

=

∫ v
V  (7) 

Since ( )A tV  illustrated in Fig. 1 is arbitrary, and 
since it is plausible to assume that the integrand in 
Eq. (7) is continuous, the integrand in Eq. (7) must 
be zero and the governing differential equation 
associated with Eq. 1 is given by 

( ) , 1, 2, ....,A
A A Ar A N

t
ρ

ρ
∂

+ ∇ ⋅ = =
∂

v  (8) 
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If we sum Eq. (8) over all species and impose the 
Axiom II we obtain 

 ( )=0
t
ρ ρ∂

+ ∇ ⋅
∂

v  (9) 

in which the total density and the total mass flux are 
determined by 

 
1 1

,
A N A N

A A A
A A

ρ ρ ρ ρ
= =

= =

= =∑ ∑v v  (10) 

The mass average velocity, v, can be expressed in 
terms of the mass fraction, ωA, and the species 
velocity, vA, according to 

1
, , 1, 2,...,

A N

A A A A
A

A Nω ω ρ ρ
=

=

= = =∑v v  (11)  

The typical treatment of Eq. (8) involves the solution 
of 1N −  species continuity equations along with a 
solution of Eq. (9). This suggests a decomposition of 
the species velocity into the mass average velocity, 
v, and the mass diffusion velocity, uA 

 , 1, 2, ..., A A A N= + =v v u  (12) 

so that the species continuity equations take the form 

( ) ( ) ,

1, 2, ...., 1

A
A A A A

chemicalconvective diffusive
reactiontransport transportaccumulation

r
t

A N

ρ
ρ ρ

∂
+ ∇ ⋅ = −∇ ⋅ +

∂

= −

v u
 (13) 

Here we note that only 1N −  of the diffusive 
transport terms are independent since Eqs. (10) and 
(12) require the constraint 

 
1

0
A N

A A
A

ρ
=

=

=∑ u  (14) 

In order to solve Eqs. (9) and (13) we need 
governing differential equations for the mass 
diffusion velocity, uA, and the mass average velocity, 
v. These are determined by the axioms for the 
mechanics of multi-component systems. 

 
1.2 Laws of mechanics 

Our approach to the laws of mechanics for multi-
component systems follows the work of Euler and 
Cauchy (Truesdell, 1968), the seminal works of 
Chapman & Cowling (1939) and Hirschfelder, 
Curtiss & Bird (1954), along with the recent work of 
Curtiss & Bird (1996, 1999). In terms of the species 
body illustrated in Fig. 1 the linear momentum 
principle for species A is given by 

Axiom I:

( ) ( )

( )
1( ) ( )

( )

, 1 2

A A

A A

A

A A A A
t t

B N

A AB
Bt t

A A
t

d dV dV
dt

dA dV

r dV A , , ..., N

ρ ρ

=

=

∗

=

+ +

+ =

∫ ∫

∑∫ ∫

∫

n

v b

t P

v

V V

A V

V

 (15) 

With an appropriate interpretation of the 
nomenclature, one finds that this result is identical to 
the second of Eqs. 5.10 of Truesdell (1969, page 85) 
provided that one interprets Truesdell’s growth of 
linear momentum as the last two terms in Eq. (15). In 
terms of the forces acting on species A, we note that 

A Aρ b  represents the body force, ( )A nt  represents the 
surface force, and ABP  represents the diffusive force 
exerted by species B on species A. This diffusive 
force is constrained by 

 0 , 1, 2,3,...,AA A N= =P  (16) 

The last term in Eq. (15) represents the increase or 
decrease of species A momentum resulting from the 
increase or decrease of species A caused by chemical 
reaction, and this term is discussed in Appendix A. 

The angular momentum principle for the 
species A body is given by 

Axiom II:

( ) ( )

( )
1( ) ( )

( )

, 1, 2, ...,

A A

A A

A

A A A A
t t

B N

A AB
Bt t

A A
t

d dV dV
dt

dA dV

r dV A  N

ρ ρ

=

=

∗

× = ×

+ × + ×

+ × =

∫ ∫

∑∫ ∫

∫

n

r v r b

r t r P

r v

V V

A V

V

 (17) 

in which r represents the position vector relative to a 
fixed point in an inertial frame. Truesdell (1969, 
page 84) presents a more general version of Axiom II 
in which a growth of rotational momentum is 
included, and Aris (1962, Sec. 5.13) considers an 
analogous effect for polar fluids. The analysis of Eq. 
(17) is rather long; however, the final result is simply 
the symmetry of the species stress tensor as indicated 
by 

 T , 1, 2, ..., A A A N= =T T  (18) 

The constraint on PAB is given by Truesdell (1962, 
Eq. 22) as 

Axiom III: 
1 1

0
A N B N

AB
A B

= =

= =

=∑ ∑ P  (19) 

and a little thought will indicate that this is satisfied 
by 

 AB BA= −P P  (20) 
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One can think of this as the continuum version of 
Newton’s third law of action and reaction 
(Whitaker, 2009a). 

Hirschfelder et al. (1954, page 497) point out 
that “even in a collision which produces a chemical 
reaction, mass, momentum and energy are 
conserved” and the continuum version of this idea 
for linear momentum gives rise to the constraint: 

Axiom IV: 
1

0
A N

A A
A

r
=

∗

=

=∑ v  (21) 

This result, along with Eq. (19), is contained in the 
second of Eqs. 5.12 of Truesdell (1969). 

Returning to the linear momentum principle, 
we note that the analysis associated with Cauchy’s 
fundamental theorem (Truesdell, 1968) can be 
applied to Eq. (15) in order to express the species 
stress vector in terms of the species stress tensor 
according to 

 ( )A A= ⋅nt n T  (22) 

This representation can be used in Eq. (15), along 
with the divergence theorem and the general 
transport theorem, to extract the governing 
differential equation for the linear momentum of 
species A given by 

( ) ( )
      

1
, 1, 2, , 

A A A A A A A A
body surfaceconvective
force  forcelocal acceleration

acceleration

B N

AB A A
B source of  momentum

    owing to reactiondiffusive 
   force

t

r A  ... N

ρ ρ ρ

=
∗

=

∂
+ ∇ ⋅ = + ∇ ⋅

∂

+ + =∑

v v v b

P v

T

 (23) 

Equation (23) is identical to Eq. A2 of Curtiss and 
Bird (1996) for the case in which 0Ar =  provided 
that one takes into account the different 
nomenclature indicated by 

Curtiss & Bird:

1

, ,A A A A A
B N

AB A
B

ρ
=

=

= ∇ ⋅ = −∇ ⋅

=∑

b G σ

P F

T
 (24) 

One can make use of the identity 

( )A A A A A A A A Aρ ρ ρ= + − +v v v v vv vv u u  (25) 

in order to express Eq. (23) in the from 

( ) ( )

( )

1
, 1, 2, , 

A A A A A

A A A A A A

B N

AB A A
B

t

r A  ... N

ρ ρ

ρ ρ
=

∗

=

∂
+ ∇ ⋅ + −⎡ ⎤⎣ ⎦∂

= + ∇ ⋅ −

+ + =∑

v v v v v v v

b u u

P v

T  (26) 

This result is identical to Eq. 4.20 of Bearman and 
Kirkwood (1958) for the case in which 0Ar =  
provided that one takes into account the different 
nomenclature indicated by (with the subscript 

Aα = ) 

Bearman and Kirkwood: 

( )
(1)

1

, ,A A A A A A A A A

B N

AB A A
B

c

c

ρ ρ
=

∗

=

= ∇ ⋅ − = −∇ ⋅

=∑

b X u u σ

P F

T
 (27) 

Bearman and Kirkwood refer to Aσ  as the partial 
stress tensor and note that it consists of a “molecular 
force contribution” represented by A−T  and a 
“kinetic contribution” represented by A A Aρ u u . 

Equation (23) can be represented in more 
compact form using the species continuity equation. 
We begin by multiplying Eq. (8) by the species 
velocity to obtain 

( ) , 1, 2, ......,A
A A A A Ar A N

t
ρ

ρ
⎡ ⎤∂

+∇ ⋅ = =⎢ ⎥∂⎣ ⎦
v v v  (28) 

Subtraction of this equation from Eq. (23) leads to 

( )
1

, 1, 2, ...,

A
A A A A A A

B N

AB A A A
B

t

r A N

ρ ρ

=
∗

=

⎛ ⎞∂
+ ⋅∇ = + ∇ ⋅⎜ ⎟∂⎝ ⎠

+ + − =∑

v
v v b

P v v

T
 (29) 

Bird (1995) has pointed out that Chapman and 
Cowling (1939) first obtained this result1 for dilute 
gases by means of kinetic theory provided that 

0Ar = . From the continuum point of view, Eq. (29) 
is given by Truesdell and Toupin (1960, Eq. 215.2), 
Truesdell (1962, Eq. 22), and Curtiss and Bird (1996, 
Eqs. 7b and A7) all with 0Ar = . The correspondence 
with Truesdell (1962) is based on the nomenclature 

Truesdell: 

1

, div ,

ˆ

A A A A A A
B N

AB A
B

ρ ρ

ρ
=

=

= ∇ ⋅ =

=∑

b f t

P p

T
 (30) 

In its present form, Eq. (29) represents a governing 
equation for the species velocity, vA, and we want to 
use this result to derive a governing equation for the 
mass diffusion velocity, uA. To carry out this 
derivation, we need the total momentum equation 
that is developed in the following paragraphs. 

 

 

                                                 
1 See species momentum equation following Eq. 6 on page 
135. 
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1.2.1 Total momentum equation 

The traditional analysis of momentum transport in 
multi-component systems makes use of the sum of 
Eqs. (23) over all N species to obtain the total 
momentum equation that is used to determine the 
mass average velocity, v. The remaining 1N −  
independent species momentum equations can then 
used to determine the individual species velocities, 

Av , Bv , … 1N −v . We begin by taking into account 
Axioms III and IV so that the sum of Eq. (23) leads 
to 

 1 1

1 1

A N A N

A A A A A
A A

A N A N

A A A
A A

t
ρ ρ

ρ

= =

= =

= =

= =

∂
+ ∇ ⋅

∂

= + ∇ ⋅

∑ ∑

∑ ∑

v v v

b T
 (31) 

The first and third terms in this result can be 
simplified by the definitions 

 
1 1

,
A N A N

A A A A
A A

ρ ρ ρ ρ
= =

= =

= =∑ ∑v v b b  (32) 

and Eqs. (10) and (12) can be used to obtain 

 
1 1

A N A N

A A A A A A
A A

ρ ρ ρ
= =

= =

= +∑ ∑v v vv v u  (33) 

Application of Eq. (14) allows us to simplify the 
convective momentum transport to the form 

 
1 1

A N A N

A A A A A A
A A

ρ ρ ρ
= =

= =

= +∑ ∑v v vv u u  (34) 

and substitution of Eqs. (32) and (34) in Eq. (31) 
provides 

( ) ( ) ( )
1

A N

A A A A
At

ρ ρ ρ ρ
=

=

∂ ⎡ ⎤+ ∇ ⋅ = + ∇ ⋅ −⎢ ⎥∂ ⎣ ⎦
∑v vv b u uT (35) 

Concerning the last term in this result, we note that 
Truesdell and Toupin (1960, Sec. 215) refer to 

A A Aρ u u  as the “apparent stresses arising from 
diffusion” and we note that this term also appears in 
the analysis of Curtiss and Bird (1996, Eq. A7). In 
that case one needs to make use of the second of Eqs. 
(24) along with 

 ( )
1 1

A N A N

A A A A A
A A

ρ
= =

= =

= = − −∑ ∑π π u uT  (36) 

to complete the correspondence. At this point we can 
use Eq. (9) to obtain 

 ( ) =0
t
ρ ρ

⎡ ⎤∂
+ ∇ ⋅⎢ ⎥∂⎣ ⎦

v v  (37) 

and this allows us to express Eq. (35) in the form  

( )
1

A N

A A A A
At

ρ ρ ρ
=

=

⎛ ⎞∂ ⎡ ⎤+ ⋅∇ = + ∇ ⋅ −⎜ ⎟ ⎢ ⎥∂ ⎣ ⎦⎝ ⎠
∑v v v b u uT  (38) 

In order to use this result to predict the mass average 
velocity, we need a constitutive equation for the sum 
of the species stress tensors. This problem is 
considered in the following paragraphs. 

1.2.2 Governing equation for the mass diffusion 
velocity 

Our objective here is to develop the governing 
differential equation for the mass diffusion velocity, 
uA. We begin by multiplying Eq. (38) by the mass 
fraction ωA  

 

( )
1

A A

A N

A A A A A
A

t
ρ ρ

ω ρ
=

=

⎛ ⎞∂
+ ⋅∇ =⎜ ⎟∂⎝ ⎠

⎡ ⎤
+ ∇ ⋅ −⎢ ⎥

⎣ ⎦
∑

v v v b

u uT
 (39) 

and subtracting this result from Eq. (29) to obtain the 
desired governing differential equation given by 

 ( )

( )
1

1

( )

, 1, 2,..., 1

A
A A A A A A

A N

A A A A A A
A

B N

AB A A A
B

t

r A N

ρ ρ

ω ρ
=

=

=
∗

=

⎛ ⎞∂
+ ⋅∇ + ⋅∇ = −⎜ ⎟∂⎝ ⎠

⎡ ⎤+∇ ⋅ − ∇ ⋅ −⎢ ⎥
⎣ ⎦

+ + − = −

∑

∑

u
v u u v b b

u u

P v v

T T  (40) 

Here it is important to note that this result is based 
only on the two axioms for mass given by Eqs. 1 and 
2, and the four axioms for the mechanics of multi-
component systems given by Eqs. (15), (17), (19) 
and (21). In addition, we have made use of classical 
continuum mechanics to obtain the result given by 
Eq. (22). 

At this point we need to be specific about the 
species stress tensor, AT , and to guide our thinking 
and constrain the subsequent development, we 
propose that: 

The analysis is restricted to mixtures 
that behave as Newtonian fluids  
(Serrin, 1959, Sec. 59; Aris, 1962, 
Sec. 5.21). 

Given this restriction for the mixture, we 
follow Slattery (1999, Sec. 5.3) and write 

 
1

A N

A
A

p
=

=

= = − +∑T T I τ  (41a) 

in which p is the thermodynamic pressure and τ is 
the extra stress tensor given by (Serrin, 1959, Eq. 
61.1; Slattery, 1999, Eq. 5.3.4-3; Bird et al., 2002, 
page 843) 
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 ( ) ( )Tμ λ= ∇ +∇ + ∇⋅v v v Iτ  (41b) 

Given these results, Eq. (38) provides the Navier-
Stokes equations containing an additional term 
associated with the sum of the diffusive stresses. 

Here we need to point out that Eqs. (41) can 
be obtained by following a classic continuum 
mechanics analysis; or this result can be obtained 
from kinetic theory (Hirschfelder, Curtiss & Bird, 
1954, Eqs. 7.2-45 and 7.6-29). The advantage of this 
latter approach is that a method of calculating the 
coefficients μ and λ is created within the framework 
of the theory. The disadvantage is that the 
calculations associated with the determination of μ 
for a dense gas or a liquid may be much more 
difficult than the associated experiment. 

Given that the behavior of the mixtures under 
consideration is described by Eqs. (41), we propose 
that the species stress tensor can be represented by 

Proposal: , 1, 2,...,A A Ap A N= − + =T I τ  (42) 

in which pA is the partial pressure defined by 
(Truesdell, 1969, page 97) 

 ( )2
, , ,.......B CA A A A Tp

ρρρ ψ ρ= ∂ ∂  (43) 

Here Aψ  is the Helmholtz free energy of species A 
per unit mass of species A. In general it is more 
convenient to work with the internal energy and 
define the partial pressure by (Whitaker, 1989, 
Chapter 10) 

 ( )2
, , ,.......B CA A A A s

p e
ρ ρ

ρ ρ= ∂ ∂  (44) 

in which eA is the internal energy of species A per 
unit mass of species A. A detailed discussion of the 
partial pressure and the total pressure is given in 
Appendix B. At this point we define the total 
pressure and the total viscous stress tensor by 

 
1 1

,
A N A N

A A
A A

p p
= =

= =

= =∑ ∑τ τ  (45) 

and we use these definitions along with Eq. (42) in 
order to express Eq. (40) as 

( )

( )

1

1

( )

A
A A A A

A N

A A A A A A
A

A A A A
B N

AB A A A
B

t

p p

r

ρ

ω ρ ω

ω ρ

=

=

=
∗

=

⎛ ⎞∂
+ ⋅∇ + ⋅∇⎜ ⎟∂⎝ ⎠

⎡ ⎤− ∇ ⋅ = − ∇ ⋅ −∇ ⋅⎢ ⎥
⎣ ⎦

− ∇ + ∇ + −

+ + −

∑

∑

u
v u u v

u u

b b

P v v

τ τ
 (46) 

In Appendix A we show that difference between A
∗v  

and Av  should be on the order of the diffusion 
velocity 

 ( ) ( )A A A
∗ − =v v O u  (47) 

Arguments are given elsewhere (Whitaker, 1986, 
2009b) indicating that several of the terms in Eq. 
(46) are generally negligible. This leads to the 
simplifications given by 

 A
A Ap

t
ρ

∂
<< ∇

∂
u  (48a) 

 ( )A A A A Apρ ⋅∇ + ⋅∇ << ∇v u u v  (48b) 

 
1

A N

A A A A A
A

pω ρ
=

=

∇ ⋅ << ∇∑ u u  (48c) 

 ( )A A Apω ∇ ⋅ − ∇ ⋅ << ∇τ τ  (48d) 

 ( )A A A Ar p∗ − << ∇v v  (48e) 

The first of these indicates that the governing 
equation for Au  is quasi-steady; the second indicates 
that diffusive inertial effects are negligible, the third 
indicates that the diffusive stresses are negligible, the 
fourth indicates that viscous effects are negligible, 
and the final inequality indicates that the effects of 
homogeneous chemical reactions are negligible. 

When the restrictions given by Eqs. (48) are 
imposed, the governing equation for the mass 
diffusion velocity takes the form 

 

1

( )

, 1, 2,..., 1

A A A A
B N

AB
B

p p

A N

ω ρ
=

=

∇ − ∇ − −

= = −∑

b b

P
 (49) 

Truesdell (1962, Eq. 7) represents the left hand side 
of this result by Ap d  and cites Hirschfelder, Curtiss 
& Bird (1954) as the source. Curtiss & Bird (1999, 
Eq. 7.6) represent the left hand side of Eq. (49) by 

AcRT d  and refer to it as the generalized driving 
force for diffusion. At this point we make use of the 
identity 

 ( ) 2

1 A
A A

p
p p p p

p p
∇ = ∇ − ∇  (50) 

in order to express Eq. (49) in the form 

( ) ( )1

1 1

1
( ) , 1, 2,..., 1

A A A

B N

A A AB
B

p p p p p p

p p A N

ω

ρ

−

=
− −

=

∇ + − ∇⎡ ⎤⎣ ⎦

− − = = −∑b b P
 (51) 
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In order to see how this result is related to the work 
of Hirschfelder, Curtiss & Bird (1954), we make use 
of their Eqs. 7.4-48 and 7.3-27 (in terms of the 
nomenclature used in this work) to obtain 

Hirschfelder et al.  

[ ]

( )

1

1

1

1

( )

ln , 1,2,..., 1

A A A

B N
A B

A A B A
B AB

T TB N
A B B A

B AB B A

x p x p

x x
p

x x D D
T A N

ω

ρ

ρ ρ

−

=
−

=

=

=

∇ + − ∇

− − = −

⎛ ⎞
+ − ∇ = −⎜ ⎟

⎝ ⎠

∑

∑

b b v v
D

D

 (52) 

The right hand side of this result is approximate in 
that (1) it is based on dilute gas kinetic theory, and 
(2) the binary diffusivities, ABD , have been used in 
place of the coefficient of diffusion, ABD  (see 
Hirschfelder, Curtiss & Bird, 1954, page 485). The 
left hand side of Eq. (52) is identical to the left hand 
side of Eq. (51) provided that Ap  is replaced by 

,Ax p , and this is consistent with the idea that Eq. 
(52) was developed for ideal gases. In terms of the 
work of Chapman and Cowling (1970), we note that 
their Eqs. 18.2,6 and 18.3,13 lead to Eq. (52) with 
the last term in Eq. (52) expressed as 

 
1

ln ln
T TB N

A B B A
TA

B AB B A

x x D D
k T T

ρ ρ

=

=

⎛ ⎞
∇ = − ∇⎜ ⎟

⎝ ⎠
∑ D

 (53) 

When dealing with ideal gases, one can proceed with 
Eq. (52); however, for more general cases that are 
consistent with Eq. (42), one should make use of Eq. 
(51) and this means dealing with the force, ABP . 

1.2.3 Non-ideal mixtures 

The simplest approach for non-ideal mixtures is to 
use the form associated with dilute gas kinetic theory 
in order to represent the right hand side of Eq. (51) 
as 

Proposal:

( )1 ln
T T

A B A B B A
AB B A

AB AB B A

x x x x D D
p T

ρ ρ
− ⎛ ⎞

= − + − ∇⎜ ⎟
⎝ ⎠

P v v
D D

(54) 

Here the diffusion coefficients are to be determined 
experimentally with the idea that this form for ABP  is 
an acceptable approximation, and that Eq. (20) 
would be utilized as a solution to Axiom III. 
Truesdell (1962, Sec. 6) refers to this approximation 
as the special case of binary drags. However, 
multicomponent diffusion in liquids is more complex 
than suggested by Eq. (54), and Rutten (1992), 
among many others, has documented these 
complexities for ternary systems. Putting aside the 
seminal problem associated with ABP , we make use 
of Eq. (54) in Eq. (51) to obtain 

( ) ( )

( )

1

1

1

1

( )

ln , 1, 2,..., 1

A A A

pressure diffusion

B N
A B

A A B A
B ABforced diffusion

T TB N
A B B A

B AB B A

thermal diffusion

p p p p p p

x x
p

x x D D
T A N

ω

ρ

ρ ρ

−

=
−

=

=

=

∇ + − ∇⎡ ⎤⎣ ⎦

− − = −

⎛ ⎞
+ − ∇ = −⎜ ⎟

⎝ ⎠

∑

∑

b b v v
D

D

 (55) 

Here we have explicitly identified the terms 
associated with pressure diffusion, forced diffusion, 
and thermal diffusion. This form of the species 
momentum equation is restricted by the following: 

I. The basic assumptions associated with 
continuum mechanics. 

II. The constitutive equation given by Eq. (42) 

III. The simplifications indicated by Eqs. (48). 

IV. The form of the terms that appear on the 
right hand side of Eq. (55). 

One should remember that Eq. (55) is the governing 
equation for the diffusion velocity, and this becomes 
more apparent if we replace B A−v v  with B A−u u . 

In general, thermal diffusion creates very 
small fluxes that are difficult to measure (Whitaker 
and Pigford, 1958) and in this study we will neglect 
this term to obtain 

( ) ( )

( )

1

1

1
( ) ,

1, 2,..., 1

A A A

pressure diffusion

B N
A B

A A B A
B ABforced diffusion

p p p p p p

x x
p

A N

ω

ρ

−

=
−

=

∇ + − ∇⎡ ⎤⎣ ⎦

− − = −

= −

∑b b v v
D

(56) 

Chapman & Cowling (1970, page 257) discuss the 
impact of pressure diffusion on the distribution of 
chemical species in the atmosphere, and both Deen 
(1998, page 452) and Bird et al. (2002, page 772) 
provide an example of this effect in terms of a 
separation process using an ultracentrifuge. The 
process of forced diffusion of electrically charged 
particles is analyzed by Chapman & Cowling (1970, 
Chap. 19) among others. 

Estimates (Whitaker, 2009b, Sec. 5.6) of the 
terms on the left hand side of Eq. (56) indicate that 
these terms are generally quite small leading to the 
relatively simple relation given by 

( ) ( )
1

0 ,

1, 2,..., 1

B N
A B

A B A
B AB

x x
p p

A N

=

=

= −∇ + −

= −

∑ v v
D  (57) 

Here one should remember that the first term in this 
result is based on the use of Eq. (42) and that the 
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second term represents a less than robust model for 
non-ideal mixtures in which the binary diffusivities, 

ABD , must be determined experimentally. 

1.2.4 Ideal mixtures 

At this point we are ready to make the final 
simplification given by 

 ,A Ap x p ideal mixture=  (58) 

in order to obtain the classic Stefan-Maxwell 
equations that will be examined in the remainder of 
this paper 

Species Momentum: 

1

( )0 , 1, 2,..., 1
B N

A B B A
A

B AB

x xx A N
=

=

−
= −∇ + = −∑ v v

D
 (59) 

To complete our formulation of the mechanical 
problem, we recall Eq. (38) in the form of the 
Navier-Stokes equations 

Total Momentum: 

 2p
t

ρ ρ μ
⎛ ⎞∂

+ ⋅∇ = − ∇ + ∇⎜ ⎟∂⎝ ⎠

v v v b v  (60) 

in which the diffusive stresses have obviously been 
neglected. The determination of Av , Bv , …, Nv  
using Eqs. (59) and (60) is a very complex problem 
and the chemical engineering literature contains 
many simplified treatments of this problem. 
However, the domain of validity of these simplified 
treatments is not always clear, and in the following 
sections we attempt to clarify the basis for some of 
the special forms of the Stefan-Maxwell equations. 

2. Mass continuity equation 

We begin this study with the total mass continuity 
equation [see Eq. (9)] 

Total Mass: ( ) 0
t
ρ ρ∂
+ ∇ ⋅ =

∂
v  (61) 

along with 1N −  species mass continuity equations 
[see Eqs. (13)] 

Species Mass: 

 
( ) ( ) ,

1, 2, ..., 1

A
A A A Art

A N

ρ
ρ ρ

∂
+ ∇ ⋅ = −∇ ⋅ +

∂
= −

v u
 (62) 

These equations can (in principle) be used to 
determine all the species mass densities, Aρ , Bρ ,…, 

Nρ  in the same way that the momentum equations 
represented by Eqs. (59) and (60) can be used to 
determine all the species velocities, Av , Bv , …, Nv . 

The mass diffusive flux, A Aρ u , is often represented 
as (Bird et al, 2002, page 537) 

 A A Aρ=j u  (63) 

so that Eq. (62) takes the form 

Species Mass: 

( ) , 1, 2, ..., 1A
A A Ar A N

t
ρ

ρ
∂

+ ∇ ⋅ = −∇ ⋅ + = −
∂

v j (64) 

Here we note that the mass diffusive fluxes are 
constrained by 

 
1

0
A N

A
A

=

=

=∑ j  (65) 

and we need to determine 1N −  of these diffusive 
fluxes in order to develop a solution for Eq. (64). 

In many liquid-phase diffusion processes, the 
governing equation for the total density given by Eq. 
(61) is replaced by the assumption 

Assumption: constantρ =  (66) 

and we need only solve the 1N −  species continuity 
equations given by Eqs. (64). 

3. Molar continuity equation 

Chemical engineers are primarily interested in 
chemical reactions, interfacial mass transfer, and 
adsorption/desorption phenomena, thus molar 
concentrations and mole fractions are more useful 
than mass densities and mass fractions. Because of 
this, the molar form of the species continuity 
equation is often preferred. This form is obtained 
from Eqs. (8) by the use of the relations 

 , , 1, 2, ...,A A A A A Ac M r R M A Nρ = = = (67) 

This leads to the species molar continuity equation 
given by 

 ( ) , 1, 2, ...,A
A A A

c
c R A N

t
∂

+ ∇ ⋅ = =
∂

v  (68) 

while the constraint on the mass rate of reaction 
given by Eq. 2 provides 

 
1

0
A N

A A
A

R M
=

=

=∑  (69) 

The total molar continuity equation is analogous to 
Eq. (61) and it is developed by constructing the sum 
of Eqs. (68) over all species to obtain 

Total Molar: 
1

( )
B N

B
B

c c R
t

=
∗

=

∂
+ ∇ ⋅ =

∂ ∑v  (70) 
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Here the total molar concentration and the molar 
average velocity are defined by 

 
1 1

,
A N A N

A A A
A A

c c c c
= =

∗

= =

= =∑ ∑v v  (71) 

The development in Sec. 2 indicates that Eq. (70) 
should be solved along with the 1N −  species 
continuity equations given by 

Species Molar: 

( ) , 1, 2, ..., 1A
A A A

c
c R A N

t
∂

+∇ ⋅ = = −
∂

v  (72) 

This allows for the determination of all the species 
molar concentrations, Ac , Bc ,…, Nc . 

The form of Eqs. (70) through (72) suggests 
(but does not require) a decomposition of the species 
velocity given by 

 * , 1, 2, ..., A A A N∗= + =v v u  (73) 

in which *
Au  is the molar diffusion velocity. A little 

thought will indicate that the molar diffusion 
velocities are constrained by 

 *

1
0

A N

A A
A

c
=

=

=∑ u  (74) 

When Eq. (73) is used in Eq. (72) the transport of 
species A can be represented in terms of a convective 
part, Ac ∗v , and a diffusive part, *

A Ac u , leading to 

 
*( ) ( ) ,

1, 2, ...., 1

A
A A A A

c
c c R

t
A N

∗∂
+ ∇ ⋅ = −∇ ⋅ +

∂
= −

v u
 (75) 

The molar diffusive flux, A Ac ∗u , is often identified as 
(Bird et al, 2002, page 537) 

 A A Ac∗ ∗=J u  (76) 

so that Eq. (75) takes the form 

 
( ) ,

1, 2, ...., 1

A
A A A

c
c R

t
A N

∗ ∗∂
+ ∇ ⋅ = −∇ ⋅ +

∂
= −

v J
 (77) 

This result is similar in form to Eq. (64) for the 
species mass density; however, there is no governing 
equation for the molar average velocity, ∗v , whereas 
the mass average velocity in Eq. (64) can be 
determined by the application of Eq. (60). In order to 
eliminate the molar average velocity from Eq. (77) 
we return to Eq. (73), multiply by Aω , and sum over 
all species to obtain 

 
1 1 1

B N B N B N

B B B B B
B B B

ω ω ω
= = =

∗ ∗

= = =

= +∑ ∑ ∑v v u  (78) 

On the basis of the second of Eqs. (10) this takes the 
form 

 
1

B N

B B
B

ω
=

∗ ∗

=

= + ∑v v u  (79) 

and we are now confronted with the mixed-mode 
term B Bω ∗u  that involves a mass fraction and a molar 
diffusion velocity. We would like to express B Bω ∗u  in 
terms of molar diffusive fluxes, and to do so we 
manipulate this term as follows 

 

( )

.....

.......

......

B B
B B

A B C N

B B B

A A B B N N

B B

A A B B N N

M c
M c M c M c

M
c x M x M x M

ρ
ω

ρ ρ ρ ρ

∗
∗

∗

∗

=
+ + + +

=
+ + +

=
+ +

u
u

u

J

 (80) 

If we define the mean molecular mass as 

 ...A A B B N NM x M x M x M= + + +  (81) 

we can express Eq. (80) in compact form according 
to 

 B B
B B

M
c M

ω
∗

∗ =
J

u  (82) 

At this point we return to Eq. (79) to develop the 
following relation between the molar average 
velocity and the mass average velocity: 

 
1

1 B N
B

B
B

M
c M

=
∗ ∗

=

= − ∑v v J  (83) 

Substitution of this expression for the molar average 
velocity into Eq. (77) allows us to express that form 
of the species continuity equation as 

Species Molar: 

1

( ) ,

1, 2, ...., 1

B N
A B

A A A B A
B

c M
c x R

t M
A N

=
∗ ∗

=

∂ ⎛ ⎞+∇ ⋅ = −∇ ⋅ − +⎜ ⎟∂ ⎝ ⎠
= −

∑v J J
 (84) 

in which the molar diffusive fluxes are constrained 
by 

 *

1
0

A N

A
A

=

=

=∑ J  (85) 

Here we can see that this convection-diffusion 
problem is inherently nonlinear in terms of the 
diffusive flux; however, if the mole fraction of 
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species A is sufficiently small it is possible that the 
term involving the sum of the diffusive fluxes in Eq. 
(84) can be neglected. By “sufficiently small” we 
mean that the following inequality 

 
1

B N
B

A B A
B

M
x

M

=
∗ ∗

=

<<∑ J J  (86) 

is satisfied and Eq. (84) becomes linear in the molar 
diffusive flux, A

∗J . 

To complete our formulation of the molar 
forms of the species continuity equation, we make 
use of Eq. (83) in Eq. (70) to obtain 

Total Molar: 

 
1 1

( )
B N B N

B
B B

B B

Mc c R
t M

= =
∗

= =

∂
+ ∇ ⋅ = ∇ ⋅ +

∂ ∑ ∑v J  (87) 

This total molar transport equation should be 
compared with Eq. (61) in order to appreciate the 
complexity associated with the molar form of the 
species transport equations. In many gas phase mass 
transfer processes, Eq. (87) can be replaced by the 
assumption 

Assumption: constantc =  (88) 

and we need only solve the 1N −  species 
continuity equations given by Eqs. (84). 

4. Mixed-mode continuity equation 

The motivation for a mixed-mode or hybrid species 
continuity equation is based on the applications that 
are dominant in the area of chemical engineering, 
and on the mechanical problem under consideration. 
To be explicit, we note two facts: 

(1) Chemical reactions and interfacial 
mass transfer are usually represented 
in terms of the molar concentration, 
cA, or the mole fraction, xA, thus we 
are motivated to use the molar form of 
the continuity equation given by Eq. 
(68) as opposed to the mass form 
given by Eq. (62). 

(2) The species continuity equation 
involves velocities that must be 
determined by the laws of mechanics, 
thus we are motivated to use the mass 
decomposition of the species velocity 
given by Eq. (12) as opposed to the 
molar decomposition given by Eq. 
(73). 

In order to obtain a mixed-mode or hybrid continuity 
equation, we begin with the species mass continuity 
equation given by Eq. (62) and divide by the 
molecular mass of species A to obtain 

 
( ) ( ) ,

1, 2, ...., 1

A
A A A A

c
c c R

t
A N

∂
+ ∇ ⋅ = −∇ ⋅ +

∂
= −

v u
 (89) 

Here the diffusive flux is represented in terms of a 
molar concentration and a mass diffusion velocity. 
This mixed-mode diffusive flux is often referred to 
as a hybrid flux and identified as (Bird et al, 2002, 
page 537) 

 A A Ac=J u  (90) 

Use of this representation in Eq. (89) leads to 

Species Molar: 

 
( ) ,

1, 2, ..., 1

A
A A A

c
c R

t
A N

∂
+ ∇ ⋅ = −∇ ⋅ +

∂
= −

v J
 (91) 

The constraint on this diffusive flux is more complex 
than that for either the mass diffusive flux or the 
molar diffusive flux and is given by 

 
1

0
A N

A A
A

M
=

=

=∑ J  (92) 

This hybrid diffusive flux, JA, lacks popularity; 
however, the transport equation given by Eq. (91) 
has the advantage that it is linear in the diffusive 
flux. In terms of the mixed-mode diffusive flux, the 
total molar continuity equation takes the form 

Total Molar: 

 
1 1

( )
B N B N

B B
B B

c c R
t

= =

= =

∂
+∇ ⋅ = −∇ ⋅ +

∂ ∑ ∑v J  (93) 

and we are still confronted with a complex form of 
the total molar transport equation. This complexity 
often serves to generate the assumption that the total 
molar concentration is constant as indicated by 

Assumption: constantc =  (94) 

Often gas phase diffusion problems lead to the use of 
a molar form of the species continuity equation 
because Eq. (94) provides a reasonable 
simplification. On the other hand, liquid phase 
diffusion problems suggest the use of the mass form 
of the species continuity equation because Eq. (66) 
provides a reasonable simplification. The author is 
unaware of any solution to a diffusion problem that 
does not make use of either Eq. (66) or Eq. (94), and 
removing these assumptions remains as a significant 
challenge. 

5. Binary systems 

Binary systems are often used to introduce the 
phenomena of diffusion, and we will follow that 
approach in order to explore the nature of the mass, 
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molar, and mixed-mode forms of the species 
continuity equation. 

5.1 Mass diffusive flux 

For a binary system, Eq. (59) reduces to 

 
( )0 A B B A

A
AB

x xx −
= −∇ +

v v
D

 (95) 

and we think of this as the governing differential 
equation for vA. The value of vB is available from a 
solution for v and vA which can be used in the second 
of Eqs. (10) to obtain 

 ( )1
B A A

B

ω
ω

= −v v v  (96) 

For a binary system, the two mass continuity 
equations are given by 

 ( ) ( )A
A A A Art

ρ
ρ ρ

∂
+ ∇ ⋅ = −∇ ⋅ +

∂
v u  (97) 

 ( ) 0
t
ρ ρ∂
+ ∇ ⋅ =

∂
v  (98) 

and we need to determine uA and v in order to solve 
these equations. Given the form of Eq. (97) it will be 
convenient to express Eq. (95) in terms of mass 
diffusion velocities, and the use of Eq. (12) leads to 

 
( )

0 A B B A
A

AB

x x
x

−
= −∇ +

u u
D

 (99) 

For a binary system, Eq. (14) provides 

 0A A B Bω ω+ =u u  (100) 

and this can be used in Eq. (99) to obtain 

 10 ( )A B
A A A

AB A B

x x
x ω

ω ω
= −∇ − u

D
 (101) 

Multiplying and dividing the second term by the total 
density allows us to express this result as 

 10 ( )A B
A A A

AB A B

x xx ρ
ρ ω ω

= −∇ − u
D

 (102) 

Here we have a mixed-mode representation in which 
the mass diffusive flux, A Aρ u , is expressed in terms 
of the gradient of the mole fraction, Ax∇ , along with 
the mixed-mode term, A B A Bx x ω ω . 

Before attacking the binary result given by 
Eq. (102) it is convenient to list some results for N-
component systems. We begin with the definitions 
for the mass fraction, Aω , the mole fraction, Ax , and 
the mean molecular mass, M . These are given by 

 
, ,

.....
A A A A

A A B B N N

x c c
M x M x M x M
ω ρ ρ= =

= + + +
 (103) 

in which MA represents the molecular mass of 
species A. In addition to these results, we make use 
of 

 , , 1,2,...A A Ac M c M A Nρ ρ= = = (104) 

to obtain the following relations between the mole 
fractions and the mass fractions 

 
( )

,

1, 2,...

A AA A
A A

A

M Mc c M Mx
c M

A N

ρ
ω

ρ ρ
= = = =

=

(105) 

At this point we direct our attention to binary 
systems and make use of the following relations 

 
, 1 ,

1
A B B A

A B

A B

x x

M M M

ω ω
ω ω

∇ = −∇ = −

= +
 (106) 

along with several algebraic steps (see Appendix C) 
to arrive at 

 
2

A A
A B

Mx
M M

ω∇ = ∇  (107) 

Substitution of this expression for the gradient of the 
mole fraction of species A into Eq. (102) leads to 

 
2 10 ( )A B

A A A
A B AB A B

x xM
M M

ω ρ
ρ ω ω

= − ∇ − u
D

 (108) 

From Eqs. (105) we see that 

 
2

A B

A B A B

x x M
M Mω ω

=  (109) 

and Eq. (108) simplifies to the classic form of Fick’s 
Law given by 

Fick’s Law: A A A AB Aρ ρ ω= = − ∇j u D  (110) 

Returning to Eq. (97), we make use of this form of 
Fick’s Law to obtain the following governing 
equation for the species density, Aρ  

( )( )A
A AB A Art

∂ ⎡ ⎤+ ∇ ⋅ = ∇ ⋅ ∇ +⎣ ⎦∂
v D

ρ
ρ ρ ρ ρ  (111) 

For liquid systems this result can often be simplified 
on the basis of the assumption 

Assumption: constantρ =  (112) 

which leads to 
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( )

( )

constant
,

binary system

A
A

AB A A

t

r

ρ
ρ

ρ
ρ

∂
+ ∇ ⋅

∂

=⎧
= ∇ ⋅ ∇ + ⎨

⎩

v

D
 (113) 

Here we have an attractive, linear transport equation 
for the species density, Aρ . 

When confronted with chemical reactions and 
interfacial transport, we generally prefer to work 
with the molar form of the species continuity 
equation. This form can be extracted from Eq. (113) 
by the use of 

 ,A A A A A Ac M r R Mρ = =  (114) 

which leads to 

( )

( )

constant
,

binary system

A
A

AB A A

c
c

t

c R
ρ

∂
+ ∇ ⋅

∂

=⎧
= ∇ ⋅ ∇ + ⎨

⎩

v

D
 (115) 

This is an attractive form to use with liquids where 
the assumption of a constant density is likely to be a 
valid approximation. When the total density is not 
constant, one must solve Eq. (111) simultaneously 
with Eq. (98). 

 

5.2 Molar diffusive flux 

Because of the prevalence of molar concentrations 
and mole fractions in chemical engineering analysis, 
the species molar continuity equation is generally 
preferred. This form can be extracted from Eq. (84) 
according to 

Species Molar: 

2

1
( )

B
A B

A A A B A
B

c Mc x R
t M

=
∗ ∗

=

∂ ⎛ ⎞+ ∇ ⋅ = −∇ ⋅ − +⎜ ⎟∂ ⎝ ⎠
∑v J J  (116) 

while the total molar continuity equation given 
earlier by Eq. (87) takes the form 

Total Molar: 

 ( )
2

1

( )
B

B
B A B

B

Mc c R R
t M

=
∗

=

∂
+ ∇ ⋅ = ∇ ⋅ + +

∂ ∑v J (117) 

Ignoring for the moment the difficulties associated 
with the total molar continuity equation, we direct 
our attention to the molar diffusive flux represented 
by *

AJ . We begin by using Eq. (73) to express the 
single Stefan-Maxwell equation as 

 
* *( )

0 A B B A
A

AB

x x
x

−
= −∇ +

u u
D

 (118) 

and employ the form of Eq. (76) for both species to 
obtain 

 
* *

0 A B B A
A

AB

x x
x

c
−

= −∇ +
J J

D
 (119) 

Application of the binary version of Eq. (85) 

 * * 0A B+ =J J  (120) 

allows us to express Eq. (119) in the classic form of 
Fick’s Law given by 

Fick’s Law: *
A A A AB Ac c x∗ = = − ∇J u D  (121) 

This is the molar analogy of Eq. (110), and 
substitution of this result into Eq. (116) leads to the 
molar analogy of Eq. (111). 

( ) ( )( )A
A B AB A A

c
c M M c c c R

t
∂ ⎡ ⎤+ ∇ ⋅ = ∇ ⋅ ∇ +⎣ ⎦∂

v D (122) 

If we ignore variations in the total molar 
concentration on the basis of the assumption 

Assumption: constantc =  (123) 

we see that Eq. (122) takes the form 

( )( )

constant
,

binary system

A
A B AB A

A

c
c M M c

t
c

R

∂ ⎡ ⎤+ ∇ ⋅ = ∇ ⋅ ∇⎣ ⎦∂

=⎧
+ ⎨

⎩

v D

 (124) 

in which the presence of M  leads to the non-
linearity associated with 

 ( ) 1
1 1B A A BM M x M M

−
= − +⎡ ⎤⎣ ⎦  (125) 

In order to obtain the so-called dilute solution form 
of Eq. (124), we impose 

Restriction: ( )1 1A A Bx M M − <<  (126) 

and Eq. (124) simplifies to the classic convective-
diffusion equation given by 

( )

( )

( )

constant
, 1 1

binary system

A
A AB A

A A A B

c
c c

t
c

R x M M

∂
+ ∇ ⋅ = ∇ ⋅ ∇

∂

=⎧
⎪+ − <<⎨
⎪
⎩

v D

 (127) 

Here it is very important to note that this result is 
identical to Eq. (115). However, Eq. (127) is not 
based on the constraint that the density is constant. 
Instead, Eq. (127) is based on the assumption of 
“constant total molar concentration” indicated by Eq. 
(123), and the assumption of a “dilute solution” 
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indicated by Eq. (126). For binary systems we have 
(see Eqs. (103) and (104)) 

 ( )A A B Bc x M x Mρ = +  (128) 

which can be arranged in the form 

 ( ){ }1 1A A B Bc x M M Mρ = − +⎡ ⎤⎣ ⎦  (129) 

When the two restrictions associated with Eq. (127) 
are imposed, the total density is essentially constant 
and Eq. (127) is consistent with Eq. (115). 

Returning to Eq. (127), we note that the 
maximum value of the mole fraction for species A 
will usually be known a priori, and this allows us to 
express the constraint associated with Eq. (127) as 

Constraint: ( )max( ) 1 1A A Bx M M − <<  (130) 

One should remember that there is a restriction 
associated with every assumption and when one 
imposes the restriction one always assumes that 
small causes give rise to small effects (Birkhoff, 
1960). In addition, one should remember that behind 
every restriction there is a constraint (see Appendix 
D); however, constraints can often be very difficult 
to develop. 

5.3 Mixed-mode diffusive flux 

In this case we return to the mixed-mode species 
continuity equation [see Eq. (89)] 

 ( ) ( )A
A A A A

c
c c R

t
∂

+∇ ⋅ = −∇ ⋅ +
∂

v u  (131) 

and direct our attention to the single Stefan-Maxwell 
equation given by Eq. (101) and repeated here as 

 10 ( )A B
A A A

AB A B

x xx ω
ω ω

= −∇ − u
D

 (132) 

It is convenient to rearrange this result in the form 

 10 ( )B
A A A

AB B

x
x c

c ω
= −∇ − u

D
 (133) 

in order to obtain the mixed-mode diffusive flux 
given by 

 B
A A AB A

B

c c x
x
ω

= − ∇u D  (134) 

At this point we can use Eq. (105) to obtain the 
mixed-mode form of Fick’s Law given by 

Fick’s Law: 

 ( )A A A B AB Ac M M c x= = − ∇J u D  (135) 

Substitution of this result into Eq. (131) provides the 
following governing equation for the species A molar 
concentration

( ) ( )( )A
A B AB A A

c
c M M c c c R

t
∂ ⎡ ⎤+∇ ⋅ = ∇ ⋅ ∇ +⎣ ⎦∂

v D (136) 

This result is identical to Eq. (122) indicating that 
both the molar representation given by Eq. (116) and 
the mixed-mode representation given by Eq. (131) 
lead to the same result for a binary system. 

It is of some interest to note that the mixed-
mode diffusive flux can be expressed as 

 1
A A A A

A

c
M

ρ=u u  (137) 

and on the basis of Eq. (110) this takes the form 

 1
A A AB A

A

c
M

ρ ω= − ∇u D  (138) 

Use of this result in Eq. (131) yields what appears to 
be an unattractive form given by 

1( )A
A AB A A

A

c
c R

t M
⎡ ⎤∂

+ ∇ ⋅ = ∇ ⋅ ∇ +⎢ ⎥∂ ⎣ ⎦
v Dρ ω  (139) 

However, if we impose the condition 

Assumption: constantρ =  (140) 

and make use of the first of Eqs. (114) we find 

 
( )( )

constant
,

binary system

A
A AB A

A

c
c c

t

R
ρ

∂
+∇ ⋅ = ∇ ⋅ ∇

∂

=⎧
+ ⎨

⎩

v D

 (141) 

which was given earlier by Eq. (115). 

6. Special forms for N-component systems 

Given the complexity of the binary forms described 
in the previous sections, we should expect additional 
complexities for N-component systems. This 
naturally leads to the search for simplifications, and 
we will examine some of these simplifications in this 
section. 

6.1 Dilute solution diffusion 

There are mass transfer processes in which all the 
molar fluxes are the same order of magnitude and the 
dominant diffusing species is dilute. In this special 
case, it is convenient to represent the Stefan-
Maxwell equations in terms of the molar flux defined 
by 

 , 1, 2,...,A A Ac A N= =N v  (142) 
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which allows us to express Eqs. (59) as 

1
0 , 1, 2, ..., 1

B N
A B B A

A
B AB
B A

x x
x A N

c

=

=
≠

−
= −∇ + = −∑ N N

D
(143) 

At this point we separate the second term to obtain 

1 1
0 ,

1, 2, ..., 1

B N B N
B B

A A A
B BAB AB
B A B A

x
c x x

A N

= =

= =
≠ ≠

= − ∇ + −

= −

∑ ∑N
N

D D  (144) 

and we define the mixture diffusivity by 

1

1 , 1, 2, ..., 1
D

B N
B

BAm AB
B A

x
A N

=

=
≠

= = −∑D
 (145) 

so that the Stefan-Maxwell equations can be 
expressed as 

1
0 ,

1, 2, ..., 1

B N
Am

Am A A B A
B AB
B A

c x x

A N

=

=
≠

= − ∇ + −

= −

∑ N N
D

D
D  (146) 

For some processes, such as diffusion in porous 
media (Whitaker, 1999) in which the flux of all the 
species is driven by heterogeneous reaction or by 
adsorption/desorption, we can impose the 
simplification 

 1
,

1, 2, ..., ,

B N
Am

A B A
B AB
B A

x

A G G N

=

=
≠

<<

= <

∑ N N
D
D  (147) 

when the following two conditions are satisfied: 

Constraint: max( ) 1 , 1, 2, ...,Ax A G N<< = <  (148a) 
Restriction: ( ) , 1, 2, ...,B A B N= =N O N  (148b) 
 
The first of Eqs. (148) is identified as a constraint 
since the maximum values of the mole fractions are 
generally known a priori, while the second 
inequality is identified as a restriction since it is not 
expressed in terms of quantities that are known a 
priori. Equation 148b should be interpreted to mean 
that BN  is not significantly larger than AN  and if 
species B is stagnant, BN  would be zero. 

In Eqs. (147) and (148a) we have indicated 
that our N-component system contains G 
components that are dilute. For example, if we may 
have a five-component mixture in which three 
components have mole fractions that are small 
compared to one, we have 3G =  and Eqs. (147) and 
(148a) applies to these three components. Use of Eq. 
(147) allows us to express the dilute forms of Eqs. 
(146) as 

, 1, 2, ...,A Am Ac x A G N= − ∇ = <N D  (149) 
At this point we recognize that Eqs. (72) can be 
expressed in terms of AN  to obtain 

 , 1, 2, ...., 1A
A A

c
R A N

t
∂

+ ∇ ⋅ = = −
∂

N  (150) 

and that Eq. (149) can be used to obtain a dilute 
solution diffusion equation given by 

( ) , 1, 2, ....,A
Am A A

c
c x R A G N

t
∂

= ∇ ⋅ ∇ + = <
∂

D (151) 

We are still confronted with the complexity of the 
transport equation for the total molar concentration 
given by Eq. (87), and this difficulty is classically 
avoided by assuming that the total molar 
concentration is a constant in order to obtain 

 
( ) ,

1, 2, ..., ,
other conditions

A
Am A A

c
c R

t
G N

A G

∂
= ∇ ⋅ ∇ +

∂

<⎧
= ⎨

⎩

D

 (152) 

in which the other conditions associated with this 
result are given by 

Assumption: constantc =  (153a) 

Restriction: ( ) , 1, 2, ...,B A B N= =N O N  (153b) 

Constraint: max( ) 1 , 1, 2, ...,Ax A G N<< = <  (153c) 

The constraint identified by Eq. (153c) is generally 
available in terms of the problem statement, and 
when this constraint is satisfied it is probable that the 
assumption given by Eq. (153a) and the restriction 
given by Eq. (153b) are also valid. 

6.2 Dilute solution convective-diffusion equation 
using *

AJ  

In order to develop the convective-diffusion version 
of Eqs. (152), we begin with the generally valid form 
given by Eqs. (84) and repeated here as 

1
( )

, 1, 2, ....,

B N
A B

A A A B
B

A

c M
c x

t M
R A N

=
∗ ∗

=

∂ ⎛ ⎞+∇ ⋅ = −∇ ⋅ −⎜ ⎟∂ ⎝ ⎠
+ =

∑v J J
 (154) 

The Stefan-Maxwell equations can be expressed as 

1
0 , 1, 2, ..., 1

B N
A B B A

A
B AB
B A

x x
x A N

c

∗ ∗=

=
≠

−
= −∇ + = −∑ J J

D
(155) 

and the summation can be separated leading to 
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1 1
0 ,

1, 2, ..., 1

B N B N
B B

A A A
B BAB AB
B A B A

x
c x x

A N

∗= =
∗

= =
≠ ≠

= − ∇ + −

= −

∑ ∑J
J

D D  (156) 

The definition of the mixture diffusivity given by Eq. 
(145) can be used to express this result in the form 

 1
0 ,

1, 2, ..., 1

B N
Am

Am A A B A
B AB
B A

c x x

A N

=
∗ ∗

=
≠

= − ∇ + −

= −

∑ J J
D

D
D  (157) 

In making judgments about this result, we need to 
remember that the diffusive fluxes are constrained by 

 *

1
0

B N

B
B

=

=

=∑ J  (158) 

indicating that the diffusive fluxes tend to be the 
same order of magnitude. This means that the 
following inequality 

Restriction:

1
, 1, 2, ...,

B N
Am

A B A
B AB
B A

x A G N
=

∗ ∗

=
≠

<< = <∑ J J
D
D

 (159) 

has considerable appeal when the mole fraction of 
species A is small compared to one as indicated by 

Restriction: 1 , 1, 2, ...,Ax A G N<< = <  (160) 

Use of the inequality given by Eq. (159) in the 
Stefan-Maxwell equations given by  
Eqs. (157) leads to the multi-component form of 
Fick’s Law 

“Fick’s Law” 

, 1, 2, ..., ,
1A Am A

A

G N
c x A G

x
∗ <⎧
= − ∇ = ⎨ <<⎩

J D  (161) 

which is analogous to the result for binary systems 
given by Eq. (121). 

We now turn our attention to the species 
continuity equation given by Eq. (154). Use of the 
dilute solution condition indicated by Eq. (160) and 
the constraint on the diffusive fluxes given by Eq. 
(158) leads to the restriction 

Restriction: 
1

B N
B

A B A
B

M
x

M

=
∗ ∗

=

<<∑ J J  (162) 

Use of this inequality along with the multi-
component form of Fick’s Law given by  
Eq. (161) in Eq. (154) leads to the following form of 
the convective-diffusion equation 

 ( )( ) ,

1, 2, ...,

A
A Am A A

c
c c x R

t
A G N

∂
+ ∇ ⋅ = ∇ ⋅ ∇ +

∂
= <

v D
 (163) 

In addition to the inequalities given by Eqs. (160) 
and (162), we assume that the total molar 
concentration is constant in order to obtain the 
classic linear convective-diffusion equation for 
species A. 

( )( )

, 1, 2, ..., , constant
1

A
A Am A

A

A

c
c c

t
G N

R A G c
x

∂
+ ∇ ⋅ = ∇ ⋅ ∇

∂
<⎧

⎪+ = =⎨
⎪ <<⎩

v D

 (164) 

This special form of the species continuity equation 
is ubiquitous in the chemical engineering literature; 
however, the simplifications associated with this 
result are generally not made clear. In addition to the 
dominant restrictions listed in Eq. (164), one should 
keep in mind the restriction given by Eq. (162) that 
would appear to be automatically satisfied by Eqs. 
(158) and (160) unless there is a serious disparity in 
the molecular masses. 

6.3 Dilute solution convective-diffusion equation 
using AJ  

In this case we begin with Eq. (91) 

( ) , 1, 2, ...., 1A
A A A

c
c R A N

t
∂

+∇ ⋅ = −∇ ⋅ + = −
∂

v J (165) 

and note that the Stefan-Maxwell equations can be 
expressed as 

1
0 , 1, 2, ..., 1

B N
A B B A

A
B AB
B A

x x
x A N

c

=

=
≠

−
= −∇ + = −∑ J J

D
 (166) 

Separating the terms in the sum leads to 

1 1
0 ,

1, 2, ..., 1

B N B N
B B

A A A
B BAB AB
B A B A

x
c x x

A N

= =

= =
≠ ≠

= − ∇ + −

= −

∑ ∑J
J

D D  (167) 

and use of the definition of the mixture diffusivity 
given by Eq. (145) provides 

1
0 ,

1, 2, ..., 1

B N
Am

Am A A B A
B AB
B A

c x x

A N

=

=
≠

= − ∇ + −

= −

∑ J J
D

D
D  (168) 

In making judgments about this result we need to 
remember that the diffusive fluxes are constrained by 
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1

0
A N

A A
A

M
=

=

=∑ J  (169) 

thus if the mole fraction of species A is small 
compared to one, we can make use of the restriction 
given by 

Restriction:

1
, 1, 2, ...,

B N
Am

A B A
B AB
B A

x A G N
=

=
≠

<< = <∑ J J
D
D

 (170) 

Under these circumstances, the Stefan-Maxwell 
equation for species A takes the form 

“Fick’s Law”: 

, 1, 2, ...,A Am Ac x A G N= − ∇ = <J D  (171) 

Use of this result in Eq. (165) leads to the following 
form of the convective-diffusion equation 

( )( )A
A Am A A

c
c c x R

t
∂

+∇ ⋅ = ∇ ⋅ ∇ +
∂

v D  (172) 

This result, based on the single restriction given by 
Eq. (170), is identical to that given earlier by Eq. 
(163). To complete the analysis of the mixed-mode 
diffusive flux, we assume that the total molar 
concentration is constant so that Eq. (172) takes the 
form 

( )( ) ,

1, 2, ..., , constant
1

A
A Am A A

A

c
c c R

t
G N

A G c
x

∂
+ ∇ ⋅ = ∇ ⋅ ∇ +

∂
<⎧

⎪= =⎨
⎪ <<⎩

v D

 (173) 

Certainly the route to Eq. (173) is simpler than that 
followed in the development of Eq. (164); however, 
the preferred approach might still be considered to be 
a matter of choice. 

6.4 Diffusion through stagnant species 

The case of binary transport of species A through a 
stagnant species B has been treated in terms of the 
classic Stefan diffusion tube (Whitaker, 2009b, Sec. 
2.7). Moving beyond the binary system, we consider 
the case in which species A is diffusing and all other 
species are stagnant. Under these circumstances, the 
Stefan-Maxwell equation for species A reduces to 

 
1

0
B N

A B A
A

B AB
B A

x x
x

=

=
≠

= −∇ − ∑ v
D

 (174) 

and this can be arranged in the form 

 
1

0
B N

B
A A

B AB
B A

x
c x

=

=
≠

= − ∇ − ∑ N
D

 (175) 

Use of the definition of the mixture diffusivity given 
by Eq. (145) immediately leads to 

 A Am Ac x= − ∇N D  (176) 

Note that this result is not restricted to a dilute 
solution; however, we have imposed the condition on 
the velocities given by 

Assumption: ... 0B C N= = = =v v v  (177) 

This assumption could be replaced with the 
restriction 

Restriction: , , ...,B A C A N A<< << <<v v v v v v  (178) 

in which the use of the absolute values of the 
velocities is understood. Here one should remember 
that we are repeatedly relying on Birkhoff’s (1960) 
plausible intuitive hypothesis that small causes give 
rise to small effects. Use of Eq. (176) in Eq. (150) 
leads to 

 ( )A
Am A A

c
c x R

t
∂

= ∇ ⋅ ∇ +
∂

D  (179) 

and we can assume that the total molar concentration 
is constant to obtain 

( )
constant

,
other conditions

A
Am A A

cc
c R

t
=∂ ⎧

= ∇ ⋅ ∇ + ⎨
∂ ⎩

D  (180) 

where the other conditions are those indicated by 
Eqs. (178). This result is identical to Eq. (152) 
except for the fact that there is only a single 
component that could satisfy this equation. As a 
reminder of the difference between Eq. (180) and Eq. 
(152) we summarize the conditions upon which it is 
based 

Restriction: , , ...,B A C A N A<< << <<v v v v v v (181) 

Restriction: A Ax c c∇ << ∇  (182) 

Comparing these two restrictions with Eqs. (153) 
indicates that Eqs. (152) and (180) describe rather 
different physical phenomena even though the two 
equations are identical. In reality, it seems unlikely 
that a process restricted by Eq. (181) could involve 
significant homogeneous reaction, thus a more 
realistic version of Eq. (180) would require that we 
set RA equal to zero. Nevertheless, the fact that Eq. 
(152) and Eq. (180) are identical in form suggests 
that we must be very careful to understand the 
precise meaning of the special forms of Eq. (68). 

7. General solution for N-component systems: 
Constant total molar concentration 

From the analysis in previous sections, it seems clear 
that the most efficient route to the determination of 
the molar concentration is via the mixed-mode 
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continuity equation described in Sec. 4. This is 
especially true for the case in which we develop an 
exact solution of the Stefan-Maxwell equations. In 
this section we consider the case of constant total 
molar concentration and in the next section we 
examine the case of constant total mass density. The 
completely general case for which neither ρ  nor c is 
constant remains as a challenge. 

In this treatment we make use of Eq. (91) repeated 
here as 

 
( ) ,

1, 2, ..., 1

A
A A A

c
c R

t
A N

∂
+∇ ⋅ = −∇ ⋅ +

∂
= −

v J
 (183) 

along with the constraint on the mixed-mode 
diffusive flux given by 

 
1

0
A N

A A
A

M
=

=

=∑ J  (184) 

For N-component systems, it is convenient to work 
in terms of matrices, thus we define the following 
column matrices that will be used in subsequent 
paragraphs. 

 

[ ] [ ]

[ ] [ ]

[ ]

1 1

1 1

1

, ,
... ...
... ...
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... ...
... ...

...

...

A A

B B

C C

N N
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B B

C C

N N

A

B

C

N

c c
c c
c c

c c

c c

x
x
x

x

x

R
R
R

R

R

− −

− −

−

∇⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∇

= ∇ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∇⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥∇⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∇

∇ = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢
⎢
⎢
⎢⎣ ⎦

J
J
J

J

J

⎥
⎥
⎥
⎥  (185) 

Use of the first, fourth and fifth of these matrices 
allows us to express Eq. (183) as  

 ( ) [ ] [ ][ ] [ ]c c R
t

∂
+ ∇ ⋅ = −∇ ⋅ +

∂
v J  (186) 

and our single objective at this point is to develop a 
useful representation for [ ]J . A similar approach 

using ∗v  and A
∗J  with 1, 2,..., 1A N= −  is given by 

Bird et al. (2002, Sec. 22.9). In addition, Quintard et 
al. (2006) have studied the formulation and the 
numerical solution for this problem using both the 
molar forms, ∗v  and A

∗J , and the mass forms, v  and 

Aj . 

We begin our analysis of the diffusive flux 
with the Stefan-Maxwell equations given by Eq. 
(166), and we make use of the mixture diffusivity 
defined by Eq. (145) to obtain 

 1
,

1, 2, ...., 1

B N
Am

A Am A A B
B AB
B A

c x x

A N

=

=
≠

= − ∇ +

= −

∑J J
D

D
D  (187) 

We want to use Eq. (184) to eliminate NJ  and it will 
be convenient to express that constraint on the 
mixed-mode diffusive fluxes in the alternate form 
given by 

 ( )
1

0
A N

A A N
A

M M
=

=

=∑ J  (188) 

At this point we extract NJ  from the sum in Eq. 
(187) in order to obtain 

1

1
,

1, 2, ..., 1

B N
Am Am

A Am A A B A N
B AB AN
B A

c x x x

A N

= −

=
≠

= − ∇ + +

= −

∑J J J
D D

D
D D  (189) 

and from Eq. (188) we have the following 
representation for NJ  

 ( )
1

1

B N

N B B N
B

M M
= −

=

= − ∑J J  (190) 

In order to use this result with Eq. (189), we need to 
condition the sum with the constraint indicated by 
B A≠  and this leads to 

( ) ( )
1

1

B N

N B B N A A N
B
B A

M M M M
= −

=
≠

= − −∑J J J  (191) 

Use of this result in Eq. (189) provides the following 
form of the Stefan-Maxell equations 

1

1
1

, 1, 2, ...., 1

B N
A Am B Am Am

A A A B
BN AN N AN AB
B A

Am A

M M
x x

M M

c x A N

= −

=
≠

⎛ ⎞ ⎛ ⎞
+ + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= − ∇ = −

∑J J
D D D
D D D

D

(192) 

This can be expressed in compact form according to 
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 [ ]

1 11

D
D
D

D

......

......

Am AA

Bm BB

Cm CC

N m NN

x
x
x

H c

x− −−

∇⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ∇⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ∇

= − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

J
J
J

J

 (193) 

in which [ ]H  is an ( 1) ( 1)N N− × −  square matrix 

1

1

1 1 1

. . .

. . .
. . . . .

[ ] .
. . . . . .
. . . . . .

. . . .

AA AB AN

BA BB BN

CA

N A N N

H H H
H H H
H

H

H H

−

−

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (194) 

having the elements defined by 

 
1 ,

1, 2,..., 1

A Am
AA A

N AN

M
H x

M
A N

= +

= −

D
D  (195a) 

 
,

, 1, 2,.., 1 ,

B Am Am
AB A

N AN AB

M
H x

M
A B N A B

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
= − ≠

D D
D D  (195b) 

We assume that the inverse of [ ]H  exists in order to 
express the column matrix of the mixed-mode 
diffusive flux vectors in the form 

 [ ] 1

1 11

......

......

Am AA

Bm BB

Cm CC

N m NN

x
x
x

c H

x

−

− −−

∇⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ∇⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ∇

= − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

J
J
J

J

D
D
D

D

 (196) 

The column matrix on the right hand side of this 
result can be expressed as 
 

1 1

1 1

0 0 0
0 0 0
0 0 0

0 0 0

...

....

....

....
. . . .... . ..

....

Am A

Bm B

Cm C

N m N

Am A

Bm B

Cm C

N m N

x
x
x

x

x
x
x

x

− −

− −

∇⎡ ⎤
⎢ ⎥∇⎢ ⎥
⎢ ⎥∇
⎢ ⎥
⎢ ⎥
⎢ ⎥∇⎣ ⎦

∇⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ∇
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∇⎣ ⎦⎣ ⎦

D
D
D

D

D
D

D

D

 (197) 

so that the matrix representation for the mixed-mode 
diffusive flux becomes 
 

[ ] 1

1 1
1

0 0 0
0 0 0
0 0 0

0 0 0

...

...

....

....

....
. . . .... . ..

....

A
Am A

B
Bm B

C
Cm C

N m N
N

x
x

c H x

x

−

− −
−

⎡ ⎤
∇⎡ ⎤ ⎡ ⎤⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ∇⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥= − ∇⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ∇⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

J
J
J

J

D
D

D

D

 (198) 

The diffusivity matrix is now defined by 

1

1

0 0 0
0 0 0
0 0 0[ ] [ ]

0 0 0

....

....

....
. . . .... .

....

Am

Bm

Cm

N m

D H −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

D
D

D

D

 (199) 

and this allows us to express Eq. (198) as 

 

1 1

[ ]
... ...
... ...

A A

B B

C C

N N

x
x
x

c D

x− −

∇⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∇

= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

J
J
J

J

 (200) 

with the compact form given by 

 [ ] [ ][ ]c D x= − ∇J  (201) 

This represents the N-component analog of Fick’s 
Law given by Eq. (135) that we recall here as 

Fick’s Law: ( )A B AB Ac M M x⎡ ⎤= − ∇⎣ ⎦J D  (202) 

Use of Eq. (201) in Eq. (186) leads to 

 ( ) [ ]( ) [ ][ ] [ ] [ ]c c c D x R
t

∂
+ ∇ ⋅ = ∇ ⋅ ∇ +

∂
v  (203) 

Once again we may be faced with the difficult task 
of determining the total molar concentration on the 
basis of Eq. (93), and to avoid this problem we 
restrict Eq. (203) to the case of constant total molar 
concentration. This leads to 

( ) [ ]( ) [ ][ ] [ ] [ ]

constant
component system

c c D c R
t

c
N

∂
+∇ ⋅ = ∇ ⋅ ∇ +

∂

=⎧
⎨ −⎩

v
 (204) 

Here it is important to remember that [ ]D  depends 
explicitly on the mole fractions, as indicated by the 
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definitions given in Eq. 195 and implicitly as 
indicated by the definition of the mixture diffusivity 
given by Eq. (145). This means that a trial-and-error 
numerical solution will be necessary in which the 
assumed values used for the mole fractions are 
upgraded after each iteration. The solution for [ ]c  
will provide values of , 1, ....,A B Nc c c −  and the 
concentration Nc  can be determined by the first of 
Eqs. (71). Similarly, the solution for [ ]R  will 
provide values of , 1, ....,A B NR R R −  and the reaction 
rate NR  can be determined by Eq. (69). In the case 
of complex kinetics, the column matrix of reaction 
rates will need to be expressed as 

 [ ] [ ]( , , ..., )A A NR c c c= F  (205) 

and the trial-and-error procedure will be more 
complex. 

8. General solution for N-component systems: 
Constant total mass density 

In addition to the N-component form of the species 
continuity equation based on the assumption of a 
constant total molar concentration, it would be 
useful to develop the analogous form for constant 
total density. Our starting point for this analysis is 
Eq. (203) and the analysis requires that we express 
[ ]x∇  in terms of the gradient of the mass fractions, 

Aω∇ , Bω∇ , etc. We begin the analysis with Eq. 
(105) repeated here as 

 , 1,2,...A A
A

Mx A N
M

ω= =  (206) 

in which the mean molecular mass can be expressed 
as in terms of the mass fractions in order to obtain 
(see Eq. C11 in the Appendix C) 

 1 ...C NA B

A B C NM M M M M
ω ωω ω

= + + + +  (207) 

We can use Eq. (206) to express the gradient of the 
mole fraction as 

 , 1,2,...A A A
A A

M Mx A N
M M

ω ω∇
∇ = + ∇ = (208) 

while the gradient of the mean molecular mass is 
given by 

 2

1

B N
B

B B

M M
M
ω=

=

∇
∇ = − ∑  (209) 

Use of Eq. (209) in Eq. (208) leads to 

1

,

1, 2,...

B N

A A A B
BA B

M Mx
M M

A N

ω ω ω
=

=

⎡ ⎤
∇ = ∇ − ∇⎢ ⎥

⎣ ⎦
=

∑  (210) 

At this point we can make use of the fact that the 
sum of the mass fractions is equal to one so that the 
gradients are related by 

( )1.....N A B C Nω ω ω ω ω −∇ = − ∇ + ∇ + ∇ + + ∇ (211) 

This allows us to eliminate Nω∇  from Eq. (210) and 
express that result in the form 

1

1

,

1, 2,... 1

B N

A A A B
BA B N

M M Mx
M M M

A N

ω ω ω
= −

=

⎡ ⎤⎛ ⎞
∇ = ∇ − − ∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
= −

∑ (212) 

Here we need to condition the sum with the 
constraint indicated by B A≠  and this leads to 

1

1

1

, 1, 2,... 1

A A A
A N A

B N

A B
B N B
B A

M M Mx
M M M

M M A N
M M

ω ω

ω ω
= −

=
≠

⎧⎡ ⎤⎛ ⎞⎪∇ = + − ∇⎢ ⎥⎨ ⎜ ⎟
⎢ ⎥⎝ ⎠⎪⎣ ⎦⎩

⎫⎛ ⎞ ⎪+ − ∇ = −⎬⎜ ⎟
⎝ ⎠ ⎪⎭

∑
 (213) 

which can be expressed as a matrix equation given 
by 

1

1

1 1 1 1 1 1

.

. .
. . .

. . . . .
. . . . . . .
. . . . . . . .

. . .

A AA AB AC AN A

B BA BB BN B

C CA C

N N A N B N N N

x W W W W
x W W W
x W

x W W W

ω
ω
ω

ω

−

−

− − − − − −

∇ ∇⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∇ ∇⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∇ ∇

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
∇ ∇⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (214) 

Here the elements of this ( 1) ( 1)N N− × −  square 
matrix are defined as 

 
,

1, 2,..., 1

AA A
A A N A

M M M MW
M M M M

A N

ω
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

= −

 (215a) 

 
,

, 1, 2,..., 1 ,

AB A
A N A

M M MW
M M M

A B N A B

ω
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

= − ≠

 (215b) 

At this point we recall Eq. (200) and make use of Eq. 
(214) to obtain 
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1 1

[ ][ ]
...
...

.

.

A A

B B

C C

N N

c D W

ω
ω
ω

ω− −

∇⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∇

= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

J
J
J

J

 (216) 

in which the square matrix [ ]W  is defined explicitly 
by 

[ ]

1

1

1 1 1 1

. .
. . .

. . . . .
. . . . . .
. . . . . .

. . .

AA AB AC AN

BA BB BN

CA

N A N B N N

W W W W
W W W
W

W

W W W

−

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (217) 

Use of the third of Eqs. (104) leads to the total mass 
density as a multiplier and Eq. (216) takes the form 

 [ ]1

1 1

[ ]
...
...

.

.

A A

B B

C C

N N

M D W

ω
ω
ω

ρ

ω

−

− −

∇⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∇

= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

J
J
J

J

 (218) 

We are now in a position to impose the condition 
that the total mass density is a constant in order to 
express the mixed-mode fluxes in the form 

 
[ ]1

1 1

[ ] ,
...
...

constant

.

.

A A

B B

C C

N N

M D W

ρ
ρ
ρ

ρ
ρ

−

− −

∇⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∇⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∇

= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

∇⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

J
J
J

J

 (219) 

At this point we make use of the first of Eqs. (104) to 
express the column matrix of the gradients of the 
species densities as 

1 1 1

0 0 0
0 0 0
0 0

0 0

. .

. .

. .

. . .
. . . . . .

. . . . . . . .
. . .

A A A

B B B

C C C

N N N

M c
M c

M c

M c

ρ
ρ
ρ

ρ − − −

∇ ∇⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∇ ∇⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∇ ∇

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
∇ ∇⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(220) 

Substitution of this result into Eq. (219) leads 
to

[ ]1

1 1 1

0 0 0
0 0 0
0 0

[ ]
...
...

0 0

.

. .

. .

. . .
. . . . . .
. . . . . . .

. . .

A A A

B B B

C C C

N N N

M c
M c

M c
M D W

M c

−

− − −

∇⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∇⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∇

= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

∇⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

J
J
J

J
  (221) 

in which it is understood that the total mass density 
is assumed to be constant. We can represent this 
result in compact form 

 [ ] [ ][ ] c= − ∇J D  (222) 

in which the new diffusivity matrix is given by 

[ ] [ ]

1

0 0 0
0 0 0
0 0

[ ]

0 0

. .

. .

. . .
. . . . . .
. . . . . .

. . .

A

B

C

N

M M
M M

M M
D W

M M−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= − ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

  (223) 

Use of Eq. (222) in Eq. (186) yields  

( ) ( ) [ ][ ] [ ] [ ][ ]

constant
component system

c c c R
t

N
ρ

∂
+∇ ⋅ = ∇ ⋅ ∇ +

∂

=⎧
⎨ −⎩

v D
 (224) 

In the trial-and-error solution of this transport 
equation, values of the mole fractions will be 
required as in the solution of Eq. (204); however, in 
this case it is the total mass density, ρ, that is a 
specified constant and not the total molar 
concentration, c. This requires that we first determine 

Nρ  and then Nc  according to 

 
1

1
,

A N

N A A N N N
A

c M c Mρ ρ ρ
= −

=

= − =∑  (225) 

The mole fractions required for the evaluation of 
[ ]D  would then be determined by 

 
1

B N

A A B
B

x c c
=

=

= ∑  (226) 

while the mass fractions required for the evaluation 
of [ ]W  would be calculated according to 

 
1

B N

A A A B B
B

c M c Mω
=

=

= ∑  (227) 

The result for constant total density given by Eq. 
(224), along with that for constant total molar 
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concentration given by Eq. (204), should prove to be 
useful for a wide range of mass transfer problems, 
provided that the Stefan-Maxwell equations are an 
acceptable representation for the diffusive fluxes. A 
discussion of the conditions for which the total molar 
concentration and total mass density may be treated 
as constants is given in Appendix E. 

9. Conclusions 

In this study we have examined the derivation of the 
Stefan-Maxwell equations and we have explored the 
structure of these equations in terms of the mass 
diffusive flux, the molar diffusive flux, and the 
mixed-mode diffusive flux. Several classic special 
cases have been examined and the assumptions, 
restrictions and constraints have been identified 
whenever possible. A general method of solution of 
the Stefan-Maxwell equations has been presented in 
terms of the mixed-mode diffusive flux. 

Nomenclature 

( )A tA  surface area of a species A material 
volume, m2 

Ab  body force per unit mass exerted on 
species A, N/kg 

b body force per unit mass exerted on the 
mixture, N/kg 

Ac  molar concentration of species A, 

moles/m3 
c total molar concentration, moles/m3 

Ad  driving force for diffusion of species A in 
an ideal solution, m−1 

ABD  BAD , binary diffusion coefficient for 
species A and B, m2/s 

AmD  mixture diffusivity for species A, m2/s 
[ ]D  diffusivity matrix used with constant total 

molar concentration, m2/s 
[ ]D  diffusivity matrix used with constant total 

mass density, m2/s 
T
AD  thermal diffusion coefficient for species 

A, 2kg m s  
G number of molecular species that are 

dilute 
g gravitational body force per unit mass, 

N/kg 
Aj  A Aρ u , mass diffusive flux of species A, 

kg/ m2s 
A
∗J  A Ac ∗u , molar diffusive flux of species A, 

moles/ m2s 
AJ  A Ac u , mixed-mode diffusive flux of 

species A, moles/ m2s 
AM  molecular mass of species A, g/mole 

M  mean molecular mass of a mixture, 
g/mole 

N total number of molecular species 

AN  A Ac v , molar flux of species A, mole/m2s 
n unit normal vector 

ABP  force per unit volume exerted by species 
B on species A, N/m3 

p  
1

A N

A
A

p
=

=
∑ , total pressure, N/m2 

Ap  partial pressure of species A, N/m2 

Ar  net mass rate of production of species A 
owing to homogeneous reactions, kg/m3s 

AR  net molar rate of production of species A 
owing to homogeneous reactions, 
moles/m3s 

R gas constant, J/mol K 
t time, s 

( )A nt  stress vector for species A, N/m2 

AT  stress tensor for species A, N/m2 
U  total internal energy in a volume V, J 

Au  A −v v , mass diffusion velocity, m/s 

A
∗u  A

∗−v v , molar diffusion velocity, m/s 

Av  velocity of species A, m/s 

v  
1

A N

A A
A

ω
=

=
∑ v , mass average velocity, m/s 

∗v  
1

A N

A A
A

x
=

=
∑ v , molar average velocity, m/s 

A
∗v  velocity associated with the net rate of 

production of species A momentum 
owing to chemical reaction, m/s 

( )A tV  volume of a species A body, m3 

Ax  /Ac c , mole fraction of species A 
 
Greek Letters 

Aρ  mass density of species A, kg/m3 
ρ  total mass density, kg/m3 
μ  viscosity, N/m2s 
τ  viscous stress tensor, N/m2 

Aτ  viscous stress tensor for species A, N/m2 

Aω  /Aρ ρ , mass fraction of species A 
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Appendix A: Chemical Reaction and Linear 
Momentum 

The rate of change of linear momentum of species A 
owing to chemical reaction, A Ar ∗v , can be caused 
either by the increase of species A (production) or by 
the decrease of species A (consumption). If species A 
is consumed by chemical reaction, it seems plausible  
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Fig. A1. Reaction of species B to form species A 

 

that the rate of change of linear momentum is given 
by A Ar v . Here we need to note that the molecular 
velocity (Hirschfelder et al., 1954, page 453) of 
species A is much larger than the continuum velocity, 

Av ; however, the average velocity associated with 
the consumption of species A should be adequately 
represented by Av . If species A is produced by a 
chemical reaction, the rate of change of linear 
momentum depends on the velocities of the species 
that react to form species A. 

The simple reaction illustrated in Fig. A1 can 
be described as 2B A→ , and we assume that the 
loss of momentum by species B is equal to the gain 
of momentum of species A. We express this idea as 
[see Eq. (21)] 

 
loss gain

0B B A Ar r∗ ∗+ =v v  (A1) 

and note that conservation of mass [see Eq. 2] 
requires 

 
loss gain

0B Ar r+ =  (A2) 

On the basis of the argument given above, we 
assume that 

 B B
∗ =v v  (A3) 

and Eq. (A1) takes the form 

 
loss gain

0B B A Ar r ∗+ =v v  (A4) 

When Eq. (A2) is used with this result we find that 
A
∗v  is given by 

 A B
∗ =v v  (A5) 

and the rate of change of linear momentum of 
species A can be expressed as 

 

 

 

Fig. A2. Reaction of B and C to produce A and D 

 

( )
 rate of change of
linear momentum
    of species 

A A A A A B Ar r r
A

∗

⎧ ⎫
⎪ ⎪ = = + −⎨ ⎬
⎪ ⎪
⎩ ⎭

v v v v (A6) 

The species velocities can be expressed in terms of 
the mass average velocity and the diffusion velocity 
to obtain 

 ,A A B B= + = +v v u v v u  (A7) 

and these results can be used in Eq. (A6) so that the 
rate of change of momentum of species A takes the 
form 

( )
 rate of change of
linear momentum
    of species 

A A A B Ar r
A

⎧ ⎫
⎪ ⎪ = + −⎨ ⎬
⎪ ⎪
⎩ ⎭

v u u  (A8) 

This leads to the estimate 

( )
 rate of change of
linear momentum
    of species 

A A A Ar r
A

⎧ ⎫
⎪ ⎪ = +⎨ ⎬
⎪ ⎪
⎩ ⎭

v O u  (A9) 

suggested by Whitaker (1986, Eqs. 1-19 and 1-55). 

If we consider the slightly more complex 
reaction illustrated in Fig. A2, the concepts 
illustrated in Eqs. (A2) and (A4) take the form 

 
gain gainloss

0CB A Dr r r r+ + + =  (A10) 

gain gainloss

0C CB B A A D Dr r r r∗ ∗+ + + =v v v v  (A11) 

In this case constructing a value for A
∗v  is not as 

simple as the result illustrated by Eq. (A5). In terms 
of molar rates of reaction, we have 

 
, ,
,

B B B B B B

B B B B B B

r M R r M R
r M R r M R

= =
= =

 (A12) 

in which BM  represents the molecular mass of 
species B and BR  represents the molar rate of 
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reaction for species B. In terms of molecular masses 
and molar rates of reaction, we can express Eq. 
(A11) as 

gainloss

gain

0

C C CB B B A A A

D D D

M R M R M R

M R

∗

∗

+ +

+ =

v v v

v
 (A13) 

and Eq.(A10) can be replaced by 

 , ,C CB A A DR R R R R R= = − =   

Use of this constraint on the molar rates of reaction 
in Eq. (A13) leads to 

 C CB B A A D DM M M M∗ ∗+ = +v v v v  (A14) 

We now express the species velocities in terms of the 
mass average velocity and the diffusion velocities in 
order to obtain  

 
, ,

C C

A A B B= + = +
= +

v v u v v u
v v u

 (A15) 

Use of these relations in Eq. (A14) provides 

( ) ( )
( ) ( )

C C C

D D D

B B B A A A

D D D A A A

M M M M M

M M M M M

∗

∗

+ + + = −

+ − + + + +

u u v v v

v v u u v
(A16) 

that can be simplified to 

 
( ) ( )

( ) ( )C C D D

A A A D D D

B B A A

M M

M M M M

∗ ∗− + −

= + − +

v v v v

u u u u
(A17) 

Provided that the molecular masses are all the same 
order of magnitude, this result suggests that the 
difference, A A

∗ −v v , is on the order of the diffusion 
velocities. Given the general constraint on the 
diffusion velocities [see Eq. (14)], the result given by 
Eq. (A17) suggests that 
 ( )A A A

∗ = +v v O u  (A18) 
which is equivalent to Eq. (A9). 

The two cases represented in Figs. A1 and A2 
are especially simple; however, most chemical 
reactions are likely to be binary in nature, thus Eq. 
(A18) represents a plausible estimate of the velocity 

A
∗v . 

 
Appendix B: Thermodynamic pressure 
 
The decomposition given by Eq. (42) indicates that 

AT  is represented in terms of the partial pressure, 

Ap , and the viscous stress tensor, Aτ . The partial 
pressure of species A can be defined by (Whitaker, 
1989, Chapter 10) 
 ( )2

, , ,.......B CA A A A sp e
ρ ρ

ρ ρ= ∂ ∂  (B1) 

in which Ae  is the internal energy of species A per 
unit mass of species A, and Aρ  is the mass density of 
species A. We defined the total pressure in terms of 
the partial pressures according to 

 
1

A N

A
A

p p
=

=

= ∑  (B2) 

However, the total pressure, p, can also be expressed 
as 
 ( )2

, , ,...,B C Ns
p e

ρ ρ ρ
ρ ρ= ∂ ∂  (B3) 

in which e is the total internal energy defined by

 
1

A N

A A
A

e eω
=

=

= ∑  (B4) 

In this appendix we wish to show that there is no 
conflict between Eqs. (B1), (B2) and (B3), and this 
requires that we demonstrate the following: 

2 2

1 , , ,...,, , ,..., B C NB C N

A N
A

A
A A ss

e e

ρ ρ ρρ ρ ρ

ρ ρ
ρ ρ

=

=

⎛ ⎞∂ ⎛ ⎞∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∑  (B5) 

In order to illustrate how the thermodynamic 
definition of the partial pressure is related to the 
thermodynamic definition of the total pressure, we 
need the following theorem: 

Theorem: 
1

A N
A

A
A

ρ ρ
η η

=

=

∂Λ ∂Λ
=

∂ ∂∑  (B6) 

Here AΛ  is a partial mass quantity such as the 
species internal energy represented in Eq. (B1), 
while Λ  is a total mass quantity defined by 

 
1

A N

A A
A

ω
=

=

Λ = Λ∑  (B7) 

In Eq. (B6) we have used η  to represent some 
thermodynamic state variable such as the 
temperature, the total mass density, etc. 

We begin this proof with some variable Ω  
that can be represented as 

 ...A A B B N Nρ ρ ρ ρΩ = Ω + Ω + + Ω  (B8) 
or in a manner identical to Eq. (B7) 
 ...A A B B N Nω ω ωΩ = Ω + Ω + + Ω  (B9) 
Here the mass fractions are defined by the second of 
Eqs. (11) and they are constrained by 
 ... 1A B Nω ω ω+ + + =  (B10) 
Because of this constraint all the mass fractions are 
not independent and the functional representation for 
Ω  is given by 
 ( )1, , , , ....,A B NTρ ω ω ω −Ω = Ω  (B11) 
If we differentiate Ω  with respect to Aω  we can 
hold all the mass fractions constant except one. For 
convenience we choose this one to be Nω  and write 
(Slattery, 1999, page 447) 
 ( ) ( , ), , B B A NA A NTρ ω

ω
≠

∂Ω ∂ = Ω −Ω  (B12)

This allows us to express AΩ  as 
 ( ) ( , ), , B B A NA A NTρ ω

ω
≠

Ω = ∂Ω ∂ +Ω  (B13) 

and Eq. (B8) can be used to obtain 
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( , )1 1 , , B B A N

A N A N

A A A N
A A A Tρ ω

ρ ρ ρ ρ
ω

≠

= =

= =

⎛ ⎞∂Ω
Ω = Ω = + Ω⎜ ⎟∂⎝ ⎠

∑ ∑  

  (B14) 
Subsequently we will use this result in the form 

( , )1 , , B B A N

A N

A N
A A Tρ ω

ρ ρ ρ
ω

≠

=

=

⎛ ⎞∂Ω
= Ω − Ω⎜ ⎟∂⎝ ⎠

∑  (B15) 

At this point we consider the special case in which  

, , 1, 2,...,A
A A N

η η
∂Λ∂Λ

Ω = Ω = =
∂ ∂

 (B16) 

Use of this result in Eq. (B15) yields 
( )

, , ( , )
1

T B A NB

A N
N

A
A A

ρ ω

η
ρ ρ ρ

ω η η
≠

=

=

∂ ∂Λ ∂ ∂Λ∂Λ
= −

∂ ∂ ∂∑  (B17)

Here we write Eq. (B13) for the variables AΛ  and Λ  
to obtain 
 ( ) ( , ), , B B A NA A NTρ ω

ω
≠

Λ = ∂Λ ∂ + Λ  (B18) 

Use of this result in the left hand side of the theorem 
we wish to prove leads to 

( , )1 1 , , B B A N

A N A N
NA

A A
A A A Tρ ω

ρ ρ
η η ω η

≠

= =

= =

⎡ ⎤⎛ ⎞ ∂Λ∂Λ ∂ ∂Λ⎢ ⎥= +⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑    

  (B19) 
Changing the order of differentiation in the first term 
and carrying out the summation with the second term 
provides 

( )

, , ( , )
1 1

T B A NB

A N A N
NA

A A
A A A

ρ ω

η
ρ ρ ρ

η ω η
≠

= =

= =

∂ ∂Λ ∂ ∂Λ∂Λ
= +

∂ ∂ ∂∑ ∑   

  (B20) 
Substitution of this result in Eq. (B17) provides the 
desired proof given by 

Theorem: 
1

A N
A

A
A

ρ ρ
η η

=

=

∂Λ ∂Λ
=

∂ ∂∑  (B21) 

At this point we want to verify the relations 
contained in Eq. (B5), and we begin with the 
following representation of the partial pressure 
 ( )2

, , ,.......B CA A A A sp e
ρ ρ

ρ ρ= ∂ ∂  (B22) 

which can be summed over all species to obtain

 ( )2
, , ,...,

1 1
B C N

A N A N

A A A A s
A A

p e
ρ ρ ρ

ρ ρ
= =

= =

= ∂ ∂∑ ∑  (B23)

Our objective now is to represent the right hand side 
of this result in terms of the total thermal energy. We 
begin with Eq. (B21)in the form 

1 , , ,..., , , ,...,B C N B C N

A N
A

A
A s s

e e

ρ ρ ρ ρ ρ ρ

ρ ρ
ρ ρ

=

=

∂⎛ ⎞ ⎛ ⎞∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑  (B24)

and multiply by the total density to obtain 
2

1 , , ,..., , , ,...,B C N B C N

A N
A

A
A s s

e e

ρ ρ ρ ρ ρ ρ

ρρ ρ
ρ ρ

=

=

∂⎛ ⎞ ⎛ ⎞∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑  (B25) 

The functional dependence of Ae  can be represented 
in terms of the mass fractions or the species densities 
as indicated by 
 ( )1, , , , ....,A A A B Ne e sρ ω ω ω −=  (B26a) 

 ( ), , , ....,A A A B Ne e s ρ ρ ρ=  (B26b) 
In addition, the density of species A, for example, 
can be expressed as 
 ( )....A B C Nρ ρ ρ ρ ρ= − + + +  (B27) 
or in the functional form given by 
 ( ), , .... ,A A B Nρ ρ ρ ρ ρ=  (B28) 
On the basis of this representation for Aρ  we can 
express Eq. (B26b) as a composite function given by 

( ), , , ... , , , ....,A A A B N B Ne e s ρ ρ ρ ρ ρ ρ= ⎡ ⎤⎣ ⎦  (B29) 
Directing our attention to the derivative on the left 
hand side of Eq. (B24) we note that it can be 
expressed as (Stein and Barcellos, 1992, page 149) 
 

, , , .... , , ...., , , ....B C N B C NB C N

A A A

As s

e e⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ρ ρ ρ ρ ρ ρρ ρ ρ

ρ
ρ ρ ρ

  (B30) 
Since the mass density for species A can be 
expressed as 
 A Aρ ω ρ=  (B31) 
we have 
 ( ) , , ....B C NA Aρ ρ ρ

ρ ρ ω∂ ∂ =  (B32) 

and Eq. (B30) takes the form 
( ) ( ), , , .... , , , ....B C N B C NA A A As se e

ρ ρ ρ ρ ρ ρ
ρ ω ρ∂ ∂ = ∂ ∂ (B33)

Use of this relation in Eq. (B25) leads to 
2 2

1 , , , .... , , ,...,B C N B C N

A N
A

A
A s s

e e

ρ ρ ρ ρ ρ ρ

ρ ρ
ρ ρ

=

=

∂⎛ ⎞ ⎛ ⎞∂
=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑  (B34) 

and on the basis of the definition of the partial 
pressure, this takes the form 

 2

1 , , ,...,B C N

A N

A
A s

ep
ρ ρ ρ

ρ
ρ

=

=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

∑  (B35) 

We now define the total pressure according to [see 
Eq. (B2)] 

 
1

A N

A
A

p p
=

=

= ∑  (B36) 

which leads to 

 2

, , ,...,B C Ns

ep
ρ ρ ρ

ρ
ρ

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (B37) 

At this point we have proved Eq. (B5). 
To complete this discussion we need to 

indicate how this representation of the total pressure 
is related to the classic description for equilibrium 
systems. If we represent the volume per unit mass as
 1v ρ=  (B38) 
we see that Eq. (B37) leads to the following 
expression for the total pressure 

 
, , ,...,B C Ns

ep
v ρ ρ ρ

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 (B39) 

In terms of thermo-statics (Truesdell, 1971), we 
consider a system at equilibrium having a mass m 
with the volume and internal energy given by 
 ,V m v U m e= =  (B40) 
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Under these circumstances the equilibrium pressure 
takes the classic form (Gibbs, 1928, page 33) given 
by 
 ( )S

p U V= − ∂ ∂  (B41) 
 
Appendix C. Useful algebraic relations 
 
We begin by noting that the total mass density and 
total molar concentration for a N-component system 
are given by 
 ...A B C Nρ ρ ρ ρ ρ= + + + +  (C1a) 
 ...A B C Nc c c c c= + + + +  (C1b) 
The mass fractions and mole fractions take the form 

 
, ,

1, 2,...,

A A
A A

c
x

c
A N

ρ
ω

ρ
= =

=
 (C2) 

and the constraints on these quantities are given by

 
1 1

1 , 1
B N B N

A A
B B

xω
= =

= =

= =∑ ∑  (C3) 

The mean molecular mass is defined by 
...A A B B C C N NM x M x M x M x M= + + + +  (C4) 

and multiplication by the total molar concentration 
gives  

...A A B B C C N Nc M c M c M c M c M= + + + +  (C5) 
The species molar concentration and the species 
mass density are related by 
 ,A A A A A Ac M c Mρ ρ= =  (C6) 
and the use of the first of these in Eq. (C5) provides 
 ...A B C Nc M ρ ρ ρ ρ= + + + +  (C7) 
Use of Eq. (C1a) allows us to express this result as 
 c M ρ=  (C8) 
We can use Eq. (C1b) and the second of Eqs. (C6) to 
obtain 

 ...C NA B

A B C N

c
M M M M

ρ ρρ ρ
= + + + +  (C9) 

Dividing both sides by the total mass density 
provides the following result 

 ...C NA B

A B C N

c
M M M M

ω ωω ω
ρ = + + + +  (C10) 

and on the basis of Eq. (C8) we have 

 1 ...C NA B

A B C NM M M M M
ω ωω ω

= + + + +  (C11) 

For a N-component system, the mole fraction of 
species A is given by 

( )
,

1, 2,...,

A AA A
A A

A

M Mc c M Mx
c M

A N

ρ
ω

ρ ρ
= = = =

=

 (C12) 

and in compact form we express this result as

 , 1, 2,...,A A
A

Mx A N
M

ω= =  (C13) 

For use in the Stefan-Maxwell equations we need the 
product form of this result that is given by 

2

, , 1,2,...,A B A B
A B

Mx x A B N
M M

ω ω= =  (C14) 

In order to develop a relation between the gradient of 
the mole fraction, Ax∇ , and the gradient of the mass 
fraction, Aω∇ , for a binary system we begin with 
Eq. (C13) and take the gradient to obtain 

, 1, 2,...,A A A
A A

M Mx A N
M M

ω ω∇
∇ = + ∇ =  (C15) 

In terms of binary systems, the gradient of the mean 
molecular mass takes the form 

 
( ) ( )
( )

A A B B

A B A

M x M x M

M M x

∇ = ∇ + ∇

= − ∇
 (C16) 

and use of this result in the binary form of Eq. (C15) 
provides 

( ) ,

1, 2

A
A A B A A

A A

Mx M M x
M M

A

ω
ω∇ = − ∇ + ∇

=

 (C17) 

Collecting terms leads to 

( )1 ,

1, 2

A
A A B A

A A

Mx M M
M M

A

ω
ω

⎡ ⎤
∇ − − = ∇⎢ ⎥

⎣ ⎦
=

 (C18)

which can be simplified to the form 
( ) ,

1, 2
A B A A B Ax M M M

A
ω ω ω∇ + = ∇

=
 (C19) 

At this point we use Eq. (C13) to obtain 

,

1, 2

B B A A A B
A A

x M M x M M
x M

M M
A

ω⎡ ⎤∇ + = ∇⎢ ⎥⎣ ⎦
=

 (C20) 

which can be simplified to (Bird, 2009) 

 
2

, 1, 2A A
A B

Mx A
M M

ω∇ = ∇ =  (C21) 

This result is Eq. (107) in the section on binary 
systems. 
 
Appendix D: Assumptions, restrictions and 
constraints 
 
Throughout this paper we have imposed various 
assumptions associated with the analysis. The most 
frequent of these concerned the total mass density 
and the total molar concentration, and an example 
concerning the total mass density is given in Eq. 
(63). In engineering analysis there is a logical 
sequence of events that begins with a simplifying 
assumption, or an idea, and leads to a theory with an 
identifiable domain of validity. In this section we 
wish to illustrate this sequence of events with an 
example from fluid mechanics where the path from 
an assumption to a constraint is well known 
(Whitaker, 1988) 

A large class of fluid mechanical problems 
can be described by the continuity equation for 
incompressible flow 
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 0∇⋅ =v  (D1) 
and the Navier-Stokes equations 

 2p
t

ρ ρ μ
⎛ ⎞∂

+ ⋅∇ = −∇ + + ∇⎜ ⎟∂⎝ ⎠

v v v g v  (D2) 

The development of these two equations requires 
assumptions that may be supported by restrictions or 
reinforced by constraints; however, we will simply 
accept Eq. (D1) and Eq. (D2) without inquiring into 
their limitations. 

As an illustration of the development of 
assumptions, restrictions and constraints, we 
consider Eq. (D2) and assume that the convective 
inertial effects are negligible in order to obtain 

 2p
t

ρ ρ μ∂
= −∇ + + ∇

∂
v g v  (D3) 

This linear form can be easily solved for a wide 
variety of initial and boundary conditions, whereas 
the general form given by Eq. (D2) represents a 
difficult problem. It is important to clearly identify 
the assumption that leads one from Eq. (D2) to Eq. 
(D3) , and one way to express this is 
Assumption: 0ρ ⋅∇ =v v  (D4) 
Equation (D4) indicates exactly what is being done 
in a mathematical sense, but it is not necessarily a 
precise description of the physics of any particular 
fluid mechanical process. Strictly speaking, Eq. (D4) 
can only be true when the velocity vector is a 
constant and this is not likely to occur in any real 
flow. 

From a physical point of view, the 
simplification of Eq. (D2) to Eq. (D3) is based on the 
idea that the convective inertial term, ρ ⋅∇v v , is 
negligible. This immediately raises the question: 
“Negligible relative to what?” and one answer is that 
the convective inertial term is negligible relative to 
the viscous term. This represents the second level in 
our process of simplification, and in this case we 
express our simplification as a restriction. 
Restriction: 2⋅∇ << ∇v v vρ μ  (D5) 
In writing inequalities of this type, it is understood 
that the comparison is being made between the 
absolute values of the vectors under consideration. If 
we apply the idea represented by Eq. (D5) to the 
Navier-Stokes equations, we again obtain Eq. (D3) 
provided we are willing to assume that small causes 
give rise to small effects (Birkhoff, 1960). Equation 
(D5) has a definite advantage over Eq. (D4) since it 
indicates what is required in a physical sense; 
however, neither Eq. (D4) nor Eq. (D5) indicate 
when Eq. (D3) will be valid in terms of parameters 
that are known a priori. In order to determine 
precisely under what circumstances Eq. (D3) will be 
valid, one must be able to estimate the magnitude of 
the terms in Eq. (D2). 

We begin our analysis of the inertial term by 
expressing the velocity in terms of a unit vector and 
the magnitude according to 

 v=v λ  (D6) 

Here λ  is a unit tangent vector to a streamline and v 
is the magnitude defined by 
 v= ⋅v v  (D7) 
The representation given by Eq. (D6) allows us to 
express the inertial term as 
 vρ ⋅∇ = ⋅∇v v vλ  (D8) 
in which ⋅∇λ  is known as the directional derivative 
(Stein and Barcellos, 1992, Sec. 14.7). The 
directional derivative can be expressed as 

 d
d s

⋅∇ =λ  (D9) 

where s  represents the arc length measured along a 
streamline. Use of Eq. (D9) in Eq. (D8) provides the 
following exact representation of the inertial term 

 v d
d s

ρ ρ⋅∇ =
vv v  (D10) 

While this form is not often used in the development 
of solutions of the Navier-Stokes equations, it is 
extremely useful in the development of an estimate 
of the magnitude of the inertial term. To do so, we 
need only think about how the velocity vector 
changes as we proceed along a streamline and this 
suggests that we define an inertial length, Lρ , by the 
estimate 

 ( )d L
d s ρ=

v O v  (D11) 

One should think of the inertial length as being the 
distance, along a streamline, over which significant 
changes in the velocity take place. A little thought 
will indicate that the estimate of Lρ  requires an 
intuitive knowledge of the flow field, and this 
intuitive knowledge is based primarily on a 
knowledge of the no-slip condition. Use of Eq. (D11) 
allows us to estimate the inertial term as 

 ( )2v vd L
d s ρρ ρ ρ⋅∇ = =

vv v O  (D12) 

and we need only develop an estimate of the viscous 
term in Eq. (D5) to complete our analysis. 

We begin developing an estimate of the 
magnitude of the viscous term by expanding the 
Laplacian in rectangular, Cartesian coordinates to 
obtain 

 2
2 2 2

2 2 2x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

v v vv  (D13) 

In terms of order of magnitude estimates, we express 
this result as 

2

2 2 2

yx z

x y zL L L

⎛ Δ ⎞⎛ Δ ⎞ ⎛ Δ ⎞
⎜ ⎟∇ = + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

vv v
v O O O  (D14) 

Here 
x

Δv  represents the change of v that takes place 

over the distance xL , and the meaning of 
y

Δv  and 

z
Δv  is analogous for the y and z-directions. We now 
represent the largest of the three terms on the right 
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hand side of Eq. as 2LμΔv  so that our estimate of 
the viscous term becomes 
 ( )2 2Lμ∇ = Δv O v  (D15) 

We refer to Lμ  as the viscous length and note that in 
general it is quite different than the inertial length. 
Once again we note that knowledge of the no-slip 
condition is crucial for the determination of a reliable 
estimate of the viscous length. For a large class of 
problems, Δv  in Eq. (D15) is on the order of the 
velocity itself because of the no-slip condition, i.e., 

,  -because of  the no slip conditionΔ ≈v v  (D16) 
and this allows us to estimate the viscous term in Eq. 
(D5) as 
 ( )2 2v Lμμ μ∇ =v O  (D17) 
Use of this result, along with the estimate of the 
inertial term, in the restriction given by Eq. (D5) 
leads to the inequality 

 
2

2

v v
L Lρ μ

ρ μ
<<  (D18) 

It is traditional to define the Reynolds number in 
terms of the viscous length 

 
vL

Re μρ
μ

=  (D19) 

and this allows us to express Eq. (D18) as a 
constraint that takes the form 
Constraint: ( ) 1Re L Lμ ρ <<  (D20) 
We refer to this as a constraint with the thought that 
the Reynolds number, the viscous length, and the 
inertial length will all be known, at least in an 
approximate sense. This means that the domain of 
validity of Eq. (D3) is established by Eq. (D20), and 
this is something that is not done by either the 
assumption given by Eq. (D4) or the restriction 
given by Eq. (D5). 
 
Appendix E: Constraints for constant total molar 
concentration 
 
Throughout this paper we have imposed the 
condition of constant total molar concentration and 
constant total mass density in order to obtain 
transport equations that could be used to determine 
the species molar concentration or the species mass 
density. In general the assumption of constant total 
molar concentration is associated with gas-phase 
diffusion processes, and the assumption of constant 
total mass density is associated with liquid-phase 
diffusion processes. In this appendix we will treat 
only the first of these two cases with the thought that 
the second case can be explored on the basis of our 
analysis of the first. 

The assumption that the total molar 
concentration is constant can be expressed as 
Assumption: constantc =  (E1) 
however, nothing is constant and what is meant by 
Eq. (E1) is that the variations of the total molar 

concentration are small enough so that they can be 
neglected. The general application of the Stefan-
Maxwell equations requires that we replace Ac x∇  
with Ac∇  and this leads to the restriction given by 
Restriction: A Ax c c x∇ << ∇  (E2) 
If small causes give rise to small effects (Birkhoff, 
1960), the condition represented by Eq. (E2) will 
lead to the multi-component transport equation given 
by Eq. (204) and the binary form given by Eq. (124). 

In order to identify the conditions under 
which Eq. (E2) is valid, we need to express this 
inequality in terms of parameters that are known a 
priori and to achieve this we follow the approach 
outlined in Appendix D. While that approach has led 
to an established success, the problem under 
consideration in this appendix is more difficult and 
further study is in order. 

As an example we consider the process 
illustrated in Fig. E1 in which the γ-phase represents 
a flowing fluid. The κ−γ interface might be an 
interface at which adsorption or desorption occurs, or 
an interface at which a catalytic reaction occurs, or 
an interface at which mass transfer between the κ-
phase and the γ-phase occurs. This could occur 
because the κ-phase is a porous catalyst phase or 
because of a difference in the chemical potential of 
species A between the κ-phase and the γ-phase. The 
direction of mean flow is indicated by the unit vector 
λ , and the direction orthogonal to the mean flow is 
indicated by the unit vector n . 

Directing our attention to Eq. (E2) we express 
that result in the form 
Restriction: 1 1

A Ac c x x− −∇ << ∇  (E3) 
And note that we need to consider the gradients in 
the direction of flow (the λ -direction indicated in 
Fig. 1E) and the direction orthogonal to the direction 
of flow (the n -direction indicated in Fig. 1E). We 
represent the two inequalities associated with Eq. 
(E3) as 
Restriction: 1 1

A Ac c x x− −⋅∇ << ⋅∇λ λ  (E4a) 
Restriction: 1 1

A Ac c x x− −⋅∇ << ⋅∇n n  (E4b) 
and note that the second of these is likely to be the 
most important restriction. We limit our analysis to 
ideal gases so that the equation of state is given by 
 , ideal gaspV nRT=  (E5) 
and the total molar concentration can be expressed as 
 c p RT=  (E6) 
For an ideal gas, the left hand side of Eq. (E3) takes 
the form 
 1 1 1c c p p T T− − −∇ = ∇ − ∇  (E7) 
and this yields two restrictions associated with Eq. 
(E3) that are given by 
Restrictions:

1 1 1 1,A A A Ap p x x T T x x− − − −∇ << ∇ ∇ << ∇  (E8) 
In this appendix we will consider only the first of 
these restrictions and that requires an analysis of the  
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Fig. E1. Mass transfer in a two-phase system 

 
Navier-Stokes equations. The second restriction 
requires an analysis of the thermal energy equation, 
and in many cases it would be appropriate to include 
the rate of chemical reaction and the heat of reaction. 

We begin our analysis of the first of Eqs. (E8) 
by considering the direction of the mean flow 
illustrated in Fig. E1. This leads to a restriction given 
by 
Restriction: 1 1

A Ap p x x− −⋅∇ << ⋅∇λ λ  (E9) 
and we can make use of Eq. (D2) to obtain 

 

1

2

1 ( )

1 1(

1 ( )

)

p p
p t

p p

p

∂ρ
∂

ρ

μ

− ⎡ ⎤⋅
⋅∇ = ⎢ ⎥

⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ⋅∇ ⋅ + ⋅⎣ ⎦⎣ ⎦

⎡ ⎤+ ∇ ⋅⎣ ⎦

v λλ O

O v v λ O g λ

O v λ

 (E10) 

The magnitude of the velocity in the direction of the 
mean flow is given by 
 v = ⋅v λ  (E11) 
and this allows us to express Eq. (E10) in the form 

( )

( ) ( )

1

2

1 v 1 v

1 1 v

p p
p t p

p p

∂ρ ρ
∂

ρ μ

− ⎛ ⎞
⋅∇ = + ⋅∇⎜ ⎟

⎝ ⎠

+ ⋅ + ∇

λ O O v

O g λ O
 (E12) 

Following the development given in Appendix D, we 
estimate the inertial and viscous terms according to 

( ) ( )2 22v v , vL Lρ μρ ρ μ μ⋅∇ = ∇ = Δv O O v  (E13) 
and we estimate the local acceleration as 

 v v
t t

∂ ρρ
∂ ∗

⎛ ⎞= ⎜ ⎟
⎝ ⎠

O  (E14) 

in which t∗  is a characteristic process time. Use of 
Eqs. (E13) and (E14) in Eq. (E12) leads to the 
following estimate for the pressure gradient in the 
direction of the mean flow: 

( ) ( )

( ) ( )

2

2

1 1 1v v

1 1 v

p p t L
p p

L
p p

ρ

μ

ρ ρ

ρ μ

− ∗⋅∇ = +

+ ⋅ +

λ O O

O g λ O
 (E15) 

Here we have assumed that the no-slip condition is 
valid at the γ−κ interface, thus vΔ  can be replaced 
with v . 

The magnitude of the pressure can be 
estimated as 
 ( )2p Cρ= O  (E16) 
where C is the speed of sound (Whitaker, 1981, Sec. 
10.3). Use of this result in Eq. (E15) leads to 

 

2
1

2 21 1
Fr Re

M Mp p
LC t

M M
L L

ρ

μ μ

−
∗

⎛ ⎞⎛ ⎞
⋅∇ = + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

λ O O

O O

 (E17) 

in which the following dimensionless quantities have 
been used: 

 2

Mach number v
Fr Froude number v
Re Reynolds number v

M C
L

L
μ

μρ μ

= =

= = ⋅

= =

g λ  (E18)

Directing our attention to the right hand side of Eq. 
(E9) we estimate the gradient as 
 ( )A A cx x L⋅∇ = Δλ O  (E19) 
in which cL  represents the convective length scale 
for the transport of species A. Use of this result along 
with Eq. (E17) in Eq. (E9) leads to the constraint 
given by 

 

2 2

2

1
Fr

1 1
Re

A

A c

M M M
L LC t

xM
L x L

ρ μ

μ

∗

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞Δ
+ <<⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

O O O

O O

 (E20) 

Since A Ax xΔ  will be less than or on the order of 
one, a conservative representation of this constraint 
is given by 

2 2

2

Fr

1
Re

c c c

c

M L M L LM
L LC t

LM
L

ρ μ

μ

∗

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ <<⎜ ⎟⎜ ⎟

⎝ ⎠

O O O

O

 (E21) 

For Mach numbers small compared to one, it will be 
difficult to violate this constraint; however, one must 
remember that this constraint is based on Eq. (E9) 
and we also need to consider the restriction given by 
Restriction: 1 1

A Ap p x x− −⋅∇ << ⋅∇n n  ((E22)) 
To explore this restriction, we express Eq. (E10) in 
the form 
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[ ]
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 (E23) 

For the special case in which n  is replaced by the 
unit normal vector to a streamline, the inertial term 
takes the form (Whitaker, Sec.7.4, 1968) 
 2( v)ρ ρ ρ κ⋅∇ ⋅ = ⋅∇ ⋅ =v v n v v n  (E24) 
in which κ  is the curvature (Stein & Barcellos, Sec. 
13.4, 1992). Here it is important to keep in mind that 
n  is a constant unit vector as indicated in Fig. E1 

while the unit normal to a streamline will be a 
function of position. Equation (E24) helps us to 
estimate the inertial term in Eq. (E23) as 

 21 1( v)
p p

ρ ρ κ⎡ ⎤⋅∇ ⋅ =⎣ ⎦O v v n  (E25) 

in which κ  represents some appropriate mean 
curvature associated with the system illustrated in 
Fig. E1. About the other terms in Eq. (E23) we can 
only say that they will be smaller than the analogous 
terms in Eq. (E10). This means that we can over 
estimate 1p p− ⋅∇n  as 
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  (E26) 
and follow our earlier development to obtain 
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In this case the Froude number is defined by 
 2Fr Froude number v Lμ= = ⋅g n  (E28) 
Directing our attention to the right hand side of Eq. 
(E22) we estimate the gradient as 

 ( )A Ax x L⋅∇ = Δn O D  ((E29)) 
in which LD  represents the diffusive length scale for 
the transport of species A. Use of this result along 
with Eq. (E27) in Eq. (E22) leads to the constraint 
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Since A Ax xΔ  will be less than or on the order of 
one, a conservative representation of this constraint 
is given by 
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 (E31) 

Once again, it will be difficult to violate this 
constraint whenever the Mach number is small 
compared to one. 

At this point we have developed a constraint 
associated with the restriction given by the first of 
Eqs. (E8); however, the second restriction given by 
Restriction: 1 1

A AT T x x− −∇ << ∇  (E32) 
still needs to be explored. This will require an 
analysis of the thermal energy equation and for most 
realistic systems the thermal energy equation will be 
coupled to a mass transfer and reaction process. In 
addition, the constraints associated with non-ideal 
gases need to be developed along with the 
constraints associated with the assumption for liquid 
phase mass transfer processes given by 
Assumption: constantρ =  (E33) 
The constraints associated with this assumption will 
be much more difficult to obtain than those given by 
Eqs. (E21) and (E31); however, the developments 
presented in this appendix should provide guidance 
for the attack on Eq. (E33). 

 

 
 


