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ABSTRACT 
The paradigm of biological systems provides a framework to quantify the behavior of biological processes. Mathe-
matical modeling is one of the analytical tools of biological systems used to reproduce the variables of a system 
for prediction. This article presents the analysis of muscular contraction, the physiological process responsible of 
generating force in skeletal muscle, from the point of view of mathematical modeling. The aim is to provide nume-
rical evidences about the force generated by the sarcomere, and the energy required to produce such a force. The 
proposed scheme includes a model to activate the contractile cycle, based on the action potential that reaches the 
neuromuscular junction, the calcium release into the sarcoplasm, the contraction response, and the quantification 
of the energy that the sarcomere requires to perform mechanical work. The results shows that the proposed scheme 
is acceptable because it reproduces experimental data of force, velocity, and energy reported in the literature. The 
results of the proposed scheme are encouraging to scale the model at the muscle or muscle group level, in such a 
way that the quantification of energy can be an alternative to the indirect estimation methods of energy consump-
tion that currently exist.
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INTRODUCTION
Biological systems deal with the understanding of 

biological processes at the systems level. The initial 
ideas were established by Dr. Norbert Wiener in his 
book published in the 1940s [1]. However, the execu-
tion and confirmation of these ideas did not flourish 
due to technological (low availability of sensors, actu-
ators, and computer systems), and scientific limita-
tions (for example, the theory of nonlinear systems 
was in its infancy). It was not until early in this century 
that these ideas were taken up by the scientific com-
munity encouraged, primarily, by advances in molec-
ular biology. The current availability of high-perfor-
mance computer systems capable of processing copi-
ous amounts of data and of information-processing 
methods like machine learning, as well as the develop-
ment of sensors capable of measuring biological vari-
ables in real time, have all fostered advances in biolog-
ical systems. In addition, modern systems theory pro-
vides a broad platform of methodologies for the analy-
sis, mathematical modeling, and control synthesis of 
highly-complex processes, including linear, nonlinear, 
continuous, discontinuous, and interconnected behav-
iors, to name a few [2].

The study of biological systems proposes a four-part 
paradigm for understanding a biological process at the 
systems level [3]. (1) System structure: identifying the 
elements of a process that interact and modify its 
physical properties. (2) System dynamics: understand-
ing under what conditions certain properties of the 
process change in time and the repercussions of those 
changes for the functioning of the process. (3) Control 
method: once the natural dynamics of the biological 
process are known, it may be interesting to modify 
specific properties so that, depending on its structure 
and dynamics, it may become possible to propose a 
method for the systematic manipulation of a property. 
(4) Design method: strategies for the physical imple-
mentation of the resulting control scheme according to 
the first three points. The advantage of this paradigm 

over the qualitative trial-and-error method used so 
widely in the biological sciences, is that it provides 
quantitative descriptions of the process that make it 
possible to predict the behavior of the properties of 
interest. Thus, it generates quantitative information, 
or design parameters, for experimental protocols that 
help optimize characterization methods and/or design 
and, more generally, our understanding of the biologi-
cal process involved. Examples of applications of this 
paradigm can be consulted in the pioneering papers 
reported by Kitano [2] [3]. The area of biological systems 
devoted specifically to human health is called systems 
medicine, a field that studies physiological processes, 
pathological conditions, and recommended treat-
ments with the goal of providing quantitative ele-
ments to optimize medical treatments [4].

This article discusses a specific case of analysis of a 
biological process from the perspective of biological 
systems: energy consumption in a sarcomere, the basic 
functional unit of the contraction of skeletal muscle. 
The expenditure of energy is defined as the number of 
calories that people utilize to perform their basic vital 
functions, and to participate in physical activities [5]. 
Total energy expenditure depends on the total energy 
acquired from food. It is expended, approximately, in 
the percentages depicted in Figure 1 [6].

FIGURE 1. Percentages of energy expenditure
in the human body [6].

Today, energy expenditure is measured by indirect 
calorimetry, a method that estimates the number of 
calories the human body consumes while performing 
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a physical activity like walking or running by measur-
ing oxygen consumption (VO2) and carbon dioxide 
production (VCO2). This allows researchers to calcu-
late the total energy expenditure of an entire human 
body [6]. Regarding knowledge of the structure of the 
human body, biological systems conceptualizes this 
as a system of systems, that can be analyzed on differ-
ent scales of organization: molecular, cellular, tissue, 
or organ and, finally, as an integrated organism [4]. 
Indirect calorimetry gathers data on energy consump-
tion at the level of the organism; that is, the highest 
level of analysis of the structure of a biological pro-
cess, but in certain cases it may be important to deter-
mine the functioning of this process on another scale. 
For this reason, this article focuses on the question of 
the amount of energy consumed by a sarcomere 
during muscular contraction. To this end, we pro-
posed a methodology of analysis centered on the 
structure and function of the process at the cellular 
level. The approach consist of a mathematical model 
of the contraction cycle of a sarcomere of skeletal 
muscle, which represents the dynamic behavior of the 
troponin units during the contraction cycle. Such 
dynamics determines the force generated and the 
velocity of the sarcomere, which are the elements to 
quantify the energy consumed by the sarcomere 
during contraction. Moreover, an activation scheme is 
presented in this paper, to model the voluntary acti-
vation of contraction cycle after the arrival of an 
action potential to the neuromuscular junction. The 
content of this article is as follows. The next section 
describes the physiological principles that lead a sar-
comere to contract, a physiological function that pro-
vides muscular force and the energy required to gen-
erate such force. The section that follows outlines the 
methodology of mathematical modeling used to cal-
culate the energy that a sarcomere requires to execute 
the contraction, and the conditions of the numerical 
implementation of the model utilized. The final part 
presents the results, discussion, and conclusions of 
the study.

MATERIALS AND METHODS

Muscular contraction
A skeletal muscle is a tissue that specializes in pro-

ducing contractions. It is made up of cells called mus-
cle fibers that have the capacity to contract individu-
ally. It is the synchronized contraction of the muscle 
fibers of a skeletal muscle that generates the force 
required to produce movement of the articulations to 
which it is joined. The movement produced by the 
skeletal muscle system is voluntary and results from 
the contraction and relaxation of these cells. To achieve 
movement, the muscle performs a series of functions 
that include generating force, transmitting the force, 
consuming, and storing energy, and producing heat.

During embryonic development, a series of myoblasts 
fuse to form a muscle fiber, so each fiber is a cell with 
multiple nuclei. The sarcolemma is cell membrane of 
the muscle fiber and the cytoplasm is known as the sar-
coplasm. The organelles that provide muscle fibers with 
their contractile structure are called myofibrils. They 
are made of proteins that extend over the entire length 
of the muscle fiber. Myofibrils are formed by two ele-
ments denominated thick and thin filaments, which are 
organized in compartments called sarcomeres. Because 
contraction occurs in the sarcomeres, they are known 
as the basic functional units of the myofibrils [7]. Figure 
2 illustrates the organization of a skeletal muscle, from 
the complete muscle down to the sarcomere.

FIGURE 2. Organization of skeletal muscle tissue. 
Edited from Tortora et al. [7].
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Three types of proteins define the structure and 
function of the sarcomere: (1) Contractile proteins are 
responsible for generating force during contraction. (2) 
Regulator proteins are in charge of activating and deac-
tivating the contraction process. (3) Structural proteins 
form the thick and thin filaments that give the myofi-
brils their elasticity, extensibility, and ability to bond 
to the sarcolemma. The structure of the sarcomere is 
shown in Figure 3. The thin filaments (yellow) are 
composed mainly of a contractile protein called actin, 
while the thick filament (red) is formed by the contrac-
tile protein myosin. When a muscle is relaxed, the 
thick and thin filaments are superimposed in an area 
of the sarcomere called band A. The central part of 
band A contains the line M, formed by myomesin, a 
structural protein [7]. The regulator proteins, troponin 
and tropomyosin, form part of the thin filament, 
together they make up the troponin-tropomyosin 
complex. The structure of the sarcomere allows it to 
contract; that is, to shorten itself by overlapping the 
thick and thin filaments by through the transforma-
tion of energy, from chemical into mechanical [5] [6]. 

The contractile cycle is activated when an action 
potential reaches the neuromuscular union and depo-
larizes the sarcolemma of the muscle fiber, releasing 
calcium (Ca2+) into the sarcoplasm. Ca2+ prepares the 
thin filament so that the thick filament can bond to it 
through the association of actin proteins with the 
heads of the myosin. Actin occupies a site related to 
myosin that is protected by tropomyosin during relax-
ation. When Ca2+ is available in the sarcoplasm, it asso-
ciates with troponin such that the tropomyosin 
exposes the sites of the myosin-related actin sites to 
allow the heads of myosin to bond to that protein. 
These unions are called crossbridges. The tropo-
nin-tropomyosin complex is recognized as the regula-
tor proteins of muscular contraction due to its func-
tion of preparing the thin filament to associate with 
the thick filament [7]. 

The contractile cycle refers to the sequence of events 
that takes place during the movement of the filaments. 
It consists of four stages (see Figure 4). In the first 
stage (1), myosin becomes charged with energy 

FIGURE 3. Thick and thin filaments in relaxation and contraction. Figure edited from Tortora et al.[7]. 
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through the hydrolysis of adenosine triphosphate 
(ATP) molecules in its head. In this stage, the heads of 
the myosin are oriented towards the thin filaments. In 
the second stage (2), the energy-charged myosins 
adhere to the actin in the thin filaments to form cross-
bridges. In the third (3), the thick filament generates 
the traction necessary to move the thin filaments 
towards the line M, causing them to overlap and pro-
duce force in the sarcomere. When this movement 
concludes, in stage four (4), the myosin u ncouples 
from the actin, ending the cycle. The contractile cycle 
is repeated as long as ATP molecules are available and 
the concentration of Ca2+ in the sarcoplasm remains 
high. The shortening of the sarcomeres in the myofi-
brils causes the muscle fiber –and then the complete 
muscle– to contract [7].

Muscular contractions are classified as either isotonic 
or isometric. In the former, the force of contraction 
developed by the muscle is constant, and the length of 
the muscle changes. This type of contraction gener-
ates movement of the joints and the force required to 
move loads or objects. In the latter, the force of con-
traction is insufficient to move a load or object; it only 

FIGURE 4. Stages of the contractile cycle: (1) hydrolysis of ATP, (2) formation of crossbridges, (3) movement phase, 
and (4) detachment of myosin and actin. Figure edited from Tortora et al. [7].

generates sufficient force to sustain it, not move it. In 
this type of contraction, the muscle does not change 
its size [7]. Next, the mathematical modeling of muscu-
lar contraction is revised.

Mathematical model of contraction
Most of the mathematical models proposed in the lit-

erature to emulate the mechanical behavior of skeletal 
muscles are based on the one posited by Hill et al. [8]; 
that is, addressing the mechanical response of muscle 
at the tissue level [9] [10]. Mathematical modeling of the 
mechanical response of the muscle, in contrast, is 
based on the physiological principles of the origin of 
muscular contraction in the sarcomere of the skeletal 
muscle. This physiological approach has been used in 
mathematical modeling of cardiac muscle; the 
approaches ranges from initial models proposing the 
mechanical response of a single sarcomere of cardiac 
muscle [11], multi-scale mathematical modeling of the 
heart mechanics [12] [13] to current in silico models used 
in preclinical trials to assess drugs for cardiac diseases 
[14]. While our approach sets out from current physio-
logical models of the sarcomere of cardiac muscle, it 
proposes an adaptation to represent the contractile 
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response of the sarcomere of skeletal muscle. The main 
function of both types of tissue is to generate muscular 
contraction, but their activation mechanisms differ: 
the heart muscle is activated involuntarily, while acti-
vation of skeletal muscle is voluntary, triggered by the 
emission of an action potential from the motor cortex 
to the neuromuscular union. This permits control of 
the onset of the contractile cycle through the release of 
Ca2+ into the sarcoplasm. The model proposed herein 
includes the effect of the voluntary activation of mus-
cular contraction through the signal generated in the 
neuromuscular union while also quantifying the 
energy consumption that this process requires.

Landesberg et al. proposed a physiological model of 
the contraction of the sarcomere based on an analysis 
of the dynamics of the regulator protein troponin 
during the contractile cycle [11]. They called the relax-
ation stage the phase of ATP hydrolysis. Here, the sar-
comere is relaxed, the crossbridges are in a weak con-
formation (not force-generating), and Ca2+ is not bonded 
to troponin. They defined the parameter R (in μM) as 
the number of units of troponin available in this stage. 
The bonding of Ca2+ to troponin defines the activation 
stage, when the crossbridges prepare to generate force. 
The variable that measures the number of troponin 
units associated with Ca2+ is A(t) (in μM). The time vari-
ation of A is defined by the next differential equation:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(1)

where the left-side of the Equation (1) stands for the 
accumulation of A (number of troponin units per unit 
of time), and the right side stands that such accumula-
tion is directly proportional to Ca2+ concentration in 
sarcoplasm and the number of troponin units available 
in the relaxation stage. The rate of association of tropo-
nin units with Ca2+ is represented by kL (in μM-1s-1). 
Accumulation of A could decrease by the disposition of 
troponin units, the rate of Ca2+ dissociation (k-l in s-1), 

and the transition rate of the crossbridges between 
conformations (f in s-1). f is defined by f=f0-f1V(t), where 
f0 (in s-1) is the transition rate in isometric state, and f1 
(in μm-1) is the rate of dependence on the velocity of the 
shortening of the sarcomere (V(t) in μm/s). Accumulation 
of A are also promoted by the number of troponin units 
defining the strong crossbridges T(t) (in μM). This rela-
tion is proportional to the transition rate of the cross-
bridges from strong to weak conformation (g in s-1), 
defined as g=g0+g1V(t), where g0 (in s-1) is the rate of the 
weakening of the crossbridges during isometric con-
traction, and g1 (in μm-1) defines the velocity on the rate 
of the crossbridges in the weak conformation.

The traction of the thick filaments over the thin fila-
ments through the available crossbridges results in the 
movement of the latter, generating force in the sarco-
mere. This is the stage where the crossbridges change 
from their weak (not force-generating) to strong 
(force-generating) conformation. The accumulation of 
troponin units in this stage is defined by the next dif-
ferential equation:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(2)

Such accumulation is directly proportional the num-
ber of troponin units associated to Ca2+ at the transition 
rate of the crossbridges between conformations. The 
accumulation of T can be decreased by the number of 
troponin units in this stage at the rate defined by the 
addition of the transition rate of the crossbridges from 
strong to weak conformation and the rate of Ca2+ disso-
ciation. Nevertheless, accumulation of T is also promote 
by the number of troponin units that regulate cross-
bridges still in the stage of strong conformation, but in 
which the Ca2+ has not been disassociated, defined by 
U(t) (in μM). This last promotion is proportional to the 
Ca2+ concentration and the rate of association of tropo-
nin units with Ca2+. Regarding the accumulation of U, it 
is defined by the next differential equation:
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This equation represents the time variation of U, in 
which the accumulation is defined by a function 
directly proportional to the units of troponin in the 
strong crossbridges and the rate of Ca2+ dissociation. 
The accumulation of U can be decreased by the unit U 
available in this stage at a rate defined by the addition 
of the association rate of troponin units with Ca2+ and 
the transition rate of the crossbridges from strong to 
weak conformation.

Finally, the dynamical behavior of the troponin units 
in all stages of the contractile cycle is determined by 
the concentration of Ca2+ in the sarcoplasm, which 
accumulation is defined as:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
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𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(4)

where Iin e Iout (both in μMs-1) are the flow currents of 
Ca2+ through the sarcoplasm and the sarcoplasmic 
reticulum, activated by the depolarization of the sar-
colemma when an action potential reaches the neuro-
muscular union. Tro (in μM) represents the number of 
troponin molecules present in the entire contractile 
cycle: Tro=R(t)+A(t)+ T(t)+U(t). Equations (1)-(4) define 
the mathematical model of the contraction of a sarco-
mere [11]. In the next subsection, the equations to com-
pute the force generated by the sarcomere are pre-
sented. Force is related to the velocity of the shorten-
ing of the sarcomere, V(t), as well as the troponin units 
T and U defined in Equation (2) and (3).

Force-velocity relation
Setting out from the assumption that each cross-

bridge is a pseudoviscous Newtonian element, the 
force generated by the sarcomere is defined as 
(Assumption 5 in Landesberg et al. [15]):

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(5)

where Ls (in μM) is the length of the overlap between 
the thin and thick filaments, (T+U) is the total number 
of crossbridges in the strong conformation, and (F 
-ηV(t)) is the force generated in each crossbridge.

 (in μNm) is the unitary force supplied by each 
crossbridge in the isometric condition, η (in Ns) is the 
coefficient of pseudoviscosity of the crossbridges, 
defined as

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(3)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(6)

and Vu (in μm/s) is the maximum velocity of the 
shortening of the sarcomere [16].

The sarcomere at rest constitutes the stationary state 
of the system of differential Equations (1)-(4), so A*, 
T*, U* and Ca2+* are the values of the equilibrium point 
–or stationary state– that satisfy the system of alge-
braic equations which emerges upon setting the deriv-
atives of the system (1)-(4) to zero; that is:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(7)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(8)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(9)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(10)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

Calculating the force-velocity ratio requires Equation 
(5) and the substitution of T* and U* from the system 
defined by Equations (1)-(4). This produces the follow-
ing equation:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(11)
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 	𝑘𝑘!𝑅𝑅𝑅𝑅𝑅𝑅"# − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑 + 𝑔𝑔𝑔𝑔, 

 
 

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑑𝑑 − (𝑔𝑔 +	𝑘𝑘$%)𝑔𝑔 + 𝑘𝑘!𝑈𝑈𝑅𝑅𝑅𝑅"#. 

 
 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝑘𝑘$%𝑔𝑔 − (𝑘𝑘!𝑅𝑅𝑅𝑅"# + 𝑔𝑔)𝑈𝑈. 

 
 

𝑑𝑑𝑑𝑑𝑎𝑎!"

𝑑𝑑𝑑𝑑
= (𝐼𝐼#$ − 𝐼𝐼%&') +	𝑘𝑘()(𝐴𝐴 + 𝑇𝑇) − 

𝑘𝑘*𝑑𝑑𝑎𝑎!"(𝑅𝑅 + 𝑈𝑈), 
 
 

𝐹𝐹(𝑑𝑑) = 	𝐿𝐿&(𝑔𝑔 + 𝑈𝑈)6𝐹𝐹7 − 𝜂𝜂𝜂𝜂(𝑑𝑑): 
 
 

𝜂𝜂 =
𝐹𝐹7
𝜂𝜂'

 

 
 

𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑅𝑅 − (𝑘𝑘$% + 𝑓𝑓)𝑑𝑑∗ + 𝑔𝑔𝑔𝑔∗ = 0, 
 
 

𝑑𝑑∗ − (𝑔𝑔 + 𝑘𝑘$% 	)𝑔𝑔∗ +	𝑘𝑘!𝑅𝑅𝑅𝑅"#∗𝑈𝑈∗ = 0, 
 
 

𝑘𝑘$%𝑔𝑔∗ − (𝑘𝑘!𝑅𝑅𝑅𝑅"#∗ + 𝑔𝑔)𝑈𝑈∗ = 0, 
 
 

(𝐼𝐼)* − 𝐼𝐼+',) + 	𝑘𝑘$%(𝑑𝑑∗ + 𝑔𝑔∗) − 𝑘𝑘!𝑅𝑅𝑅𝑅"#∗(𝑅𝑅 + 𝑈𝑈∗) = 0. 
 
 

(𝐹𝐹- +	𝑅𝑅-)(𝜂𝜂(𝑑𝑑) +	𝑏𝑏-) = (𝐹𝐹. +	𝑅𝑅-)	𝑏𝑏- . 
 
 

𝐹𝐹- =
𝑔𝑔/𝐹𝐹. >1 − 𝜂𝜂(𝑑𝑑)

𝜂𝜂'
@

(𝑔𝑔/ + 𝑔𝑔0𝜂𝜂')
 

 

(12)

Landesberg et al. [17] accommodated the terms such 
that Equation (11) is expressed in the form of Hill’s 
force-velocity ratio equation [18], where Fh is the force in 
the stationary state:

and Fm is the force generated by the muscle during 
isometric contraction:

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  

 
 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹' + (𝐹𝐹( − 𝐹𝐹')𝑒𝑒%(,!-,".#)0 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝑑𝑑234𝑓𝑓𝐿𝐿"𝐴𝐴(𝑡𝑡) 

 
 

𝑑𝑑234 =
𝐹𝐹'𝑉𝑉*

𝜌𝜌(𝑔𝑔( + 𝑔𝑔)𝑉𝑉*)
 

 
 

(𝐼𝐼56 − 𝐼𝐼&*0)
𝐴𝐴𝐴𝐴 =

−0.9916𝑠𝑠 + 406.4
𝑠𝑠7 + 7.71𝑠𝑠 + 1055 

 

(13)

with Tro*=R+A*+T*+U*, kl=kLCa2+*, where ah and bh are 
Hill’s parameters, defined as follows:

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  

 
 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹' + (𝐹𝐹( − 𝐹𝐹')𝑒𝑒%(,!-,".#)0 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝑑𝑑234𝑓𝑓𝐿𝐿"𝐴𝐴(𝑡𝑡) 

 
 

𝑑𝑑234 =
𝐹𝐹'𝑉𝑉*

𝜌𝜌(𝑔𝑔( + 𝑔𝑔)𝑉𝑉*)
 

 
 

(𝐼𝐼56 − 𝐼𝐼&*0)
𝐴𝐴𝐴𝐴 =

−0.9916𝑠𝑠 + 406.4
𝑠𝑠7 + 7.71𝑠𝑠 + 1055 

 

(14)

and

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  

 
 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹' + (𝐹𝐹( − 𝐹𝐹')𝑒𝑒%(,!-,".#)0 
 
 

𝑑𝑑𝑑𝑑
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(15)

Upon initiating a movement, the muscle passes from 
the relaxed to the contracted state, where the muscle 
fibers change their length by contracting, thus produc-
ing movement (isotonic contraction).

The velocity generated by the sarcomere in the iso-
tonic state is given by the expression [17]:

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*
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(16)

where Vh is the velocity in the stationary state, 
defined as:

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝑑𝑑234𝑓𝑓𝐿𝐿"𝐴𝐴(𝑡𝑡) 

 
 

𝑑𝑑234 =
𝐹𝐹'𝑉𝑉*

𝜌𝜌(𝑔𝑔( + 𝑔𝑔)𝑉𝑉*)
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(17)

V0=V(0) (in μm/s) is the initial condition (in t=0) of the 
velocity of the shortening of the sarcomere. Upon inte-
grating Equation (16), we obtain the change in the 
length of the shortening of the sarcomere, given by the 
expression [17]:

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  

 
 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹' + (𝐹𝐹( − 𝐹𝐹')𝑒𝑒%(,!-,".#)0 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝑑𝑑234𝑓𝑓𝐿𝐿"𝐴𝐴(𝑡𝑡) 

 
 

𝑑𝑑234 =
𝐹𝐹'𝑉𝑉*

𝜌𝜌(𝑔𝑔( + 𝑔𝑔)𝑉𝑉*)
 

 
 

(𝐼𝐼56 − 𝐼𝐼&*0)
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(18)

This equation makes it possible to obtain the length 
of a sarcomere (SL) at a certain time as: SL(t)= SL(0)+L(t), 
where SL(0) is the initial length of the sarcomere. In 
addition, the length of the overlap required to calcu-
late the force generated by the sarcomere, defined in 
Equation (5), is obtained from the length of the sarco-
mere, given by the following ratio [19]:

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  

 
 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹' + (𝐹𝐹( − 𝐹𝐹')𝑒𝑒%(,!-,".#)0 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝑑𝑑234𝑓𝑓𝐿𝐿"𝐴𝐴(𝑡𝑡) 

 
 

𝑑𝑑234 =
𝐹𝐹'𝑉𝑉*

𝜌𝜌(𝑔𝑔( + 𝑔𝑔)𝑉𝑉*)
 

 
 

(𝐼𝐼56 − 𝐼𝐼&*0)
𝐴𝐴𝐴𝐴 =
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(19)

where Lφ is the length of the filaments of actin and 
myosin in a simple overlap during contraction. 
Likewise, the force generated by the sarcomere due to 
isotonic contraction at a certain moment (also called 
transitory force) is given by the expression [17]:

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  

 
 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹' + (𝐹𝐹( − 𝐹𝐹')𝑒𝑒%(,!-,".#)0 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝑑𝑑234𝑓𝑓𝐿𝐿"𝐴𝐴(𝑡𝑡) 

 
 

𝑑𝑑234 =
𝐹𝐹'𝑉𝑉*

𝜌𝜌(𝑔𝑔( + 𝑔𝑔)𝑉𝑉*)
 

 
 

(𝐼𝐼56 − 𝐼𝐼&*0)
𝐴𝐴𝐴𝐴 =
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(20)

where F0=F(0) is the initial condition (at t=0) of the 
force generated by the sarcomere.

Energy consumed
As mentioned in the description mathematical model 

of contraction of a sarcomere defined by Equations (1)-
(4), the number of crossbridges that pass from the 
weak to the strong conformation is represented by the 
variable A(t); that is, the troponin molecule linked to 
Ca2+(t) each one of which corresponds to a crossbridge. 



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | Vol. 42 | No. 2 | MAY - AUGUST 2021112

The crossbridges in the strong (force-generating) con-
formation are represented by the variable T(t). Each 
crossbridge in the strong conformation requires a unit 
of ATP hydrolysis and the release of phosphate, in 
order to pass from the weak to the strong conforma-
tion [20] [21]. Hence, the rate of energy consumption 

 is determined by three elements: (1) the variable 
A(t); (2) the transition rate of the crossbridges from the 
weak to the strong conformation (f); and (3) the 
length of the overlap (Ls). This process is modeled by 
the next differential Equation (15):

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  

 
 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹' + (𝐹𝐹( − 𝐹𝐹')𝑒𝑒%(,!-,".#)0 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝑑𝑑234𝑓𝑓𝐿𝐿"𝐴𝐴(𝑡𝑡) 

 
 

𝑑𝑑234 =
𝐹𝐹'𝑉𝑉*

𝜌𝜌(𝑔𝑔( + 𝑔𝑔)𝑉𝑉*)
 

 
 

(𝐼𝐼56 − 𝐼𝐼&*0)
𝐴𝐴𝐴𝐴 =
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(21)

where EATP is the free energy released from the hydro-
lysis of a simple ATP molecule, given by [15]

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
𝑘𝑘$

𝑘𝑘$ + 𝑘𝑘%$
+ (

𝑓𝑓
𝑔𝑔& + 𝑓𝑓+, 

 
 

𝑎𝑎' =
𝜂𝜂𝐹𝐹!𝑏𝑏'
𝐹𝐹'

 

 
 

𝑏𝑏' =
𝑔𝑔( + 𝑓𝑓
𝑔𝑔)

 

 
 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉'
1 + 𝑉𝑉*(𝑉𝑉( − 𝑉𝑉')

𝑉𝑉'(𝑉𝑉* − 𝑉𝑉()
𝑒𝑒%(,!-,".#)0

1 + 𝑉𝑉( − 𝑉𝑉'
𝑉𝑉* − 𝑉𝑉(

𝑒𝑒%(,!-,".#)0
 

 
 

𝑉𝑉' =
𝑔𝑔((𝐹𝐹! − 𝐹𝐹)

(𝑔𝑔) + 𝐿𝐿"%))𝐹𝐹 + 𝑔𝑔(𝐹𝐹!𝑉𝑉*%)
 

 
 

𝐿𝐿(𝑡𝑡) = 𝑉𝑉'𝑡𝑡 +
𝑉𝑉( + 𝑉𝑉'
𝑔𝑔( + 𝑔𝑔)𝑉𝑉*

91 − 𝑒𝑒%(,!-,".#)0: 

 
 

𝐿𝐿" =
𝑆𝑆𝐿𝐿 − 𝐿𝐿1

2  

 
 

𝐹𝐹(𝑡𝑡) = 𝐹𝐹' + (𝐹𝐹( − 𝐹𝐹')𝑒𝑒%(,!-,".#)0 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝑑𝑑234𝑓𝑓𝐿𝐿"𝐴𝐴(𝑡𝑡) 

 
 

𝑑𝑑234 =
𝐹𝐹'𝑉𝑉*

𝜌𝜌(𝑔𝑔( + 𝑔𝑔)𝑉𝑉*)
 

 
 

(𝐼𝐼56 − 𝐼𝐼&*0)
𝐴𝐴𝐴𝐴 =
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(22)

where ρ= 1/g1.

Model of Ca2+ release
Finally, we propose an adaptation of the contraction 

model defined by Landesberg et al. and represented by 
Equations (1)-(4) [11]. As it was mentioned before, the 
model proposed by Landesberg reproduces the dynam-
ics of contraction of a sarcomere of cardiac muscle; 
although both cardiac and skeletal produce contrac-
tion, their activation mechanisms are different. In the 
cardiac muscle, the contraction is carried out automat-
ically as long as there is Ca2+ in the sarcoplasm; this is, 
there exist a constant influx of Ca2+ currents, then the 
term (Iin-Iout) in Equation (4) is constant. The activation 
mechanism changes in skeletal muscle, where the con-
traction is activated when an action potential pulse 
arrives at the neuromuscular junction and this gener-
ates a variation of Ca2+ currents, that is, the term (Iin-Iout) 
in Equation (4) is a time-varying function depending 
on the action potential. For this reason, to reproduce 

the contraction in a sarcomere of skeletal muscle, the 
force that it generates and, finally, the energy that it 
consumes during contraction, it is necessary to have a 
mathematical model to emulate the dynamic response 
of Ca2+ currents (Iin-Iout) caused by the depolarization of 
the sarcolemma in response to the arrival of the action 
potential (AP) at the neuromuscular junction, and then 
producing voluntary contraction of skeletal muscle.

For this end, we propose an activation scheme based 
on a mathematical model to reproduce the input-out-
put response of the dynamics of calcium release in the 
sarcoplasm. Figure 5 shows this proposal in which the 
objective is to have a dynamic model based on a trans-
fer function, called model of Ca2+ release, whose out-
put is the calcium currents through the membrane, 
this term (Iin-Iout).

FIGURE 5. Activation scheme of the mathematical
model of contraction of a sarcomere of skeletal muscle. 

The scheme is based on a transfer function with input
data form a train of pulses (AP), the output data 

correspond to the total Ca2+ current (Iin-Iout) reported
by Beuckelmann et al. [22].

In turn, this term is the one that initiates the contrac-
tion cycle defined by the model defined in Equations 
(1)-(4) represented by the right block of Figure 5 
(mathematical model of contraction). The input of the 
model of Ca2+ release is a pulse generator emulating 
the AP, illustrated by the left block of Figure 5. Thus, 
the problem is to compute an input-output model of 
Ca2+ release based on available data of AP and (Iin-Iout).

The input data of the model of Ca2+ release is repre-
sented by a train of pulses that emulates the AP which 
reaches the neuromuscular junction. Regarding output 
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data, existing literature has no separate measurements 
of the currents of Ca2+ entering (Iin) or leaving (Iout) the 
sarcoplasm, but experimental studies have measured 
the total influx of Ca2+ current, that is (Iin-Iout). Thus, the 
output data used to compute the model of Ca2+ release 
are experimental measurements of the total Ca2+ cur-
rent (Iin-Iout) reported by Beuckelmann et al. [22].

RESULTS AND DISCUSSION
To devise the model that reproduces the dynamics of 

total Ca2+ current in the sarcoplasm, the diagram in 
Figure 5 posits a problem of system identification. To 
resolve it, we set out from the disposition of input and 
output data from the process analyzed. Thus, we pro-
pose that the input data take the form of a train of 
pulses of unitary amplitude with a work cycle of 0.5, to 
emulate the wave form of the AP that reaches the ter-
minal of the neuromuscular union. The output data 
(Iin-Iout) are taken from Beuckelmann et al. (see Figure 
5 in [22]). Based on a set of points in the referenced fig-
ure, we obtained a sufficient series of data (1000 sam-
ples) by adjusting a polynomic curve using MATLAB’s® 
polyfit library. Based on observations of the input and 
output data, we propose that the mathematical model 
take the form of a transference function. To define the 
order of the polynomials of the function, and their 
parameters, we employed MATLAB’s® ident systems 
identification tool, which resulted in a second-order 
transference function that defines the dynamics of the 
total Ca2+ current in the sarcoplasm after the arrival of 
the stimulus of the action potential at the neuromus-
cular union:

𝐹𝐹! = 𝐿𝐿"𝑇𝑇𝑇𝑇𝑜𝑜∗𝐹𝐹' (
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(23)

The percentage of fit between the proposed model and 
the experimental data was 84%. Using Equation (23) we 
can calculate (Iin-Iout) and substitute it in Equation (4) of 
the mathematical model of contraction to obtain the 
elements required to numerically simulate the dynam-

ics of contraction of the sarcomere defined by the sys-
tem of Equations (1)-(4). The numerical solution was 
elaborated using MATLAB® and Simulink®. Initial con-
ditions were: A(0)=0, T(0)=0, U(0)=0 and Ca2+(0)=0. The 
numerical method applied to solve the differential 
equations was the Runge-Kutta approach, available in 
MATLAB’s® ode45 library. The solution interval was 0-3 
seconds, and the integration step was 0.0001 s. The 
nominal parameters used to solve the system of the 
dynamics of muscular contraction, to calculate the 
force-velocity relation, and to obtain the energy con-
sumed during contraction, are summarized in Table 1.

TABLE 1. Values of the nominal parameters used 
in the numerical simulations.Tabla 1 

 
Parameter Value Reference 

Dynamics of contraction of the sarcomere 

kL 200 µM-1s-1 [15] 

k-l 20 s-1 [19] 

f0 50 s-1 [15] 

f1 2.5 µM-1s-1 [15] 

g0 10 s-1 [15] 

g1 35 µM-1s-1 [15] 

Force-velocity radio 

𝐹𝐹" 2 pN [23] 

η 0.28 pNs/µm [17] 

Tro 53 mM [15] 

Vu 7 µm/s [19] 

V0 0 µm/s [19] 

SL(0) 2.2 µm [15] 

𝐿𝐿! 0.8 µm [19] 

Energy consumed 

EATP 1.92 mM [17] 
 

Figure 6 presents the results of the current of Ca2+ in 
the sarcoplasm in response to three nervous impulses 
that reached the neuromuscular junction. These 
results are considered reliable for simulating the input 
of Ca2+(t) to the model (1)-(4) since the basal Ca2+ con-
centration in the cells is approximately 0.1 μM [20]. 
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Figure 7 shows the solution of the dynamic model of 
muscular contraction of the system of Equations (1)-
(4) using the Ca2+ current (Iin-Iout) obtained from 
Equation (23).

FIGURE 6. Currents of Ca2+ in the sarcoplasm
(Iin-Iout) when three impulses of AP are generated
in the activation scheme of Figure 5 considering

the model of Ca2+ release in Equation (23).

FIGURE 7. Numerical solution of the mathematical
model of troponin units in the activation stage of

the crossbridges of the contraction cycle.
A(t) and T(t) are the troponin units during the strong 
conformation of crossbridges; U(t) are the troponin

units in the strong conformation of crossbridges
without associated Ca2+.

Figure 8 presents the force generated by the sarco-
mere during a 3-second period, determined by 
Equation (20).

FIGURE 8. Force generated by the sarcomere of skeletal 
muscle during activation of three action potentials.

Figure 8 shows that when Ca2+ levels are high (see 
Figure 6), the force is greater and remains constant 
during the 0.5-second period in which Ca2+ is 0.1 μM. 
Likewise, the variables A(t), T(t) and U(t) tend to return 
to their initial values in that period, as Figure 7 shows. 
Figure 9 indicates the shortening velocity obtained 
from the simulation of Equation (16).

FIGURE 9. Shortening velocity of the sarcomere 
of skeletal muscle calculated by Equation (7) 

and considering three action potentials 
for the activation of muscular contraction.
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Figure 10 displays the variation in the length of the 
sarcomere during each contraction. Shortening de- 
pends on the input of Ca2+, since the greater the con-
centration of Ca2+ the greater the shortening in the 
overlap region. During the period from 0.5-1 s, no shor- 
tening is produced, and the sarcomere remains in its 
resting position because during that period Ca2+ is at 
its basal value.

FIGURE 10. Shortening of the sarcomere 
of skeletal muscle during contraction.

Figure 11 shows the force-length ratio of the shorten-
ing of the sarcomere; that is, the muscle’s capacity to 
generate force regardless of the degree of shortening 
[24] [25]. The amount of tension generated by the muscle 
depends on how much it can contract or shorten 
during stimulation.

The orange line represents the result of the simula-
tion by Equations (17) and (18). Figure 11 compares 
the results to the simulation reported in Tortora et al. 
[7], who proposed only minimum and maximum values 
of the force generated by the sarcomere (image in 
green). A sarcomere in a relaxed state measures 2-2.2 
μm. Figure 11 shows that the maximum force occurs 
when the sarcomere returns to its normal position (at 
rest). The normal length range of the sarcomere during 
the contractile cycle runs from 1.6-2.6 μm. Figure 11 
also reveals that the force which decreases the length 
of the sarcomere is outside the normal range; that is, 
the length exceeds the value at rest (eccentric contrac-
tion), as occurs in extreme contractions.

Figure 12 presents the force-velocity ratio. Clearly, 
during the velocity of shortening (V(t)>0) –that is, con-
traction– the force tends to remain at its initial or min-
imum value, before increasing during relaxation.

FIGURE 11. Force-length ratio of the shortening 
of the sarcomere of skeletal muscle (orange line).

FIGURE 12. Force-velocity ratio of the sarcomere
of skeletal muscle. The orange line represents

the force generated during contraction, in terms of
the velocity of the shortening of the sarcomere.

This is because the force is generated in the stage of 
the change from the strong to weak conformation of 
the crossbridges when the union and separation of the 
molecules of myosin and actin is strong. This coin-
cides with the force-shortening ratio.
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Finally, the energy consumed by the sarcomere can 
be seen in Figure 13. The negative results are due to 
the sign of the velocity of shortening. Here, after 0.5 s, 
the rate of consumption is small and does not vary, 
since in this period the Ca2+ remains in its basal state, 
and there is no contraction.

FIGURE 13. Total energy consumed by a sarcomere 
of skeletal muscle upon receiving three action potentials 

at the neuromuscular union to activate the contraction 
cycle and, hence, the performance of mechanical work.

CONCLUSIONS
The study of the mechanical properties of the sarco-

mere of skeletal muscle based on the biological sys-
tems paradigm is interesting for characterizing and 
quantifying the dynamic behavior of muscle cells. 

Moreover, the ratio between the mechanical response 
and the energy consumed by the sarcomere can pro-
vide valuable information on the efficient use of 
energy in cells. The results obtained from the numeri-
cal simulations of force are considered acceptable 
since they coincide with the maximum and minimum 
ranges of force generated by a sarcomere, according to 
experimental values reported in the literature [26] [27]. 
The availability of experimental data on the maxi-
mum and minimum force that the sarcomere can per-
form is a disadvantage for the validation of the dynamic 
response of the proposed model.

Therefore, to overcome this disadvantage, experi-
mental studies at sarcomere level must be carried out 
to account with data to validate the dynamical behav-
ior of force generated by the sarcomere. The findings 
on the length of the sarcomere during the contractile 
cycle are also deemed acceptable. Experimental 
reports indicate that the length of a sarcomere at rest 
phase is 2-4 μm, but when this exceeds the normal 
state of relaxation, during an extreme contraction, 
length may decrease to just 1 μm [7].

Figures 6, 7 and 8 show that when the levels of Ca2+ 
input are high, the force generated is greater, but that 
when Ca2+ is at its basal value, the force remains at its 
minimum value. Once the model of energy consump-
tion at the level of sarcomere is fully resolved, future 
work will focus on modeling the coupling rules 
between sarcomeres that allows the mechanical 
response of a complete muscle fiber, and on proposing 
rules for the recruitment of fibers to model the 
mechanical response and energy consumption of a 
complete muscle. The challenge seems achievable, 
since currently studies have been reported addressing 
this problem of inter-scale modeling, for example, the 
one reported by Marcucci et al. [28], where they propose 
a scaling from muscle fiber to full muscle just consid-
ering the mechanical response, without considering 
energy consumption. 

The significance of solving the mathematical model-
ing of energy consumption by skeletal muscle would 
be to have quantitative methods, rather than indirect 
estimations, of a person's energy consumption. This 
could be of relevant importance in pathologies related 
to energy management in the human body, from over-
weight, obesity, metabolic syndrome and diabetes. In 
addition to the representation in mathematical models 
of energy consumption, it would allow the design of 
patient-oriented energy consumption optimization 
schemes that could be useful, for example, for 
high-performance athletes. 
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