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ABSTRACT 
Tinnitus detection and characterization requires a carefully elaborated diagnosis mainly owing to its heterogeneity 
nature. The present investigation aims to find features in Electroencephalographic (EEG) signals from time and 
frequency domain analysis that could distinguish between healthy and tinnitus sufferers with different levels of 
hearing loss. For this purpose, 24 volunteers were recruited and equally divided into four groups: 1) controls, 2) 
slow tinnitus, 3) middle tinnitus and 4) high tinnitus. EEG signals were registered in two states, with eyes closed 
and opened for 60 seconds. EEG analysis was focused on two bandwidths: delta and alpha band. For time domain, 
the EEG features estimated were mean, standard deviation, kurtosis, maximum peak, skewness and shape. For 
frequency domain, the EEG features obtained were mean, skewness, power spectral density. Normality of EEG data 
was evaluated by the Lilliefors test, and as a result, the nonparametric technique Kruskal-Wallis H statistic to test 
significance was applied. Results show that EEG features are more differentiable between tinnitus sufferers and 
controls in frequency domain than in time domain. EEG features from tinnitus patients with high HL are significantly 
different from the rest of the groups in alpha frequency band activity when shape and skewness are computed. 
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RESUMEN
La detección y caracterización del acúfeno requiere un diagnóstico cuidadosamente elaborado debido principalmente 
a su naturaleza heterogénea. La presente investigación tiene como objetivo encontrar características en las señales 
electroencefalográficas (EEG) a partir del análisis del dominio del tiempo y frecuencia que podrían distinguir entre 
pacientes sanos y con acúfeno con diferentes niveles de pérdida auditiva. Para ello, se reclutaron 24 voluntarios y se 
dividieron por igual en cuatro grupos: 1) controles, 2) acúfeno bajo, 3) acúfeno medio y 4) acufeno alto. La actividad 
EEG se registró en reposo en dos condiciones: ojos cerrados y abiertos durante un minuto. El análisis de EEG se 
centró en anchos de banda delta y alfa. Para el dominio del tiempo, las características del EEG estimadas fueron la 
media, la desviación estándar, la curtosis, el pico máximo, la asimetría y la forma. Para el dominio de la frecuencia, 
las características de EEG obtenidas fueron media, asimetría, densidad espectral de potencia. La normalidad de 
los datos del EEG se evaluó mediante la prueba de Lilliefors y, como resultado, se aplicó la técnica no paramétrica 
del estadístico H de Kruskal-Wallis para probar la significación. Los resultados muestran que las características del 
EEG son más diferenciables entre los pacientes con acúfeno y los controles en el dominio de la frecuencia que en 
el dominio del tiempo. Las características del EEG de los pacientes con acúfeno con alta pérdida de audición son 
significativamente diferentes del resto de los grupos en la actividad de la banda de alfa cuando se calculan la forma 
y la asimetría.

PALABRAS CLAVE: acúfeno, características en frecuencia, características en tiempo, diagnóstico clínico, 
neuromarcadores, pérdida auditiva



INTRODUCTION
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Tinnitus refers to listening to a sound but without an 
external source. Being a public health problem with a 
prevalence from 4 % to 37 % in the worldwide popula-
tion and a frequent heterogeneous auditory condition 
with no standard and effective treatment [1]. It is well 
known that tinnitus tends to mostly affect elderly 
population, possibly due to the hearing loss (HL) as 
result of aging. Youthful population who suffers from 
tinnitus has been, however, significantly increased 
recently because of frequent exposure to recreational 
and occupational sounds without protective standards 
[2]. The diversity of tinnitus suffering is due to instabil-
ity in how it is perceived, how it is generated, to psy-
chological problems and to the efficacy of treatment 
[3]. Regarding the perception by humans, the buzz can 
be heard by all people, who have some kind of hearing 
loss as well as those who do not; can be heard in one 
ear in both ears; and pure tones, high-frequency whis-
tles and cicada noises can be perceived [4]. As for the 
factors that cause tinnitus, the origin cannot be deter-
mined in most people. Recently it was considered a 
neurological problem [5]. The history of tinnitus is 
complex, as it is the result of a cortical reset at the 
tonotopic level due to neural desynchronization in the 
auditory cortex and limbic system [6]. The origin is due 
to many factors, including acoustic trauma, ototoxic-
ity, multifactorial corticopathy, and vascular or tumor 
factors. Regarding the psychological effects, patients 
suffering from tinnitus frequently experience anxiety, 
depression, anguish, fear, anger and suicide. However, 
so far there are some treatments, including medica-
tion, surgery and hearing aids, psychological counsel-
ing and cognitive behavioral therapy (CBT), herbal 
treatments, acupuncture, acoustic therapies and seri-
ous auditory training games [7]. Still, the response to 
treatment is in most cases uncertain. The accurate 
identification and characterization of tinnitus is still a 
controversial issue. So far, three types of clinical 
methods are applied to diagnose tinnitus: 1) psycho-
metric, 2) audiology, and 3) electrophysiological test-
ing. For psychometric testing, there exists many ques-

tionnaires to monitor tinnitus status, evolution and 
side effects. Some of the most commonly applied 
questionnaires for monitoring tinnitus includes tinni-
tus handicap inventory [8], hospital anxiety and depres-
sion scale [9], tinnitus reaction questionnaire [10], insom-

nia severity index [11], quality of life inventory [12], clinical 

global impression-improvement [13], tinnitus acceptance 

questionnaire [14], Beck depression inventory [15], tinnitus 

functional index [16], health utilities index score [17], tinnitus 

sample case history questionnaire [18], tinnitus catastrophiz-

ing scale [19], perceived stress questionnaire [20], and hyperacu-

sis questionnaire [21]. In addition, several authors prefer make 

their own questionnaires to evaluate the condition for exam-

ple [22] who monitored patient reported outcomes and self-re-

porting of treatment, and [23] who applied several question-

naires to evaluate tinnitus severity. For audiology testing, a 

detailed assessment of the auditory system is recom-
mended, or even mandatory, to detect and character-
ize tinnitus. Most of the applied audiology methods 
includes otoacoustic emissions, transient evoked oto-
acoustic emission, high frequency audiograms (125Hz 
– 16kHz), speech in noise test, and threshold equaliz-
ing noise [24]. For electrophysiological testing, electro-
cochleography (ECochG) and electroencephalography 
(EEG) techniques are usually undertaken as well. In 
addition, other neuroimaging techniques have been 
used such as functional magnetic resonance imaging, 
magnetoencephalography (MEG), and near infrared 
spectroscopy (NIRS) [2]. As can be seen, tinnitus detec-
tion and characterization require a carefully elabo-
rated diagnosis mainly owing to its heterogeneity 
nature. An inappropriate diagnosis often leads to inef-
ficient treatment. Therefore, the present investigation 
aims to find EEG features in time and frequency 
domain that could distinguish between healthy and 
tinnitus sufferers with HL. In addition, this investiga-
tion pursues to give an insight into the group of tinni-
tus sufferers to search tendencies of those EEG fea-
tures related to the HL of the sufferers. The latter 
through statistical analysis that demonstrate which is 
a promising neuromarker and stabilizing the differ-
ences between them. As a result, neuromarkers to 
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identify tinnitus, along with the associated HL, can be 
proposed for diagnosis and monitoring of this auditive 
condition.

Diagnostic Approach to Tinnitus
It can be inferred that the diagnosis of tinnitus is 

complex, in terms of distinguishing between causal 
factors, types and location of the tinnitus perception. 
The patient perception of the noise that it is experi-
enced due to tinnitus is classified as: tonal, pulsatile, 
filtered noise and musical [25]. Tonal tinnitus is per-
ceived continuously by superimposed sounds with 
defined frequencies, the intensity is diverse, it is asso-
ciated with subjective tinnitus. Instead, the pulsatile 
is a sound that can be in sync with the patient heart-
beat, being an objective tinnitus. On the other hand, 
the filtered noise is a continuous broad band noise fil-
tered at tinnitus frequency of the patient. Finally, 
musical tinnitus is characterized by the perception of 
simple or complex melodies that are referred to as 
musical instruments, sometimes accompanied by a 
singing voice, it is also often called musical ear syn-
drome [26]. Because the level of signal processing in 
patients with tinnitus implies a deficient procedure in 
the ascending auditory pathways and the cerebral cor-
tex, there is currently no effective method for diagnos-
ing tinnitus, much less an effective cure. There is a 
clinical follow-up of this complex symptom, being the 
task of audiologists and otolaryngologists to carry out 
an evaluation of the patient to achieve the most accu-
rate diagnosis. Such as an otological test of the neck, a 
test of temporomandibular function, and a detailed 
evaluation of the patient history. For example, in audi-
ometry, determining air conduction and bone conduc-
tion threshold levels helps differentiate between two 
types of HL: sensorineural hearing loss and conduc-
tive hearing loss. In addition, high-frequency audiom-
etry (at least up to 16 kHz) is recommended [27]. The 
tinnitus pitch test (acufenometry) includes a set of 
audiological techniques to characterize the tinnitus 
frequency based on pure tones. Tinnitus is highly 
dependent on the ability of patients to identify the 

sound of their tinnitus. It also depends on the experi-
ence of the doctor. In the case of unilateral tinnitus, 
the test is easier as it is compared with the tones given 
on the opposite ear. In bilateral cases, these circum-
stances increase gradually, with different frequencies 
until match the tinnitus pitch [28]. Typically, tinnitus is 
in the 3.5-8.5 kHz frequency range. In a recent work, 
there is a study of influence of tinnitus in the audiom-
etry test concerning of hearing threshold. They evalu-
ated the hearing thresholds of 136 volunteers (tinnitus 
with HL, tinnitus without HL and healthy group). The 
outcomes showed that the tinnitus group without HL 
are more probable to have HL than the healthy group 
[29]. In several studies about the high frequency audi-
ometry, there is an association between laterality and 
asymmetry of tinnitus and the high frequencies loss 
due to tinnitus etiopathogenesis, which establishes as 
decreased neural output from the cochlea [30][31]. The 
issue with these approaches that focus on the region of 
the perceived tinnitus frequency, is that the tone of 
the tinnitus is not directly observable, due to the com-
plexity of its frequency components. Since this param-
eter is essential for its proper design and application of 
acoustic therapies, it is necessary to propose and 
explore new techniques that characterize and diag-
nose tinnitus objectively and accurately. As well as 
being proposed in this work, the development of inno-
vative algorithms and diagnostic tools that can pro-
vide comprehensive and reliable assessments of tinni-
tus symptoms should be prioritized. These tools 
should aim to capture the subjective experience of 
tinnitus while also incorporating objective measure-
ments and metrics.

Affectation of hearing loss in tinnitus
The HL is related in most cases with tinnitus [32] and it 

can almost always be seen that the tinnitus problem 
increases with the level of HL [33][34]. According to vari-
ous authors, between 85 % and 96 % of tinnitus 
patients have some level of HL and only between 6 % 
and 8 % do not [35][36]. Studies in patients with tinnitus 
are restricted and may even be tonal audiometry that 
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is limited to the study of otoacoustic emissions [37], 
brainstem auditory evoked potentials, auditory pro-
cessing, and high-frequency audiometry [38]. A recent 
study compared the tinnitus characteristics of a pilot 
group with normal hearing to another group with tin-
nitus and HL [39]. It was possible to observe that in the 
tinnitus group there is a deficit of afferent activity 
from the cochlea, and it is expected that a decrease in 
functionality will be generated in the rest of the audi-
tory pathway. However, it is just the opposite, as it 
generates more activity at the level of the subcortical 
nuclei of the central auditory pathway, which releases 
neural plasticity throughout the auditory system, con-
tributing to the progression of tinnitus [40]. This hyper-
activity is expressed as an increase in the suprathresh-
old amplitude of wave V of the Auditory Evoked 
Potentials of the encephalic trunk, which would be 
representative of an increase in the response capacity 
to balance the poor activity of the auditory nerve in 
the auditory system, and consequently an increase in 
profit is generated. It has been suggested that the ven-
tral and dorsal cochlear nuclei would be fundamental 
in the gain at the encephalographic trunk level [41]. The 
dorsal cochlear nuclei present a structure very similar 
to the cerebellum, so they could play a role in adjusting 
the auditory system, just as the cerebellum does at the 
level of the vestibular system. As it can be seen in [39], 
the patients with tinnitus and normal hearing devel-
oped HL, where tinnitus could be the first indicator of 
impairment in the auditory system.

Neurometrics for Tinnitus Detection
Using the EEG, it can be studied local processing, 

which has been related with activity in high frequency 
(gamma band), and connectivity between areas 
through the coordination of electrical activity in low 
frequency (delta and theta bands) [42]. In patients with 
tinnitus, an increase in gamma band EEG activity has 
been found in temporary electrodes located in the 
vicinity of the auditory cortex [43]. This type of mea-
surement is interesting in the study of tinnitus, since 
there is evidence that during the conscious perception 

of a sound there is an increase in brain activity at the 
local level in multiple regions in gamma band [44], and 
for a stimulus to be consciously perceived, the activity 
between these areas must occur in a coordinated way 
[45]. To address this issue, techniques of inter-frequency 
coupling analysis have been developed, in which it is 
evaluated how the phase of the activity in low-fre-
quency bands modulates local neuronal activity in 
each area through the modulation of the amplitude of 
the high-frequency activity [46], thus allowing the 
study of both the connectivity between regions of a 
network and the local activity at each point of the neu-
ral network. Using these tools, the pathophysiology of 
tinnitus has been studied, observing that under nor-
mal conditions during wakefulness there is a coordi-
nation of the activity between the thalamus and the 
cerebral cortex by means of alpha band activity [47]. 
When a stimulus enters the auditory system, it gener-
ates gamma band activity at the cortex. In patients 
with tinnitus, it has been observed that the activity 
increase in the theta range during wakefulness, alter-
ing the role of baseline alpha activity [48], which is con-
sistent with a partial deafferentation of the system, 
the increase of the gain of the same, and an alteration 
in the predominant rhythms in the thalamic-cortical 
communication in the auditory system. This alteration 
in the communication between the thalamus and the 
cortex has been called thalamic-cortical dysrhythmia, 
which in addition it has been related to the presence of 
tinnitus, and it has been related to various neurologi-
cal diseases, including Parkinson disease, pain and 
depression [49]. Other authors [50] used the measure-
ment of the coupling value between frequencies, 
showed that in patients with tinnitus, the modulation 
of local gamma activity begins to be more preferen-
tially modulated by frequencies in the theta range 
(associated with deafferentation), than by alpha fre-
quencies, and these changes are present not only in 
the primary auditory cortex, but also are extended to 
other areas of the tinnitus brain network such as the 
cingulate cortex and the prefrontal cortex. In recent 
years, several studies have been carried out in order to 
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understand the underlying mechanisms of the tinni-
tus condition and to find different ways to describe 
this disorder objectively, one of these, is the identifica-
tion of neurometrics. Recent works have extracted 
amplitude and latency characteristics of evoked poten-
tials on the auditory cortex when auditory stimuli are 
used through EEG recordings, due to evaluate and find 
differences between a group with tinnitus and a con-
trol group [51]. Similarly, other authors [52] acquired EEG 
records from a group with tinnitus prior to and after 
the application of sound therapy. Features of the sig-
nals were extracted for each of the EEG frequency 
bands to identify differences between patients who 
presented improvement upon receiving therapy ver-
sus those who did not present improvement. Some 
authors have used machine learning techniques to 
discriminate groups of patients with and without tin-
nitus, and even classify subgroups of these. For exam-
ple, in a study [53], they employed a Support Vector 
Machine algorithm to create patient groups based on a 
set of features extracted from EEG records applying 
theory of graphs. With the above, it is possible to iden-
tify groups that allow differentiating patients with 
tinnitus from control group. In another research [54] 

they performed a two-stage cluster analysis to identify 
possible subgroups that reflect different spectra of 
tinnitus. On the other hand, [55] they used a neural net-
work model to predict the residual inhibition of tinni-
tus, although the accuracy of the neural network was 
97 %, the EEG recorded data are limited to identify 
cortical regions that are generating the activity. 
Nevertheless, it isn’t easy to obtain information from 
such machine learning algorithms about the cerebral 
regions and features considered in the classification 
decision. 

MATERIALS AND METHODS

Sample
Twenty-four volunteers were recruited for this study, 

13 females and 11 males. They were between 37 and 
80 years old, median (Mdn) 54.9 years old and stan-

dard deviation (SD) of 11.7 years were divided in four 
groups: 1) controls (individuals with no tinnitus and 
no HL), Mdn=59.5 and SD=6.5, 2) low HL tinnitus suf-
ferers, Mdn=52 and SD=9.3, 3) middle HL tinnitus 
sufferers, Mdn=59 and SD=1.4,  and 4) high HL tinni-
tus sufferers, Mdn=59.7 and SD=13.8. Tinnitus patients 
were previously attended in the Rehabilitation National 
Institute in Mexico City. They had been taken homeo-
pathic aids without any effect and were invited to 
participate in this investigation. Control patients had 
the same inclusion criteria such as tinnitus but with-
out suffering it and without HL. All the patients were 
informed that their doctors will monitor them. 
Volunteers were notified about the experimental pro-
cedure and signed a consent form. After patients have 
given their consent and signed a written agreement, 
they are placed into groups, through a random selec-
tion process. They are then instructed to engage in 
their assigned therapy for one hour each day, at any 
time of their choosing. The protocol was validated by 
the ethical committee of ITESM, and the number is 
ISRCTN14553550. The database is contained in 
Mendeley Data at https://data.mendeley.com/ data-
sets/kj443jc4yc/1.

Experimental Procedure
Experimental procedure for this study is presented in 

Figure 1 and was conducted as follows. Participant 
information was collected from two sources: 1) audiol-
ogy evaluation (audiometry and tinnitus characteriza-
tion), and 2) EEG baseline activity. In audiometry 
tests, the hearing level from 0.125 to 16 kHz was ana-
lyzed at four scales: 1) 0 – 20 dB (normal hearing), 2) 20 
– 40 dB (low HL), 3) 40 – 60 dB (middle HL), and 4) > 60 
dB (high HL). In addition, buzz was characterized for 
tinnitus patients, measuring its laterality, frequency 
and intensity. 

Table 1 shows the central tendencies of audiometry 
and tinnitus characterization. As can be seen from the 
table, most participants had unilateral tinnitus around 
6 kHz with an approximate intensity of 16 dB. The 

https://data.mendeley.com/ datasets/kj443jc4yc/1. 
https://data.mendeley.com/ datasets/kj443jc4yc/1. 
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FIGURE 1. Experimental procedure scheme.

TABLE 1. Shows the central tendencies of audiometry and 
tinnitus characterization. As can be seen from the table, 

most participants had unilateral tinnitus around 6 kHz with 
an approximate intensity of 16 dB. The control group 

presented a normal audition. With respect to EEG activity, 
signals were recorded to estimate the tonotopic cortical 
reorganization owing to neural synchrony abnormalities 

that provokes tinnitus. 

control group presented a normal audition. With 
respect to EEG activity, signals were recorded to esti-
mate the tonotopic cortical reorganization owing to 
neural synchrony abnormalities that provokes tinni-
tus.

 

Men Women Tinnitus Laterality Tinnitus 
Frequency Intensity 

  Left Right Both {kHz} dB 

11 13 6 7 5 5.875 
±2698 

15.93 
±10.68 

 

Analyzing the neurophysiological signals can help to 
diagnose and to treatment neurological diseases like 
tinnitus [56]. EEG signals were registered in calm (in 
two stages: eyes closed (EC) and open (EO)) for 180 
seconds (each stage). To register EEG signals, a g.
USBamp was employed, with 16 EEG channels, this is 
a high-performance and high-accuracy biosignal 
amplifier for the acquisition and processing of physio-
logical signals and it was set up to record signals with 
256Hz of sampling frequency and a bandwidth of 0.1 
to 100 Hz. The Cz channel was the reference with 
respect to the international 10–20 system, and ground 

was the left lobe ear.

Electrode and Frequency Band Selection
The EEG analysis was focused on frontal (Fz) and 

occipital (O1 and O2) lobes within two bandwidths: 
delta (0.1-4 Hz) and alpha (7-14 Hz) band, respectively. 
Frontal delta activity has been extensively discussed 
as a major EEG abnormal synchronicity for tinnitus 
and neuropathic pain, and occipital alpha activity is 
the dominant synchronicity at resting state condition 
in the human beings. Note that temporal lobe was not 
considered for the analysis, although it is associated 
with auditory processing and perception of language. 
It is well known that temporal lobe is around 18 % of 
the size of the complete cortex, 17 % in the right hemi-
sphere and 18 % in the left hemisphere. However, a 
large surface of the temporal lobe is into the temporal 
gyrus, what nullified dipoles and minimizes EEG mag-
nitude.

EEG Signal Preprocessing
To preprocess EEG signals, EEGLAB toolbox for 

Matlab was used. The principal objective of signal 
cleaning is to maximize the dynamic range by deleting 
internal and external unwanted sources such as line 
interference, involuntary movements, cardiac and 
muscular signals. The procedure was divided into 5 
steps: 1) baseline suppression, 2) IIR Butterworth filter 
from 0.1 to 100 Hz. Note that this digital filter was 
applied, even when a previous similar filter had been 
applied in the signal acquisition process. Owing to 
some OpenViBE bugs during the acquisition that ran-
domly filtered the signals, the filtering process was 
guaranteed in the preprocessing stage, 3) IIR 
Butterworth filter to reject 60 Hz component, 4) tran-
sient artefacts rejection (which refer to unexpected 
change of signal trajectory due to electrode pop-ups or 
cable movements) by artifact subspace reconstruction 
(ASR) algorithm (this approach learns a statistical 
model on clean calibration data and reduce unwanted 
signal by dividing small segments of EEG signals and 
comparing them in the component subspace), 5) auto-
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matic elimination of stationary artefacts (which refer 
to periodic or quasiperiodic biological (such as ocular 
and cardiac activity) or nonbiological (line noise) sig-
nals) by the compound algorithm based on wavelet 
decomposition and independent component analysis 
(ICA).

EEG Signal Processing
Having cleaned EEG data, different processing steps 

were performed depending on the domain analysis 
(time or frequency). 

For time-domain analysis, each signal:

1. Was filtered on Alpha (7 – 14 Hz) and Delta; (0.1 – 4 
Hz) frequency bands 

2. Was segmented into 2s time-windows without over-
lap, resulting in 30 windows per signal. 

For frequency-domain analysis, each signal: 

1. Was segmented into 2s time-windows without over-
lap, resulting in 30 windows per signal. 

2. For each window, the magnitude frequency spec-
trum using the fast Fourier transform algorithm was 
computed. 

3. Specific frequency bands from magnitude frequency 
spectrum were selected, this is, Alpha (7 – 14 Hz) and 
Delta (0.1 – 4 Hz) bands.

To this point, a dataset of 300 instances for every par-
ticipant was produced; this is, 2 bands × 5-time courses 
(Fz, O1 and O2 channels plus bipolar O1−O2 and aver-
age (O1 + O2)/2) × 30 windows. Finally, all participant 
instances were characterized using time and fre-
quency domain features.

EEG Feature Extraction
Feature extraction is the process that allows obtaining 

information about data. It can be performed in several 
manners (i.e., time-domain —data samples domain— or 
frequency-domain —analyzing time-frequency data 
representations— but also in spatial-domain —spatial 
location of the measure—). In this work, a feature 
extraction in time and frequency domains for three 
different locations on the brain resulted in 300 
instances for each participant. Thus, the feature is a 
combination of time-domain or frequency domain 
metric with a specific brain location of the brain 
denoted by the electrode placement. Below, different 
metrics in different domains are presented. Basic 
Statistical Measures section presents basic statistical 
metrics used for both time and frequency domain. 
Time Domain and Frequency Domain sections describe 
how each statistical metric could be interpreted and 
additional non-statistical metrics.

Basic Statistical Measure
Mean. The mean is one of the measures of central ten-

dency that gives us information about the average 
value of the set of amplitude values over the number of 
samples of a signal (see Equation 1).

where xi correspond to the ith position of the signal, N 
is the sample size, and x  ̄the average value [57]. 

Standard Deviation (STD). The standard deviation is 
a measure that tells how dispersed the values of the 
signal samples are with respect to their mean, being a 
value close to zero an indicator that the values are very 
close to the mean value and much higher values are an 
indicator that these values are further from the mean 
value. In other words, STD is the square root of the 
average of the squared differences from the Mean (see 
Equation 2).

𝑆𝑆𝑆𝑆𝑆𝑆 = 	&
∑ (𝑥𝑥! − x̄)"#
!$%
𝑁𝑁 − 1 									 

x̄ = 	 1
𝑁𝑁
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1       (1) (1)

(2)
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where xi correspond to the ith position of the signal, N 
is the sample size, and x the average value [58].

 Kurtosis (KRT). Kurtosis is a measure that reveals the 
peak or flatness of a distribution. To calculate the kur-
tosis value, it is necessary to use Equation (3), which 
considers the difference of the signal data with respect 
to the mean [59].

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 	
1
𝑁𝑁 ∑ (𝑥𝑥! − 𝑥𝑥0)"#

!$%

[1𝑁𝑁∑ (𝑥𝑥!&𝑥𝑥0)'#
!$% ]'

									 (3)

Skewness (SKW). Its value is zero when it has a sym-
metric distribution and as some non-zero value when 
it has an asymmetric distribution compared to the 
baseline [60]. To calculate the value of the skewness, it 
is necessary to use Equation (4), which considers the 
dispersion of the signal data with respect to the mean.

(4)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 	
∑ (𝑥𝑥! − 𝑥𝑥-)"

𝑁𝑁
#
!$%

[∑ (𝑥𝑥!&x̄)'
𝑁𝑁

#
!$% ]"/'

 

 Time Domain
Time domain or data samples domain is a representa-

tion of how data is organized after acquisition step. 
Simple measurements on this data representation can 
be done to obtain some information. These basic mea-
surements are the same that are used in statistics for 
data sequences. Thus, time domain features are very 
related to statistical features. In the next paragraphs a 
description of non-statistical measures is presented.

Time domain statistical measures such as mean, stan-
dard deviation, kurtosis and skewness (see Basic 
Statistical Measures section) describe tendencies in the 
time domain. For example, EEG data basic statistics, 
such as mean and standard deviation (see Equations 1 
and 2), computed for each time window, describe how 
the average of EEG amplitudes change from one win-
dow to another (Mean) along with their dispersion 
(STD). On the other hand, there are more elaborated 
statistics such as kurtosis and skewness (see Equations 

3 and 4). Kurtosis indicates if EEG amplitudes consist 
of isolated peak values (positive kurtosis) or consist of 
low frequency (negative kurtosis) while Skewness indi-
cate the degree of symmetry deviation from a normal 
or Gaussian distribution (skew) of EEG amplitudes and 
if this change from one window to another. Non-
statistical measures can be used as time domain 
descriptors. For example, the maximum amplitude of 
the signal (a.k.a maximum peak) and the shape which 
is a descriptor of the symmetry, number of peaks, 
obliquity, and uniformity of a measured signal. In the 
next lines, the equations for these features are pre-
sented.

Maximum Peak (MPK). The maximum peak corre-
sponds to the instantaneous absolute value of the 
higher amplitude of the signal measured from the zero 
level. This metric is expressed by Equation (5).

𝑥𝑥!"#$ = max(|𝑥𝑥%|)				 (5)

(6)

where xi corresponds to the ith position of the signal 
with i ∈ {1, 2, 3, ..., N} and N being the sample size. 
Finally, xpeak corresponds to the maximum peak.

Shape (SHP). Shape is not precisely a statistical param-
eter but is a measure that describes the characteristics 
of symmetry, number of peaks, obliquity, and unifor-
mity of a signal. To calculate it, the root mean squared 
amplitude value must be divided by the mean absolute 
value (see Equation (6)).

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 	
(1𝑁𝑁∑ 𝑥𝑥!"#

!$%

1
𝑁𝑁∑ |𝑥𝑥!|#

!$%

							 

Other data representations, such as frequency-do-
main, can also benefit from these statistical measures 
to describe the frequency spectrum. In the next para-
graphs, the statistical descriptors used in frequency 
domain are presented. 
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Frequency Domain
In the frequency domain, statistical measures such as 

the mean and skewness can be used as descriptors. For 
example, in the case of EEG signals, the Mean of a sig-
nal segment obtained for each one of several magni-
tude spectrum windows can tell us how the average of 
EEG spectrum (energy) changes from one window to 
another. On the other hand, more elaborated statistics 
such as the skewness can explain the degree of devia-
tion from symmetry from a normal or Gaussian distri-
bution (skew) of the EEG spectrum and, if exist a 
change from one window to another. Other measures 
can be used as frequency domain features and are 
described as follows.

Power Spectral Density (PSD). The PSD refers to dis-
tribution of spectral energy observed in each unit time. 
This total power can be calculated by performing the 
summation or integration of the spectral components 
which, as dictated by Parseval’s theorem [60].

𝑃𝑃𝑃𝑃𝑃𝑃 = 	&𝑠𝑠(𝑘𝑘)
!

"#$

							 (7)

(8)

where s(k) is a spectrum for k = 1, 2, ..., K, K is the 
spectrum resolution [61][62][63].

P5 (MNF or Xfc). Another specific frequency spec-
trum metric, P5 may show how the position is chang-
ing of principal frequencies that are predominant in 
the frequency spectrum and is basically the sum of the 
product of the frequency value by its magnitude 
divided by the sum of the magnitudes of all the ele-
ments of the spectrum (see Equation (8)).

𝑃𝑃5 = 	
∑ 𝑓𝑓!𝑠𝑠(𝑘𝑘)"
!#$

∑ 𝑠𝑠(𝑘𝑘)"
!#$

								 

where s(k) is a spectrum for k = 1, 2, ..., K, K is the 
number of elements in the spectrum and fk is a value 
of the k spectrum line [61][62][63]. To perform the feature 
extraction, for each instance of every participant, the 

metrics corresponding to time and frequency domain 
were computed. Thereafter, the participant data were 
organized in a matrix shape where the rows correspond 
to the participant instances and the columns to differ-
ent audition levels. The instances corresponding to all 
participants with the same audition level are concate-
nated one after the other. The matrices were labeled 
according to their information. For example, the label 
O2_alpha_STD corresponds to a matrix with all partici-
pant instances corresponding to the occipital 2 chan-
nel (O2), on Alpha band, characterized by the standard 
deviation feature (SD). Table 2 depicts an example of 
the matrix O2_alpha_STD. 

 

Participant Control/ 
Normal 

Tinnitus/ 
Low 

Tinnitus/ 
Middle 

Tinnitus/ 
High 

1 6.299 4.615 8.474 4.641 
1 6.068 7.491 6.775 9.594 
: : : : : 
1 4.334 8.194 4.507 5.113 
: : : : : 
6 6.626 3.757 4.067 8.462 
6 10.058 6.298 8.395 10.705 
: : : : : 
6 5.262 4.18 3.571 10.977 

 

TABLE 2. Example of the matrixO2_alpha_STD

To identify one or several neuromarkers that differen-
tiate between participants with different audition lev-
els based on their EEG signals, first, the dataset distri-
bution and the appropriate non-parametric statistical 
test are determined.

Statistical Analysis
In statistical analysis it is important to know which 

distribution a sample is drawn from, to make correct 
inferences. According to the data of this study, the 
analysis is performed using the Lilliefors test based on 
the Kolmogorov-Smirnov test in R with the nortest 
package. The Lilliefors test for normality is an adapta-
tion of the Kolmogorov-Smirnov test for the case when 
the parameters of the mean and variance of the normal 
distribution is unknown [64]. The Lilliefors test is 
defined by:
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𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚!∈#|𝐹𝐹$(𝑚𝑚) − 𝐹𝐹∗(𝑚𝑚)|							 (9)

where Fn(x) is the empirical cumulative distribution 
function and F*(x) is the function of cumulative distri-
bution of the normal distribution with µ = x ̅ and s2. If 
D exceeds the corresponding critical value, then the 
null hypothesis is rejected.

All time and frequency metrics were analyzed using 
the Kolmogorov-Smirnov test with the Lilliefors cor-
rection, showing p<0.05. Consequently, the normality 
hypothesis is rejected. The nonparametric technique 
to test whether the populations differ in location, the 
Kruskal-Wallis H statistic analysis does not require 
actualized observation values, the ranks of the obser-
vations to complete the analysis is known. The test of 
Kruskal-Wallis is based on H for comparing k popula-
tion distributions [65]: 

H0: The distribution of k population is the same. 
Ha: The population distributions differ in two loca-
tions. 

Test statistic: H = {12/[n(n + 1)]}                −  3(n + 1), 
where ni =number of measurements in the sample 
from populations i, Ri= rank sum for sample i, where 
the rank of each measurement is computed according 
to its relative size in the overall set of n = n1 +n2 +· · ·+nk 

observations formed by combining the data from all k 
samples. Reject H0 if H      with (k − 1) df.

RESULTS AND DISCUSSION
After statistical analysis, the bipolar O1 − O2 and the 

average (O1 + O2)/2 produced nonsignificant differ-
ences in alpha nor in delta; thus, they were not further 
analyzed. Only the results from 180 out of 300 sets (2 
bands × 3 channels (Fz, O1 and O2) × 30 windows) are 
reported here. To evaluate the performance of every 
feature and its possibility to become a neuromarker, 
two different strategies were pursued. First, a depic-
tion of the probability distribution of the data using 
violin plotting along with a statistical summary using 

∑ 𝑅𝑅!"/𝑛𝑛!#
!$%   

 

𝑥𝑥!"  
 

box plots are presented (Figures 4 to 3). Secondly, an 
statistical significance analysis was performed with 
the Kruskal-Wallis test and reported on Tables 3 and 4. 
The data distribution for features Fz-delta-MPK and 
Fz-delta-STD respectively in the time domain for delta 
band and electrode Fz among the studied groups are 
observed in Figures 2 and 3. Apart from the skewed 
distribution of these two features it can be easily 
observed that Fz-delta-MPK and Fz-delta STD distribu-
tions in each group looks very similar as it was for elec-
trode O2 in the alpha band for the same features. 
Looking into distributions of Fz-delta-MPK and 
Fz-delta-STD features, we can easily observe that 
median value. 

FIGURE 2. Fz-delta-MPK time-domain.

from normal group differs significantly from the 
median value of group middle. It is hard to see but 
there are also significant differences between median 
values of groups low and middle and middle and high 
for both features. However, in the case of Fz-delta-STD 
there are not significant differences between the 
median values of groups normal and high as there are 

FIGURE 3. Fz-delta-STD time-domain.
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present for the case of Fz-delta-MPK (see Table 3, fifth 
column). In Figure 4 to 6, the data distribution for fea-
tures O2-alpha-PSD, O2- alpha-STD and O2-alpha-MPK 
in the frequency domain for alpha band and electrode 
O2 among the studied groups is shown. Apart from the 
skewed distribution of these three features and the 
longer tails for O2-alpha-PSD feature, it can be easily 
observed that O2-alpha-STD and O2-alpha-MPK distri-
butions in each group looks very similar. Nevertheless, 
if it can be looked carefully out of its tails, distribution 
for O2-alpha-PSD is almost proportional to O2- alpha-
STD and O2-alpha-MPK distributions with exception of 
normal group. 

FIGURE 4. O2-alpha-PSD frequency-domain

FIGURE 5. O2-alpha-STD frequency-domain

However, for the three groups it seems that median 
value from normal group differs significantly from the 
median values of groups middle and high. Also, is pos-
sible to observe that median values of middle and high 
groups differ significantly from the median of group 
low. It is hard to visually determine if the medians of 
groups normal and low possess significant differences. 
However, there exist significant differences as con- FIGURE 6. O2-alpha-MPK frequency-domain

firmed in the third column (Tinnitus/Low vs. Control/
Normal) of Table 4 where p-values of 0.0251, 0.036 and 
0.039 report significant differences for groups normal 
and low. It can be also observed that medians from 
groups middle and high are not significantly different, 
which is also confirmed in Table 4 in the last column 
(Tinnitus/High vs. Tinnitus/Middle) where there are 
no p-values reported since only p-values lower than 
0.05 are presented. In Figures 7 and 8 the data distribu-
tion for features O1-alpha-SHP and O1- alpha-SKW 
respectively in the frequency domain for alpha band 
and electrode O1 among the studied groups is pre-
sented. Apart from the skewed distribution of these 
two features it can be easily observed that O1-alpha-
SHP and O1-alpha-SKW distributions in each group 
look very different. Nevertheless, if it can be looked 
carefully for both O1-alpha-SHP and O1-alpha-SKW 
features, the median value from normal and low groups 
differs significantly from the median value of groups 
middle and high. Visually from these plots, it is easy to 
see that median values of groups normal and low do 
not possess significant differences (Table 4 third col-
umn, no p-values are reported); however, it can be 
easily observed that median values from groups mid-
dle and high are significantly different. In the other 
hand, significant differences between median values 
of normal and high groups are only difficult to be 
observed from plots for O1-alpha-SKW feature, but 
there exists as reported in Table 4 sixth column, 
p-value equal to 3.1 × 10-3. 
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TABLE 3. P-values for Time-domain analysis on Delta band and Fz channel 

 

Feature Audition Levels 

Channel Metric Tinnitus/Low 
vs Control/Normal 

Tinnitus/Middle 
vs Control/Normal 

Tinnitus/Middle 
vs Tinnitus/Low 

Tinnitus/High vs 
Control/Normal 

Tinnitus/High 
vs Tinnitus/Low 

Tinnitus/High 
vs Tinnitus/Middle 

Fz MPK - 3.5	𝑥𝑥	10!"# 2	𝑥𝑥	10!"$ 0.0041 2	𝑥𝑥	10!"$ 0.0001 

Fz STD - 1.3	𝑥𝑥	10!% 1.1	𝑥𝑥	10!"& - 0.0004 0.0005 

TABLE 4. P-values for Frequency-domain analysis on alpha band

 

 

 

Feature Audition Levels 

Channel Metric Tinnitus/Low 
vs Control/Normal 

Tinnitus/Middle 
vs Control/Normal 

Tinnitus/Middle 
vs Tinnitus/Low 

Tinnitus/High vs 
Control/Normal 

Tinnitus/High 
vs Tinnitus/Low 

Tinnitus/High 
vs Tinnitus/Middle 

O2 PSD 0.0251 2.1	𝑥𝑥	10!"" 7.7	𝑥𝑥	10!# 6.4	𝑥𝑥	10!$ 0.0002 - 

O2 STD 0.036 8.9	𝑥𝑥	10!"% 4.2	𝑥𝑥	10!"& 3.7	𝑥𝑥	10!"& 5.2	𝑥𝑥	10!$ - 

O2 MPK 0.039 2.3	𝑥𝑥	10!"' 3.9	𝑥𝑥	10!( 5.0	𝑥𝑥	10!( 4.4	𝑥𝑥	10!# - 

O1 SHP  2.2	𝑥𝑥	10!"# < 	𝑥𝑥	10!"# 9.1	𝑥𝑥	10!) 8.9	𝑥𝑥	10!) 8.0	𝑥𝑥	10!) 

O1 SKW  1.9	𝑥𝑥	10!"& 2.9	𝑥𝑥	10!"" 3.1	𝑥𝑥	10!' 0.0037 0.0033 

Tables 3 and 4 present time and frequency features 
(combination of the frequency band, channel, and 
metric) that first, maximizes the differences between 
groups of participants with different audition levels 
and second, fulfills the criteria of p < 0.05, for time and 
frequency domain, respectively. Based on the concept 
that the ideal neuromarker would be a metric in a data 
domain for a specific location capable to distinguish 
among all groups, each group was compared to another 
(i.e., all non-repeated pairs of groups), testing the fea-
tures obtained for time and frequency domains for 
specific head locations to grade the easiness for such a 
feature to distinguish among groups. 

FIGURE 7. O1-alpha-SHP frequency-domain.

FIGURE 8. O1-alpha-SKW frequency-domain.
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Many features are helpful to distinguish among sev-
eral groups; however, the interest is only in features 
capable of distinguishing most of the groups. In our 
study, apparently it is observed that for time-domain 
and frequency-domain there is no such a metric capa-
ble of distinguishing the six groups presented here. 
Nevertheless, some metrics were found in the fre-
quency domain that in combination with a channel 
location are capable to distinguish 5 out 6 groups and 
in the time domain only with the MPK metric is possi-
ble to distinguish 5 out 6 groups with a p value < 0.05. 
Tables 3 and 4 present only the features that meet this 
number of groups distinguished with this significance. 
From Table 3 it is observed possible neuromarkers in 
the time domain, all of them are located on the frontal 
lobe and described by two metrics on the delta band. 
These metrics are the standard deviation (STD) and 
maximum peak (MPK), being the latter the one that 
can help us to distinguish at least 5 out of 6 groups pre-
sented here. In addition, on Table 4 it is observed fea-
tures identified as possible neuromarkers in the fre-
quency domain, all of them are located on the occipital 
lobe and described by several metrics on the alpha 
band such as its power spectral density (PSD), standard 
deviation (STD), maximum peak (MPK), shape (SHP) 
and skewness (SKW). As seen in Table 4, the shape 
(SHP) and skewness (SKW) of the alpha frequency 
band does not present significant differences between 
Tinnitus/Low and Control/Normal groups of subjects; 
on the other hand, PSD, STD, and MPK did not present 
significant differences between Tinnitus/High and 
Tinnitus/Middle groups. However, if we consider the 
occipital lobe as one  region for which we have two 
measurements, we can distinguish among the six 
groups presented here using a different metric for each 
side of the occipital lobe.

The non-significant differences among Tinnitus/Low 
and Control/Normal groups of subjects for SKW metric 
in the alpha band could be since SKW explains the 
degree of deviation from symmetry from a normal or 
Gaussian distribution (skew) of the EEG spectrum. In 

this case, as it was presented before (see Frequency 
Domain section) the data distribution of the tested 
metrics in all groups was non Gaussian which implies 
the existence of similarities between groups from the 
point of view of this metric. Metrics such as PSD, STD 
and MPK in the frequency domain gives information 
about power differences in a frequency band (i.e., there 
are certain frequencies that prevailed). Thus, it is pos-
sible that the group Tinnitus/High and Tinnitus/Middle 
share some frequencies maybe related to tinnitus, and 
in this context from the point of view of this metric is 
impossible to distinguish between both groups. 
Regarding these results, frequency domain metrics 
seem to be more robust than time domain metrics 
because they can help to distinguish more different 
groups than most of the time domain metrics tested 
here. However, it is important to remark that both fre-
quency and time domain metrics can be used together 
to distinguish among groups. For example, by analyz-
ing MPK metric in both domains over their respective 
EEG channels Fz and O2 at the same time, it is possible 
to distinguish both Tinnitus/Low vs Control/Normal 
and Tinnitus/High vs Tinnitus/Middle, which is not 
possible if we analyze the feature in one domain only. 
The non-Gaussian distribution of data for the metrics 
presented here makes that parametric statistical test 
such ANOVA cannot be used in this analysis and thus, 
equivalent non-parametric tests need to be used.

Other options are transforming data with a function 
forcing it to fit a normal model and then applying 
ANOVA or another parametric test. However, when 
data distribution is skewed and fitting another distri-
bution type as in our case, it is recommendable to use 
non-parametric tests (i.e., these tests do not assume 
that data fits a specific type of distribution). Even 
though it has been presented several neuromarkers 
distinguishing control participants with no HL from 
tinnitus participants with some level of HL, and tinni-
tus participants with different levels of HL among 
them. These neuromarkers identify significant differ-
ences between instances by analyzing one feature. 
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Additionally, the effectiveness of using a particular 
neuromarker for tinnitus or HL level estimation cannot 
be assessed. Therefore, based on results of the present 
work, and as a future work, these features will be used 
along with several machine learning techniques to 
first, evaluate the performance of the combination of 
the neuromarkers proposed here for predicting tinni-
tus condition or HL level on participants; finally, the 
evaluation of the efficiency of such predictions will be 
performed.

CONCLUSION
A methodology to characterize and identify subjects 

from different audition levels (Normal, Low, Middle, 
and High) was presented. The results show that it is 
possible to perform a pairwise differentiation of 
patients with different HL conditions in both time and 
frequency-domain. It was shown that the resulting 
EEG characterization does not fit the normal probabil-
ity distribution, so the Kruskal-Wallis test was required 
to measure the significant difference between pairwise 
combinations. There are more metrics in the frequen-
cy-domain that allow differentiating audition levels 
than those from the time-domain; with MPK and STD 
being shared by both domains. The results indicate 
that for every audition level pairwise comparison, 
there is at least one combination of an electrode, band, 
and metric (feature) in which such pairwise combina-
tion is differentiable. On frequency-domain on the 
Alpha band, PSD, STD, and MPK are neuromarkers that 
distinguish a Control/Normal subject from a Tinnitus 
participant with Low, Middle, and High audition level. 
And, to distinguish from different tinnitus audition 
level participants, SHP and SKW are the neuromarkers 
to be selected. Moreover, combination of both domains 
allows to distinguish among all the groups presented 
here as is the case of metric MPK (Fz-Delta-MPK, in 
time domain and O2-Alpha-MPK in frequency domain).

It's important to note that tinnitus is a subjective 
experience, and its perception can vary greatly among 
individuals, regardless of age. Some individuals may 

habituate to the sound and experience minimal dis-
tress, while others may find it highly bothersome and 
experience significant negative effects on their well-be-
ing. Additionally, individual characteristics, such as 
personality traits and psychological factors, can influ-
ence how tinnitus is perceived and coped with, irre-
spective of age. 

A small sample size may limit the generalizability of 
the findings and reduce the statistical power of the 
analysis. Or maybe using machine learning techniques 
to distinguish between different groups. To draw more 
reliable conclusions, a larger and more diverse sample 
should be used in future studies. The outcomes of this 
study are specific to the parameters and methods used 
in this research. The same neuromarkers and metrics 
to different populations or other hearing disorders can-
not be generalized. Replication of the study with differ-
ent populations and in different settings would help 
assess the generalizability of the results.
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