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Abstract

In this work the dynamics of a sulfate reducing bacteria is predicted by estimating the biomass concentration and

sulfide production using only sulfate (substrate) concentration measurements. The estimation process is developed

on batch, fed-batch and continuous cultures of Desulfovibrio alaskensis 6SR, where a mathematical dynamic model

of the bioreactor is presented and tuned with experimental data. The design of the adaptive smooth state observer

takes into account the model’s system structure and an adaptive gain of the output feedback which contain a

hyperbolic tangent of the estimation error, an theoretical frame is provide in order to show the convergence

characteristics of the proposed method. The results of the proposed estimation methodology are generated via

numerical simulation in order to show its performance.

Keywords: bounded error observer, hyperbolic tangent feedback, adaptive observer gain, bioreactor model,
Desulfovibrio alaskensis 6SR.

Resumen

En este trabajo la dinámica de una bacteria sulfato reductora es predicha v́ıa estimación de la concentración de

la biomasa y la producción de sulfuro usando únicamente mediciones de la concentración de sulfato (sustrato).

El proceso de estimación es aplicado en cultivos por lotes, lote alimentado y continuo de Desulfovibrio alaskensis

6SR, donde el modelo dinámico del biorreactor es presentado y sintonizado con datos experimentales. El diseño del

observador de estados adaptable toma en consideración la estructura del modelo del sistema y una retroalimentación

con una ganancia adaptable que contiene una tangente hiperbólica del error de estimación, un marco teórico es

propuesto con el fin de mostrar algunas de las caracteŕıstica de la convergencia del observador propuesto. Los

resultados de la estrategia de estimación propuesta son generados por medio de simulaciones numéricas con el fin

de mostrar su desempeño.

Palabras clave: observador con error acotado, retroalimentación con tangente hiperbólica, ganancia del
observador adaptable, modelo del biorreactor, Desulfovibrio alaskensis 6SR.
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1 Introduction

In standard bioprocess operation, on-line
measurements are often limited to basic variables
such as temperature, pH, and dissolved oxygen
O2. Measurements of component concentrations,
i.e. essential substrates, biomass and products
of interest are obtained for off-line laboratory
analysis at different discrete times. In recent
years, on-line probes for measuring component
concentrations, e.g. biomass probes based on
capacitance measurements, have been developed,
but their use is still very limited due to high costs.
In particular, in sulfate-reducing bioreactors the
biomass growth and products are difficult of
measure on-line, given the anaerobic process
conditions. Different methods for detection and
enumeration of sulfate reducing bacteria (SRB)
in natural and industrial environments have
been developed, they have been grouped in: (i)
direct detection methods and (ii) culture methods
(APHA, 1989). The detection direct involved the
using antibodies raised against SRB (Daly et al.,
2000), and the uses of molecular biology tools
as 16S rRNA, both techniques may be using in
situ but required of a bigger knowledge and in
some case is not possible by the nature of the
considered sample (Vester and Ingvorsen, 1998).
Culture methods for enumeration of SRB requires
of strict anaerobic conditions and special culture
medium, experience of handling of these bacterial,
the incubation times are sometimes very large, etc
(Neria-González et al., 2006).

In this context, the design of “software
sensors” based on state estimation techniques
takes on particular importance (Bastin and
Dochain, 1990). Software sensors allow the online
reconstruction of non-measured variables (i.e.
component concentrations) based on a process
model and some available measurements (from
“hardware sensors” or from on-line sampling).

From kinetic studies point of view, is
important to determine the kinetic parameters
and especially of kinetic rates inside bioreactor
(Soroush, 1997). The estimates of these rates
are used for advanced control strategies (Aguilar-
López, 2003). The procedure to estimate the
kinetic rates based on the adaptive systems
theory, consist of the estimation of unmeasured
state with asymptotic observers (software sensor);
later, the measurements (hardware sensor) and
the estimates of the state variables (software

estimator) are used for on-line estimation
(Kazantzis and Kravaris, 1998; Aguilar-López
et al., 2010; Espinoza-Salgado et al., 2008).
This method is useful, but in some cases, when
many reactions are involved, the implementation
requires the calibration of too many parameters.
A relative modern approach (Marin, 2002;
Ohsumi et al., 2002) is the distribution based on
identification method. In this approach the set
of nonlinear differential equations that describe
the state evolution is mapped into a set of
linear algebraic equations respect to the model
parameters.

The design of a stable and convergent
state estimator appropriates for a particular
bioprocesses is a complex task, and an adequate
response is only obtained studying each bioprocess
(Aguilar et al., 2004). For example, sliding mode
control can be used to design an observer that
brings one estimated state’s error to zero in finite
time even in the presence of measurement error
(Selişteanu, et al., 2007; Hong, et al., 2002); the
other states have error that behaves similarly to
the error in a Luenberger observer after peaking
has subsided. Sliding mode observers also have
attractive noise resilience properties that are
similar to a Kalman filter. As discussed for
the linear case above, the peaking phenomenon
present in Luenberger observers justifies the use
of a sliding mode observer. The sliding mode
observer uses non-linear high-gain feedback to
drive estimated states to a hypersurface where
there is no difference between the estimated
output and the measured output (Levant, 2001).
The non-linear gain used in the observer is
typically implemented with a scaled switching
function, like the signum (i.e., sign) of the
estimated-measured output error. Hence, due
to this high-gain feedback, the vector field
of the observer has a crease in it so that
observer trajectories slide along a curve where the
estimated output matches the measured output
exactly. So, if the system is observable from its
output, the observer states will all be driven to the
actual system states. Additionally, by using the
sign of the error to drive the sliding mode observer,
the observer trajectories become insensitive to
many forms of noise (Boiko and Fridman,
2005). Hence, some sliding mode observers have
attractive properties similar to the Kalman filter
but with simpler implementation. However, as
it is well known, this switching happens at any
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instant the state trajectories cross the switching
hyper-plane, this leads to the named chattering
phenomenon caused by the discontinuity of the
input injection, undesirable in most applications
(Davila, et al., 2006). In order to avoid the named
chattering phenomenon, several methodologies
have been proposed, as the high order sliding-
mode observers, which provides some smoothness
to the estimation methodology diminishing the
corresponding chattering, however to avoid the
presence of the sign function (i.e., discontinuous
function) a continuous one have been proposed
(Bertoni and Punta, 2000).

From the above in this work it is proposed a
class of adaptive smooth bounded observer, where
the feedback term is related with the hyperbolic
tangent of the estimation error, coupled with an
adaptive gain which is close to high order sliding-
mode observers but avoiding the discontinuous
structure of the sliding-modes, which allows a
smooth convergence of the proposed observer,
avoiding the chattering phenomena. The
considered observer allows infers biomass and
product concentrations under the assumption that
the substrate measurements are available. The
proposed observer is applied to kinetic model
for cell growth for Desulfovibrio alaskensis 6SR.
Desulfovibrio alaskensis was described in the first
time by Feio (Feio et al., 2004) and subsequently
studies of bacteria associated at biocorrosion, have
reported that D. alaskensis is present in oil fields
from Gulf of Mexico (Neria-González et al., 2006,
Hernández-Gayoso et al., 2004; Padilla-Viveros
et al., 2006). The strain 6SR was isolated of
biofilm in oil pipeline, which have high resistance
to heavy metals (Cd+2 and Cr+6) in relation at
other species, is tolerant at oxygen, grows at pH
5.5-9 (7), 15-55 (45) ◦C and in 30% (w/v) NaCl,
and produces extracellular polymeric substances.
These bacterial characteristics are important in
environmental process and other as corrosion.

2 Experimental

2.1 Organism, culture maintenance and
purity test

Desulfovibrio alaskensis 6SR was isolated of a
developed biofilm inside face of oil pipeline
(Neria-González et al., 2006). The strain was
maintained routinely in Hungate tubes with 5

mL of Postgate’s medium B (Hungate, 1969).
To evaluate the organism purity decimal dilution
in plates of anaerobic agar supplemented with
6 mL of lactate (60% w/w), 4.5 g of NaSO4,
0.004 mg of FeSO4, and 27.5 g of NaCl were
carried-out. The plates were placed in anaerobic
jar (BBLTM GasPakTM Anaerobic Systems) and
incubated until to colonies appear. The presence
of black colonies indicated the growth of sulfate
reducing bacteria. One black colony well definite
and isolated was picked and quickly transferred at
45 mL sterile Postgate’s C medium in anaerobic
conditions (Postgate, 1979), and subcultures ware
made subsequently.

The media was inoculated with 5 mL of
culture and incubated at 37 oC. Each medium was
prepared and dispended in anaerobic conditions
under a N2 (99.998% purity) atmosphere, 120 and
160 mL serum bottles were filled with 45 and 95
mL of medium, respectively, and autoclaved at
121oC.

2.2 Growth kinetics

The inoculum for kinetic study was cultured in
45 mL of Postgate’s C medium for 25 h at 37◦C
(logarithmic phase). A 5 mL aliquot was taken
from Postgate’s C medium to inoculate 95 mL
of fresh medium at 37 oC. The experiment was
done using two series of triplicate independent
cultures; each set of triplicate cultures were
inoculated with12 hours separated each other, the
experimental run time was 72 hours.

2.3 Analytic methods

The bacterial growing, consuming of sulfate and
the sulfide production were monitored each 3 or 4
hours, the samples were taken carefully, avoiding
contact with oxygen. The bacterial growing
was followed through Optical Density (OD)
methodology, the OD reading for cell growing
was transformed into dry mass (mg/L) through a
standard growth curve. The consuming sulfate in
the medium was measured by the turbid metric
method based on the precipitation of barium
(Kolmert et al., 2000). Also, the production of
sulfide was measured by a colorimetric method
(Cord-Ruwisch, 1985).
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2.4 Data analysis and mathematical
model

The experimental data of biomass, sulfate, and
sulfide from two series of sulfate reducing culture
were analyzed using the average values of each
measurement point. As is well known, in sulfate
reducing culture the accumulation of sulfide
(product) in the medium has an inhibitory effect
on bacterial growth. Therefore, to approximate
the average experimental data of bacterial growth
in batch bioreactor, the Levenspiel’s inhibition
product model (Levenspiel, 1999) be used to
represent the specific growth rate (Eq. 1).
Basically, this is an unstructured model that
describes the bacterial growth rate as a function
of substrate, product and biomass concentrations
as the unique biological state variable.

dx

dt
= μ (S, P ) (x) = μmax

(
1− P

P ∗

)n (
S

KS + S

)
(x)

(1)
Where: μmax represents the maximum growing
rate; KS represents the affinity substrate; P ∗

corresponds to inhibition concentration product,
and n is the reaction order; meanwhile S,
P , and x are substrate, product, and biomass
concentrations, respectively.

2.5 Estimation of the kinetic parameters

Levenspiel growth kinetic parameters ware
estimated by the rate of change of biomass
production, using central finite differences
according to the following equation:

(
dt

dt

)
ti

∼=
(
ΔX

Δt

)
=

(
Xi+1 −Xi

ti+1 − ti

)
(2)

and a nonlinear multivariable regression for
the rates of change of biomass production and
experimental data (X, S, and P ) was done.
POLYMATH 6.0 Professional software was used,
the program allow applying effective numerical
analysis techniques, and Levenberg-Marquardt
algorithm was using for this case (see Table 1).

The mathematical model was simulated using
the same software. Besides, a linear regression
between the experimental and the predicted data
were obtained, and overall correlation coefficient
was calculated, see figs. 1-2 (Tejeda, 2007).

Table 1. Growth kinetic parameters and
yields for Desulfovibrio alaskensis.

Parameter Value

μmax, h
−1 0.188

KS , mg L−1 5699.86
μd, h

−1 0.0038
P ∗, mg L−1 735.0
n 0.89
Y(S/X), mg S mg−1 X 14.13
Y(P/X), mg P mg−1 X 2.14
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Fig. 1: Comparison of the experimental and
predicted kinetics of growth of Desulfovibrio
alaskensis on Postgate’s C medium. The solid
line represents predicted data for each response
variables.

3 Bioreactor mathematical
model

The unstructured models are using nowadays
as the main tool for the bioprocess modeling,
but also for being applied in overall computer
control. Considering the above kinetic model,
it is proposed by following the mathematical
model for a class of continuous stirred bioreactor,
which is based on classical mass balances for
biomass, sulfate (substrate) and sulfide (product)
concentrations:
Sulfate (S).-

dS

dt
= D (Sin − S)− μ(S)

X

YS/X
(3)

Biomass (X).-

dX

dt
= −DX + μ(S)X (4)
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200

300

400
B

io
m

as
s

[m
g/

L]

0

100

0 100 200 300 400

P
re

di
ct

ed
B

Experimental  Biomass [mg/L]

400

500

600

700

fid
e

[m
g/

L]

0

100

200

300

400

P
re

di
ct

ed
S

ul
f

0 100 200 300 400 500 600 700
Experimental Sulfide[mg/L]

4000

5000

6000

e 
[m

g/
L]

0

1000

2000

3000

4000

P
re

di
ct

ed
S

ul
fa

te

0
0 1000 2000 3000 4000 5000 6000

Experimental Sulfate [mg/L]

Fig. 2: Linear regressions for experimental and
predicted data in a batch anaerobic growth with
initial substrate concentrations of 5379 mg/L.
a) experimental Biomass (�), predicted biomass,
R2 = 0.982; b) experimental Sulfide (•), predicted
Sulfide, R2 = 0.985; c) experimental Sulfate (�),
predicted Sulfate, R2 = 0.976. Overall coefficient
was 0.979.

Sulfide (P).-

dP

dt
= −DP + μ(S)

X

YP/X
(5)

HereD is the dilution rate, μ is the specific growth
rate, YS/X is the sulfate coefficient yield and YP/X

is the sulfide coefficient yield. In accordance
with the specific experimental setup the following
initial conditions are considered for the batch
culture and model validation purposes Xo = 100
mg/L, So = 5200 mg/L, Po = 10 mg/L. Figure
1 shows the performance of the kinetic model
considering a comparison with the experimental
data which looks satisfactory. The above model
predicts batch operation when D = 0, the fed-
batch operation is considered when D = f(t) and
the output flow terms are null and finally the

continuous operation which considers inputs and
outputs flow terms.

4 Methodology for the
observer design

Consider a canonical control representation form
of the bioreactor model:

•
x = f (x)

y = Cx
(6)

Now, the following state observer is proposed:

•
x̂ = f (x̂) + l tanh (y − ŷ)
•
l = −α abs(y − ŷ)

1/m
(7)

where the observer’s gain l is given by an
update adaptation algorithm and α is a parameter
design. To prove the convergence of the proposed
observer, let us to consider the dynamic equation
of the estimation error (ε = x− x̂), as follows:

•
ε =

•
x−

•
x̂ = f (x)− (f (x̂) + l tanh (ε))

•
l = −α abs(ε)

1/m
(8)

under the following assumptions:
A1. f (x) − f (x̂)− � L (x− x̂) Taking norms
to both sides of Eq. (8) and applying A1 it is
obtained: ∣∣∣•ε

∣∣∣ � L |ε| − l |tanh (ε)| (9)

Now, suppose that the function abs(ε)
1/m

is a
positive continuous function on the integration
interval [a, b]; then H is the maximum of
the function on the domain [δ, γ], then abs (ε)
is bounded, i.e. abs (ε) � H ∀ t ∈
[δ, γ], such that: abs(ε)

1/n � H1/n n >

0 ⇒
γ∫
δ

abs(ε)
1/n � H1/n (γ − δ), considering

n an odd number i.e. n = 2p + 1, p ∈
Z+, therefore; lim sup

γ∫
δ

abs(ε)
1/(2p+1) �

lim sup H1/(2p+1) (γ − δ) � (γ − δ) for p large
enough.

From the above, Eq. (9) can be rewritten as:

∣∣∣•ε
∣∣∣ � L |ε| − α (γ − δ) (10)
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Solving Eq. (9) and considering t → ∞, can
be concluded that the estimation error belongs to
ball:

|ε| � α (γ − δ)

L
(11)

5 Numerical experiments
and discussion

Besides to show the performance of the proposed
estimation methodology, an important additional
issue concerns with the evaluation of the
capacities Desulfovibrio alaskensis 6SR for
biotechnological applications. Both two of these
possible applications are related with wastewater
treatment for degradation of sulfate compounds
and heavy metal mobility. From the kinetic model
presented in Section 3, the proposed observer
is applied to batch, continuous and fed-batch
operating modes; each one of the above mentioned
operating modes is related with a specific process
task, on the batch operation an optimal trajectory
must to be reached in order to provide an adequate
performance, besides a finite time operation
politics must be considered; related with the
continuous operation process the main tasks is
to lead the bioreactor trajectories to an optimal
and stable steady state, where the convergence of
observers and controllers can be designed with
asymptotic convergence and finally the feed-
batch operation can be considered as a batch
operation with input disturbances, therefore a
robust monitoring and controlling methodologies
are needed. The initial concentration conditions
for the batch culture was above mentioned and
the corresponding for the continuous and fed-
batch operating modes are Xo = 980 mg/L,
So = 6850 mg/L and Po = 15 mg/L. The initial
conditions imposed to the proposed observer are
5000 mg/L, 96 mg/L and 8 mg/L, respectively,
for the batch operation and 950 mg/L, 6250
mg/L and 20 mg/L for biomass, sulfate and
sulfide concentrations, respectively, for continuous
and fed-batch operation modes. The estimation
procedure considers the sulfate concentration
(substrate) as measured output in order to infer
the biomass and sulfide concentrations.

Batch operation is considered from figs. 3-5,
where the performance of the proposed observer
is satisfactory, a fast convergence to the named
real concentrations is achieved, without large
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Fig. 3: Sulfate Concentration filtering
with the proposed observer (batch operation).
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Fig. 4: Biomass concentration estimation
with the proposed observer (batch operation).
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Fig. 5: Sulfide concentration estimation with the
proposed observer (batch operation).

overshoots and settling times.

Figures 6-8 concern to continuous operating
mode can be observed an adequate performance
of the proposed estimation methodology from the
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Fig. 6: Sulfate concentration filtering with
the proposed observer (continuous operation).
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Fig. 7: Biomass concentration estimation with
the proposed observer (continuous operation).
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Fig. 8: Sulfide concentration estimation with the
proposed observer (continuous operation).

time series.

Finally, figs. 9-11 are related with
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Fig. 9: Sulfide concentration estimation with
the proposed observer (fed-batch operation).
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Fig. 10: Biomass concentration estimation
with the proposed observer (fed-batch operation).
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Fig. 11: Sulfide concentration estimation with the
proposed observer (fed-batch operation).

the observer’s performance when a fed-batch
operation is considered; for this case a dilution
rate of D = 0.01 1/h is considered from the start-
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up of the bioreactor operation to 75 hours, later
the input flow is null (D = 0). Despite of this
sudden disturbance the proposed observer keeps a
satisfactory performance following the named real
concentrations.

Conclusions

In this work is modeled the biomass growth and
sulfide production of a sulfate reducing bacteria
Desulfovibrio alaskensis, which has been recently
described, and its biotechnological properties are
not studied yet enough. For the above mentioned,
a nonlinear state observer to infer biomass and
sulfide concentration from sulfate concentration
measurements is implemented for a batch, fed-
batch and continuous operating bioreactor modes,
where can be observed a satisfactory performance.
A mathematical analysis to show the convergence
characteristics of the proposed methodology is
done. Future work will be oriented to analyze
the effect of model uncertainties and noisy
measurements in order to try to design robust
estimation methodologies.
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Nomenclature

D dilution rate (1/h)
f nonlinear smooth function
L Lipchitz constant (1/h)
KS substrate affinity constant,

inhibition constant, term
inhibition (mg/L)

n exponential term for Levenspiel
model

P product concentration (mg/L)
P ∗ inhibitory product concentration

(mg/L)
rd death rate (mg-death biomass/L

per h)
rX growth rate (mg-biomass/L per h)
S substrate concentration (mg /L)
Sin inlet substrate concentration

(mg/L)
x state variables vector, (mg/ L)
X biomass concentration (mg/L)

Xd measured output (mg/L)
Xo, So

and Po

initial concentration of biomass,
substrate and product (mg/L)

y measured output (mg/L)
YS/X substrate-biomass yield coefficient

(mg-sulfate/mg-biomass)
YP/X product-biomass yield (mg-

sulfide/mg-biomass)
Greek symbols
α observer gain (1/h)
ε estimation error (mg/L)
ι adaptive observer gain (1/h)
μ, μd, μmax specific growth rate, specific death

rate, maximum rate growth (1/h)
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Qúımica 7, 1, 89-98

Feio, M.J., Zinkevich, V., Beech, I.B., Llobet-
Brossa, E., Eaton, P., Schmitt, J.,
Guezennec, J. (2004). Desulfovibrio
alaskensis sp. nov., a sulphate-reducing
bacterium from a soured oil reservoir.
International Journal of Systems, Evolution
and Microbiology 54,1747-1752.

Hernández-Gayoso, M. J., Zavala-Olivares, G.,
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