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ABSTRACT 
In this paper, we present a novel approach to training classifiers in a speller based on P300 potentials. The method, 
based on bootstrapping, is a known strategy for generating new samples, but it is rarely used in neurosciences. The 
study first demonstrates how the performance of the classification task (detecting P300 and Non-P300 classes) 
could be sub-optimal in the traditional approach. Then, a new method for taking new samples from the training 
data is proposed. Each classifier is re-trained using balanced sub-groups of individual P300 and non-P300 samples. 
Data were collected from 14 healthy subjects, using 16 electroencephalography channels. These were filtered in 
bandpass and decimated. Subsequently, four linear classifiers were trained using the traditional method followed 
by the proposed one, with 1000, 2000 and 3000 samples per class. Results indicate an improvement in the accuracy 
and discrimination capacity of discriminative classifiers with the proposed method, maintaining the same statisti-
cal properties between the training and test data. By contrast, for generative classifiers, there is no significant diffe-
rence in the results. Therefore, the proposed method is highly recommended for training discriminative classifiers 
in spell-based P300 potentials.
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RESUMEN
Este artículo presenta un método novedoso para entrenar clasificadores en un deletreador basado en potenciales 
P300. El método, basado en bootstrapping, es una estrategia conocida para generar nuevas muestras pero escasa-
mente implementado en neurociencias. El estudio muestra cómo el rendimiento de la detección de P300 (frente 
a No-P300) puede resultar sub-óptimo usando el método tradicional. Luego, se propone un nuevo método donde 
se toman nuevas muestras a partir de los datos de entrenamiento. Con ellas, se re-entrena al clasificador usando 
sub-grupos equilibrados de muestras individuales P300 y No-P300. Los datos se recolectaron de 14 sujetos sanos, 
usando 16 canales de electroencefalografía. Estos fueron filtrados en pasa-banda y diezmados. Posteriormente, cua-
tro clasificadores lineales fueron entrenados, usando primero el método tradicional y después el método propuesto, 
con 1000, 2000 y 3000 muestras por clase. Los resultados muestran una mejoría en la precisión y la capacidad de 
discriminación de clasificadores discriminativos con el método propuesto, manteniendo las mismas propiedades 
estadísticas entre los datos de entrenamiento y los de prueba. En contraste, para los clasificadores generativos, no 
existe una diferencia significativa en los resultados. Por consiguiente, el método propuesto es altamente recomen-
dado para entrenar clasificadores discriminativos en deletreadores basados en potenciales P300. 

PALABRAS CLAVE: Deletreador P300, clasificador lineal, bootstrapping, entrenamiento, promediado.
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INTRODUCTION
One of the most interesting applications for Brain–

Computer Interfaces (BCIs) is the P300 speller, pro-
posed in 1988 by Farwell and Donchin [1] and re-in-
vented and improved in many other studies [2] [3] [4] [5]. A 
commonly used speller consists of an arrangement of 
characters uniformly distributed in rows and columns, 
displayed in a screen. Rather than displaying a single 
character, the speller randomly highlights some char-
acters organized in rows or columns. When the user 
watches the desired character in a highlighted row or 
column, the brain generates a P300 signal, related to 
memory and the attention processes in the brain [6]. 

A typical P300 speller reads signals from the brain, 
using electroencephalography (EEG), and tries to dis-
criminate between P300 and non-P300 signals. When 
a P300 signal is detected in a specific row and column, 
the speller takes the corresponding character and dis-
plays it on the screen. The described speller has been 
used for developing online BCI applications [5] [7] [8] [9]. 
Note that the target of the classification is to identify 
the row and the column that corresponds to a charac-
ter from P300 signals rather than to classify P300 and 
non-P300 signals. 

As the P300 speller is based in the oddball paradigm, 
the number of events is unbalanced; that is, the num-
ber of non-P300 trials is larger than the number of P300 
trials [10]. Both unbalanced classes and small datasets 
could affect the performance measurement of a classi-
fier [11] [12]. To get a more confident performance, the 
number of samples by class should be balanced. 

Some researchers have proposed discarding samples 
randomly from the class with more members to reach 
the desired 1:1 proportion [13] [14] [15] [16] [17], trying to pre-
serve as many samples as possible in the training stage 
[18]. This solves the problem of unbalanced classes at 
the expense of decreasing the number of available 
samples. 

By contrast, there are mainly three approaches to 
processing the input features to a classifier for a P300 
speller. The first one consists of training and evaluat-
ing the classifier in single trials [3] [8] [19]. The second 
approach makes use of averaged data over a fixed 
number of trials, for training and testing the system [5] 

[7] [9] [13] [16] [20] [21] [22]. The third approach consists of train-
ing the classifier in single trials, and evaluating the 
classifier with averaged trials [14] [17] [23] [24]. 

The last approach (called the traditional approach in 
this work) is commonly used in the literature. It suf-
fers from an important problem of statistical proper-
ties of signals during the training stage being different 
from those of signals used during the testing stage. 
This violates the assumption that training and testing 
data should come from the same population, for any 
classification problem [25]. Consequently, the classifier 
has reduced capacity to differentiate between P300 
and non-P300 trials. 

Different statistical properties of training and testing 
signals carry another problem. The estimation of the 
posterior probabilities from probabilistic classification 
approaches would not be correct.

This issue is critical for P300 applications that make 
use of language models [7] [26] [27] [28] since the posterior 
probability of the output of the classifier is typically 
combined with the probability of letters in a particu-
lar language to determine the most likely sequence of 
letters.

In addition, since P300 and non-P300 classes are 
unbalanced, performance measures, such as the accu-
racy, tend to be biased. This happens because the clas-
sifier assigns most of the samples to the class with 
higher prior probability [12]. Some studies have pro-
posed use of the Cohen's kappa index κ as an alterna-
tive measure of performance that does not suffer from 
the issues previously described [29] [30] [31]. 
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The classification problem could be seen from one of 
two possible points of view. The first one establishes 
that the classification problem is typically divided into 
two stages. The inference stage tries to learn a probabi-
listic model of the data given the class. Then, the deci-
sion stage implements the theorem of Bayes to deter-
mine the class of each data. A classifier implemented 
in this manner is known as a generative classifier [25]. 
Linear discriminant analysis (LDA) classifiers are gen-
erative because they mostly assume Gaussian distri-
butions in the data [25] [32]. 

The second point of view determines that a class 
could be directly mapped from the data. The model 
comes from either a probabilistic discriminant model of 
the class, given the data, or a deterministic discrimi-
nant function that directly maps the data to the class. 
A classifier that uses the latter approach is a discrimi-
native classifier [25]. Logistic regression and the sup-
port-vector machine (SVM) are examples of discrimina-
tive classifiers that use a probabilistic model and a 
discriminant function, respectively.

In this work, a method for training linear classifiers in 
the identification of P300 potentials is presented. 
First, we demonstrate that the traditional approach 
could lead to misinterpretation of the actual perfor-
mance of these classifiers, as the performance metric 
based on accuracy is not well suited for the cases of 
unbalanced classes. Second, a bootstrapping approach 
is presented as a method for obtaining effective train-
ing of linear classifiers. Results indicate a significant 
improvement using the proposed method for detec-
tion of P300 potentials.

METHODS

Experiment and dataset description
The experiment consists of declaring one of 36 possi-

ble characters (26 letters and 10 digits). Each subject 
observed a 6 × 6 matrix of characters in a screen, 

focusing the attention on the character that was pre-
scribed above the matrix speller. For each character, 
the matrix was displayed for a 2.5 s period, and all 
characters had the same intensity. Afterward, each 
column and each row were randomly intensified for 
100 ms, followed by a blank period of 75 ms after each 
intensification step. There were 12 different row/col-
umn stimuli by round and 15 rounds of intensifica-
tions by character, for a total of 31.5 s. Each subject 
spelled 32 characters in total. Fourteen healthy sub-
jects participated in the study.

The dataset contains EEG signals that were recorded 
using a cap embedded with 64 electrodes, according to 
the modified 10–20 system [33]. All electrodes were ref-
erenced to the right earlobe and grounded to the right 
mastoid. The raw EEG signal was bandpass-filtered 
between 0.1 and 60 Hz and amplified with a 20000X SA 
Electronics amplifier [23]. Each experiment took into 
account only 16 EEG channels, motivated by the study 
presented by Krusienski et al. [23]: F3, Fz, F4, FCz, C3, Cz, 
C4, CPz, P3, Pz, P4, PO7, PO8, O1, O2, and Oz. Each 
channel is sampled at a rate of 240 Hz for one subject 
and 256 Hz for the others. All aspects of the data collec-
tion and experimental control were controlled by the 
BCI2000 system [22]. Two datasets were acquired for 
each subject: One was used for training, and the other 
was implemented for testing. Both databases were 
taken on different days. All datasets were obtained 
from the Wadsworth Center, NYS Department of Health.

Data processing
Data were pre-processed using bandpass filtering, 

separation in trials and decimation. Then, all channels 
were concatenated in a single vector. Depending on the 
type of training, data were taken from either the input 
of a classifier or a new population for obtaining new 
samples. In the latter case, a determined number of N 
averaged samples were taken. Afterward, the training 
datasets were inputs of a linear discriminant classifier. 
Details are explained in the following subsections.
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Pre-processing
For each subject, data were bandpass-filtered between 

1 and 20 Hz using a fourth-order Butterworth filter. 
The chosen bandwidth eliminates the trend of each 
channel and allows decimation of the signal later, by 
preventing the aliasing. Afterward, data were sepa-
rated in trials by taking a window of 600 ms after the 
presentation of each visual stimulus (the highlight of 
one row or column), as proposed in a previous work [26]. 
Signals from all channels were decimated by a factor 
of 4 and concatenated in a single feature vector. The 
factor was chosen because frequencies higher than 
that of the beta band reflect unrelated neural pro-
cesses to P300 in awareness [34]. In addition, the maxi-
mum analog frequency of the EEG signal is 60 Hz, as 
seen before [23]. For the averaged process, signal seg-
ments were averaged across repetitions, up to the 
maximum number of repetitions by character (15). 
Concatenated channels were used as the inputs of the 
classifier since they are used in the traditional method, 
as described in [23].

Re-sampling of training samples
In the traditional approach, the classifier is trained 

with single trials and tested on averaged trials, to 
increase the signal-to-noise ratio. Note that besides 
the issue of having unbalanced data, the statistical 
properties of the training data do not match those of 
the testing data. 

To avoid these problems, we implement an approach 
based on bootstrap re-sampling (bootstrapping) [32] [35]. 
From the training trials, a new dataset is obtained by 
re-sampling N trials with replacement, where N is the 
number of trials used to get an averaged sample. The 
process is repeated M times by class, to get M averaged 
samples by class. The new dataset is used to train a 
classifier such that 1) the number of samples is equal 
for each class in the training set, and 2) the statistical 
properties of training and testing data remain compa-
rable. It is worth noting that in practical scenarios, the 

number of averaged trials may not be defined a priori. 
However, this procedure can be followed for any value 
of N. Additionally, it does not imply any additional sig-
nificant computational load, as the re-sampling is 
computationally inexpensive. 

In this work, we used the training dataset as a new 
population to implement the re-sampling. We varied 
the number of repetitions (single trials) used to get a 
new averaged trial, with N = {2, 3, ..., 14, 15}, because 
15 is the maximum number of repetitions available by 
character. Then, we repeated the process M times by 
class. Single trials were not used because re-sampling 
only allows obtaining repeated samples, decreasing 
the variability of the training samples in the men-
tioned case.

We tested a classifier trained with one of the following 
kinds of samples: unbalanced classes with single trials 
and balanced classes by re-sampling M = {1000, 2000, 
3000} averaged trials by class. The value of M is chosen 
according to the statistical significance obtained in the 
results, for all the classifying algorithms. For all cases, 
averaged trials were used as testing data.

Classifiers
In the literature, the classification problem involves 

identifying the row and the column that corresponds 
to a character of the speller. In the present study, the 
target of the classification is to determine whether a 
signal is P300 or not. For aiming to the goal, we imple-
mented four classifying algorithms in the study: step-
wise linear discriminant analysis (SWLDA), Bayesian 
linear discriminant analysis (BLDA), support-vector 
machine with a linear kernel (LSVM) and logistic 
regression (Log Reg). While LDA-based algorithms are 
generative classifiers, LSVM and Log Reg lies in the 
category of linear discriminative classifiers [25] [36]. The 
results presented are based on the test datasets, 
which are not seen by any of the implemented classi-
fiers during the training procedure. 
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For discriminative classifiers, it is necessary to choose 
the value of a regularization factor C. A four-fold 
cross-validation process is implemented with the 
training dataset, to get the best value of C. The number 
of values tested for C was 25, all located between 0.01 
and 1. After this procedure, the final classifier is 
trained using the whole training dataset and the cho-
sen value of C. The process is repeated by each user 
and each type of training samples [36].

Stepwise LDA
The traditional approach implements a modified ver-

sion of LDA as the classifier, where a stepwise regres-
sion is used before the classification task [23]. The clas-
sifier is known as SWLDA. Unlike other LDA-based 
classifiers, this classifier chooses the coefficients of 
the model regression iteratively, according to a statisti-
cal criterion [37]. As a result, the model obtained is more 
compact than the least-squares-based regression. The 
study implements the stepwise regression included in 
the Statistical and Machine Learning Toolbox for 
MATLAB®. Additional details of SWLDA can be found 
in [38].

Bayesian LDA
When the coefficients of the model implemented for 

LDA are chosen according to Bayesian criteria, an LDA 
classifier based on Bayesian interpolation (BLDA) is 
obtained. According to the literature, the algorithm 
gives better results than the ordinary LDA or, even, 
SWLDA [39] [40]. Like the SWLDA classifier, the coeffi-
cients are obtained by iteration. However, the statisti-
cal criteria for choosing corrections are based on the 
Bayes Rule and are not added or removed from the 
model [41]. The algorithm implemented in the study 
and further details of BLDA can be obtained from [39].

Linear SVM
Support-vector machine (SVM)-based classifiers have 

been implemented in several previous studies related 
to BCIs, including P300 spellers [14] [15] [20] [42] [43]. In this 

work, a linear kernel support-vector machine was 
implemented as the classifier with the LIBSVM Toolbox 
for MATLAB® [44], for each subject. The reader is 
encouraged to see [45] for a wide list of studies imple-
menting SVM in BCIs. 

Logistic Regression
Unlike the L-SVM, logistic regression-based classifi-

ers have been implemented in fewer works related to 
BCIs [46] [47]. It is a member of the family of log-linear 
models, implemented in discriminative classifiers [25] 

[32]. In the present study, the classifier was imple-
mented with the UGM Toolbox for MATLAB® [48], for 
each subject. Further details about Logistic Regression 
are found in [25].

Performance metrics

Accuracy
A common measure of performance used for classifi-

cation is the accuracy. Accuracy is defined as a metric 
of the closeness between measured or predicted val-
ues and their corresponding true values [49]. A measure 
commonly used for the accuracy, for classification 
problems with M_c classes, is defined by using the 
trace of a confusion matrix H [29] as shown indicated in 
Equation ( 1 ):
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Where where Ns is the total number of samples 
entered to the classifier, and trace(H) is the number of 
samples correctly classified. Accuracy varies from 0 to 
1, where 1 gives represents a perfect classification. 

Since the definition of accuracy is closely related to 
the definition of the binomial distribution 𝓑(Ns, p0) 
with success probability p0 and number of trials Ns, p0 
can be approximated to a normal distribution with the 
standard deviation defined in Equation ( 2 ):
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However, high accuracy does not always mean the 
classifier has high performance. This is true when the 
number of classes is highly unbalanced, as the classi-
fier tends to be biased toward the class with the high-
est occurrence in the dataset. This is known as the 
accuracy paradox [50].

Cohen’s kappa index
A commonly used measure of precision is the Cohen's 

kappa index κ [29] [51] [52]. It is an alternative way of mea-
suring the predictive power of a classifier that relates 
the accuracy with the probability to classify by chance, 
as expressed by Equation (3):
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The numerator is the difference between the accu-
racy and the expected probability to classify correctly 
by chance (pe). The denominator is the difference 
between the maximum accuracy and pe. Consequently, 
κ is defined as the rate of the difference between accu-
racy and pe, and the maximum value of this difference 
is used to determine the difference. The possible val-
ues for κ are within the range of −1 to 1 [53]. A value of 1 
means perfect classification, whereas a value of 0 indi-
cates random assignments between true classes and 
the predicted values. Finally, a value of −1 indicates an 
opposite relationship between the real and predicted 
values. The expected probability pe is defined in the 
Equation (4):
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Where the sum of all elements for an the i-th row ni: 
and the sum of all elements for an the i-th column n:i 
are expressed in Equations (5) and (6) [30]:
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The standard deviation of κ is calculated using 
Equation (7):
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The standard error can be used to build confidence 

intervals and calculate statistical significance when 
accuracy or kappa values are compared.

RESULTS
Results presented here refer to the average perfor-

mance obtained by each classifier, in terms of the 
accuracy and Cohen's kappa index metrics. All metrics 
were obtained from the testing dataset of each subject.

Number of bootstrapped samples
The statistical significance of differences among the 

numbers of bootstrapped samples for averaged train-
ing data was tested by a one-way randomized blocks 
ANOVA using a performance index and a classifier. 
ANOVA was chosen rather than a Student's t-test 
because ANOVA does not take into account the random 
effects of the number of averages and subjects, whereas 
ANOVA does. The number of training data (M) was 
taken as the design variable, and each performance 
index was the output variable. Subjects and the num-
ber of averaged samples by a testing trial were taken as 
randomized blocks. The numbers of samples used 
were M = {1,000, 2,000, 3,000}.

For Log Reg, the ANOVA test does not give any signif-
icant differences among the number of bootstrapped 
samples for neither accuracy nor Cohen’s kappa index 
(accuracy: F = 1.72, p = 0.18; Cohen's kappa index: F = 
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0.51, p = 0.60). In the case of LSVM, there is no statisti-
cal difference in the number of samples (accuracy: F = 
0.92, p = 0.40; Cohen's kappa index: F = 0.02, p = 0.98). 
Similar conclusions are obtained by analyzing the 
results of ANOVA tests for SWLDA (accuracy: F = 0.61, 
p = 0.55; Cohen's kappa index: F = 0.13, p = 0.88) and 
BLDA (accuracy: F = 0.67, p = 0.51; Cohen's kappa 
index: F = 0.39, p = 0.25). Although there is no signifi-
cant difference, most of highest results were obtained 
with M = 2,000 averaged bootstrapped samples. 
Therefore, the chosen number of samples is M = 2,000 
in the remaining sections of the paper.

Type of training samples
The statistical significance of differences among the 

previously described types of training data was tested 
by two procedures. First, a one-way randomized blocks 

ANOVA was performed by metric and classifier. The 
type of training data (traditional or proposed) was 
taken as the design variable. Other parameters are the 
same as those in the previous subsection. Then, a 
Student’s t-test was performed individually for each 
subject, by pooling the metrics and their correspond-
ing standard deviations. The purpose was to estimate 
the significance of the differences between the tradi-
tional method and the proposed one, both at a general 
level and by each subject.

Linear SVM
Figure 1 illustrates the average performance obtained 

by employing the LSVM classifier on each subject and 
type of training data. The ANOVA test gives significant 
differences for both metrics (accuracy: F = 216.92, p < 
0.01; Cohen's kappa index: F = 1380.10, p < 0.01). 
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a) Accuracy

b) Cohen’s kappa index

FIGURE 1. Averaged results of all subjects, for LSVM.

Figure	1	
	

	
	
	

	
	

Figure	2	
	

	
	
	

	
	

a) Accuracy

b) Cohen’s kappa index

FIGURE 2. Averaged results of all subjects, for Log Reg.
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TABLE 1. Averaged metrics by subject, for LSVM.Tabla	1	
	

Subject 
Traditional	Approach Proposed	Method 

Accuracy Kappa Accuracy Kappa 

1 0,95 ± 0.11 0.78 ± 0.33 0.98 ± 0.08* 0.93 ± 0.33* 

2 0.88 ± 0.12 0.43 ± 0.27 0.95 ± 0.10* 0.83 ± 0.33* 

3 0.84 ± 0.13 0.01 ± 0.07 0.90 ± 0.12* 0.55 ± 0.33* 

4 0.84 ± 0.13 0.06 ± 0.18 0.95 ± 0.10* 0.81 ± 0.30* 

5 0.88 ± 0.12 0.36 ± 0.26 0.97 ± 0.08* 0.90 ± 0.30* 

6 0.83 ± 0.13 0.00 ± 0.00 0.84 ± 0.13 0.52 ± 0.27* 

7 0.83 ± 0.13 0.00 ± 0.00 0.87 ± 0.12* 0.48 ± 0.27* 

8 0.83 ± 0.13 0.00 ± 0.00 0.87 ± 0.12* 0.59 ± 0.28* 

9 0.89 ± 0.12 0.43 ± 0.27 0.94 ± 0.10* 0.81 ± 0.29* 

10 0.84 ± 0.12 0.06 ± 0.15 0.94 ± 0.10* 0.79 ± 0.30* 

11 0.85 ± 0.13 0.18 ± 0.22 0.94 ± 0.10* 0.80 ± 0.29* 

12 0.83 ± 0.13 0.00 ± 0.00 0.90 ± 0.12* 0.53 ± 0.28* 

13 0.88 ± 0.12 0.44 ± 0.27 0.81 ± 0.13 0.50 ± 0.26* 

14 0.83 ± 0.13 0.02 ± 0.27 0.90 ± 0.11* 0.59 ± 0.29* 

Average 0.86 ± 0.12 0.20 ± 0.19 0.91 ± 0.11 0.69 ± 0.29 

 
*The difference is highly significant, with a Student’s t-test (p < 0.01). 

Number of samples: 372 for subject 1,504 for the rest. 

	
Tabla	2	

	
Subject 

Traditional	Approach Proposed	Method 

Accuracy Kappa Accuracy Kappa 

1 0.97 ± 0.09 0.88 ± 0.33 0.98 ± 0.09 0.92 ± 0.33 

2 0.92 ± 0.11 0.65 ± 0.29 0.96 ± 0.09* 0.86 ± 0.30* 

3 0.84 ± 0.13 0.03 ± 0.14 0.93 ± 0.11* 0.68 ± 0.29* 

4 0.85 ± 0.13 0.15 ± 0.22 0.95 ± 0.10* 0.84 ± 0.30* 

5 0.91 ± 0.11 0.56 ± 0.29 0.97 ± 0.08* 0.91 ± 0.30* 

6 0.84 ± 0.13 0.05 ± 0.13 0.86 ± 0.12* 0.59 ± 0.27* 

7 0.83 ± 0.13 0.00 ± 0.07 0.88 ± 0.12* 0.51 ± 0.28* 

8 0.83 ± 0.13 0.00 ± 0.07 0.88 ± 0.12* 0.62 ± 0.28* 

9 0.92 ± 0.11 0.64 ± 0.29 0.95 ± 0.09* 0.84 ± 0.29* 

10 0.85 ± 0.13 0.15 ± 0.21 0.95 ± 0.09* 0.83 ± 0.30* 

11 0.88 ± 0.12 0.41 ± 0.27 0.95 ± 0.09* 0.82 ± 0.30* 

12 0.83 ± 0.13 0.00 ± 0.04 0.90 ± 0.11* 0.55 ± 0.29* 

13 0.91 ± 0.11 0.60 ± 0.29 0.84 ± 0.13 0.57 ± 0.26 

14 0.84 ± 0.13 0.03 ± 0.13 0.91 ± 0.11* 0.61 ± 0.29* 

Average 0.87 ± 0.12 0.30 ± 0.22 0.92 ± 0.11 0.72 ± 0.29 

 
*The difference is highly significant, with a Student’s t-test (p < 0.01). 

Number of samples: 372 for subject 1,504 for the rest. 
 

TABLE 2. Averaged metrics by subject, for Log Reg.

Tabla	1	
	

Subject 
Traditional	Approach Proposed	Method 

Accuracy Kappa Accuracy Kappa 

1 0,95 ± 0.11 0.78 ± 0.33 0.98 ± 0.08* 0.93 ± 0.33* 

2 0.88 ± 0.12 0.43 ± 0.27 0.95 ± 0.10* 0.83 ± 0.33* 

3 0.84 ± 0.13 0.01 ± 0.07 0.90 ± 0.12* 0.55 ± 0.33* 

4 0.84 ± 0.13 0.06 ± 0.18 0.95 ± 0.10* 0.81 ± 0.30* 

5 0.88 ± 0.12 0.36 ± 0.26 0.97 ± 0.08* 0.90 ± 0.30* 

6 0.83 ± 0.13 0.00 ± 0.00 0.84 ± 0.13 0.52 ± 0.27* 

7 0.83 ± 0.13 0.00 ± 0.00 0.87 ± 0.12* 0.48 ± 0.27* 

8 0.83 ± 0.13 0.00 ± 0.00 0.87 ± 0.12* 0.59 ± 0.28* 

9 0.89 ± 0.12 0.43 ± 0.27 0.94 ± 0.10* 0.81 ± 0.29* 

10 0.84 ± 0.12 0.06 ± 0.15 0.94 ± 0.10* 0.79 ± 0.30* 

11 0.85 ± 0.13 0.18 ± 0.22 0.94 ± 0.10* 0.80 ± 0.29* 

12 0.83 ± 0.13 0.00 ± 0.00 0.90 ± 0.12* 0.53 ± 0.28* 

13 0.88 ± 0.12 0.44 ± 0.27 0.81 ± 0.13 0.50 ± 0.26* 

14 0.83 ± 0.13 0.02 ± 0.27 0.90 ± 0.11* 0.59 ± 0.29* 

Average 0.86 ± 0.12 0.20 ± 0.19 0.91 ± 0.11 0.69 ± 0.29 

 
*The difference is highly significant, with a Student’s t-test (p < 0.01). 

Number of samples: 372 for subject 1,504 for the rest. 

	
Tabla	2	

	
Subject 

Traditional	Approach Proposed	Method 

Accuracy Kappa Accuracy Kappa 

1 0.97 ± 0.09 0.88 ± 0.33 0.98 ± 0.09 0.92 ± 0.33 

2 0.92 ± 0.11 0.65 ± 0.29 0.96 ± 0.09* 0.86 ± 0.30* 

3 0.84 ± 0.13 0.03 ± 0.14 0.93 ± 0.11* 0.68 ± 0.29* 

4 0.85 ± 0.13 0.15 ± 0.22 0.95 ± 0.10* 0.84 ± 0.30* 

5 0.91 ± 0.11 0.56 ± 0.29 0.97 ± 0.08* 0.91 ± 0.30* 

6 0.84 ± 0.13 0.05 ± 0.13 0.86 ± 0.12* 0.59 ± 0.27* 

7 0.83 ± 0.13 0.00 ± 0.07 0.88 ± 0.12* 0.51 ± 0.28* 

8 0.83 ± 0.13 0.00 ± 0.07 0.88 ± 0.12* 0.62 ± 0.28* 

9 0.92 ± 0.11 0.64 ± 0.29 0.95 ± 0.09* 0.84 ± 0.29* 

10 0.85 ± 0.13 0.15 ± 0.21 0.95 ± 0.09* 0.83 ± 0.30* 

11 0.88 ± 0.12 0.41 ± 0.27 0.95 ± 0.09* 0.82 ± 0.30* 

12 0.83 ± 0.13 0.00 ± 0.04 0.90 ± 0.11* 0.55 ± 0.29* 

13 0.91 ± 0.11 0.60 ± 0.29 0.84 ± 0.13 0.57 ± 0.26 

14 0.84 ± 0.13 0.03 ± 0.13 0.91 ± 0.11* 0.61 ± 0.29* 

Average 0.87 ± 0.12 0.30 ± 0.22 0.92 ± 0.11 0.72 ± 0.29 

 
*The difference is highly significant, with a Student’s t-test (p < 0.01). 

Number of samples: 372 for subject 1,504 for the rest. 
 

According to the results, when the classifier is trained 
with 2,000 averaged trials by class, the performance is 
significantly better than that of the traditional approach.

Table 1 contrasts the average of results and pooled stan-
dard deviations obtained by subject, for accuracy and 
kappa. A Student’s t-test was performed to get the statis-
tical significance of the difference between the methods. 
Results indicate that the difference is highly significant 
(p < 0.01), for most of metrics and subjects. In most cases, 
the difference is in favor of the proposed method. 

Logistic Regression
Figure 2 illustrates the average performance obtained 

by employing the Logistic Regression classifier on 
each subject and type of training data. The ANOVA test 
gives significant differences for both metrics (accu-
racy: F = 215.10, p < 0.01; Cohen's kappa index: F = 
843.29, p < 0.01). Results indicate that the perfor-
mance of the classifier is higher with the proposed 
method for training. 

Table 2 compares the pooled results and standard 
deviations obtained by subject, for accuracy and 
kappa. Results of the Student’s t-test, by subject and 
metric, indicate that the difference is highly signifi-
cant (p < 0.01) for most of metrics and subjects, in 
favor of the proposed method. The consistency in the 
statistical analyses for Log Reg supports the improve-
ment in the results with our method. It also applies to 
the LSVM results.

Stepwise and Bayesian LDA
Figure 3 illustrates the average performance obtained 

by employing the SWLDA classifier on each subject 
and type of training data.

The ANOVA test gives significant differences for both 
metrics (accuracy: F = 28.15, p < 0.01; Cohen's kappa 
index: F = 20.86, p < 0.01).However, when metrics are 
contrasted with a Student’s t-test, results reveal that 
there is no statistical significance in most of the cases, 
as presented in Table 3. 
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b) Cohen’s kappa index

FIGURE 3. Averaged results of all subjects, for SWLDA .

a) Accuracy

b) Cohen’s kappa index

FIGURE 4. Averaged results of all subjects, for BLDA.
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Similar results were obtained for BLDA, as illustrated 
in Figure 4. Although the ANOVA test gives a signifi-
cant difference between the traditional and the pro-
posed methods (accuracy: F = 13.21, p < 0.01; Cohen's 
kappa index: F = 6.21, p = 0.013), the individual 
Student’s t-tests do not reject the null hypothesis of 
equality of metrics, as presented in Table 4. 

DISCUSSION
Results of LSVM and logistic regression are similar. 

When we trained the classifiers with the traditional 
approach, Cohen's kappa index decreased as the num-
ber of averaged samples was increased in the testing 
samples. The observed decrement of kappa is due to 
the probability of classifying by chance pe, as defined 
in Equation (3). The value of pe increases with the 
increase in the number of averaged samples. Meanwhile, 

the accuracy only has little changes when the number 
of averaged samples by trial is increased. As a conse-
quence, pe is closer to the accuracy as the number of 
averaged samples is greater, so kappa is decreased.

Tables 3 and 4 indicate that subjects 3, 4, 6, 7, 8, 12 and 
14 have averaged kappa values close to or lower than 
0.05. It is a strong indicator of the presence of the accu-
racy paradox in these cases. It is an indication that dis-
criminative classifiers try to label most of the samples as 
non-P300 targets in the traditional approach because in 
the P300 speller, there are more non-P300 samples than 
P300 ones. In addition, since each discriminative classi-
fier is trained in single trials, it learns features that aver-
aged trials do not have, because of the different statistical 
properties of single and averaged data. As a consequence, 
most of non-P300 features will be learned in this case.
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TABLE 3. Averaged metrics by subject, for SWLDA.Tabla	3	
	

Subject 
Traditional	Approach Proposed	Method 

Accuracy Kappa Accuracy Kappa 

1 0.98 ± 0.08 0.95 ± 0.33 0.98 ± 0.08 0.94 ± 0.33 

2 0.96 ± 0.09 0.88 ± 0.30 0.95 ± 0.10 0.84 ± 0.29 

3 0.86 ± 0.12 0.26 ± 0.25 0.87 ± 0.12 0.36 ± 0.26* 

4 0.95 ± 0.10 0.83 ± 0.30 0.94 ± 0.10 0.79 ± 0.30 

5 0.98 ± 0.07 0.94 ± 0.31 0.98 ± 0.08 0.92 ± 0.30 

6 0.88 ± 0.12 0.63 ± 0.28 0.84 ± 0.13 0.53 ± 0.27 

7 0.89 ± 0.12 0.54 ± 0.28 0.86 ± 0.12 0.48 ± 0.27 

8 0.90 ± 0.11 0.68 ± 0.28 0.87 ± 0.12 0.60 ± 0.28 

9 0.94 ± 0.10 0.82 ± 0.29 0.93 ± 0.10 0.80 ± 0.29 

10 0.94 ± 0.10 0.78 ± 0.30 0.94 ± 0.10 0.78 ± 0.30 

11 0.95 ± 0.10 0.82 ± 0.30 0.94 ± 0.10 0.79 ± 0.29 

12 0.90 ± 0.12 0.50 ± 0.28 0.89 ± 0.12 0.48 ± 0.28 

13 0.83 ± 0.13 0.54 ± 0.26 0.80 ± 0.13 0.48 ± 0.26 

14 0.90 ± 0.12 0.57 ± 0.29 0.87 ± 0.12 0.47 ± 0.28 

Average 0.92 ± 0.11 0.69 ± 0.29 0.90 ± 0.11 0.66 ± 0.29 

 
*The difference is highly significant, with a Student’s t-test (p < 0.01). 

Number of samples: 372 for subject 1,504 for the rest. 

	
Tabla	4	

	
Subject 

Traditional	Approach Proposed	Method 

Accuracy Kappa Accuracy Kappa 

1 0.99 ± 0.08 0.95 ± 0.33 0.98 ± 0.08 0.94 ± 0.33 

2 0.96 ± 0.09 0.87 ± 0.30 0.95 ± 0.09 0.85 ± 0.30 

3 0.86 ± 0.12 0.30 ± 0.25 0.86 ± 0.12 0.33 ± 0.26 

4 0.95 ± 0.10 0.82 ± 0.30 0.95 ± 0.10 0.79 ± 0.30 

5 0.98 ± 0.07 0.94 ± 0.31 0.98 ± 0.10 0.92 ± 0.30 

6 0.86 ± 0.12 0.58 ± 0.27 0.84 ± 0.13 0.53 ± 0.27 

7 0.88 ± 0.12 0.48 ± 0.28 0.87 ± 0.12 0.49 ± 0.28 

8 0.90 ± 0.11 0.67 ± 0.28 0.88 ± 0.12 0.62 ± 0.28 

9 0.95 ± 0.09 0.86 ± 0.30 0.94 ± 0.10 0.82 ± 0.29 

10 0.95 ± 0.10 0.79 ± 0.30 0.94 ± 0.10 0.78 ± 0.30 

11 0.95 ± 0.09 0.83 ± 0.30 0.94 ± 0.10 0.80 ± 0.29 

12 0.89 ± 0.12 0.43 ± 0.27 0.89 ± 0.12 0.45 ± 0.27 

13 0.85 ± 0.12 0.58 ± 0.27 0.82 ± 0.13 0.52 ± 0.26 

14 0.89 ± 0.12 0.46 ± 0.28 0.88 ± 0.12 0.46 ± 0.28 

Average 0.92 ± 0.29 0.68 ± 0.11 0.91 ± 0.29 0.66 ± 0.11 

 
*The difference is highly significant, with a Student’s t-test (p < 0.01). 

Number of samples: 372 for subject 1,504 for the rest. 
 

TABLE 4. Averaged metrics by subject, for BLDA.

Tabla	3	
	

Subject 
Traditional	Approach Proposed	Method 

Accuracy Kappa Accuracy Kappa 

1 0.98 ± 0.08 0.95 ± 0.33 0.98 ± 0.08 0.94 ± 0.33 

2 0.96 ± 0.09 0.88 ± 0.30 0.95 ± 0.10 0.84 ± 0.29 

3 0.86 ± 0.12 0.26 ± 0.25 0.87 ± 0.12 0.36 ± 0.26* 

4 0.95 ± 0.10 0.83 ± 0.30 0.94 ± 0.10 0.79 ± 0.30 

5 0.98 ± 0.07 0.94 ± 0.31 0.98 ± 0.08 0.92 ± 0.30 

6 0.88 ± 0.12 0.63 ± 0.28 0.84 ± 0.13 0.53 ± 0.27 

7 0.89 ± 0.12 0.54 ± 0.28 0.86 ± 0.12 0.48 ± 0.27 

8 0.90 ± 0.11 0.68 ± 0.28 0.87 ± 0.12 0.60 ± 0.28 

9 0.94 ± 0.10 0.82 ± 0.29 0.93 ± 0.10 0.80 ± 0.29 

10 0.94 ± 0.10 0.78 ± 0.30 0.94 ± 0.10 0.78 ± 0.30 

11 0.95 ± 0.10 0.82 ± 0.30 0.94 ± 0.10 0.79 ± 0.29 

12 0.90 ± 0.12 0.50 ± 0.28 0.89 ± 0.12 0.48 ± 0.28 

13 0.83 ± 0.13 0.54 ± 0.26 0.80 ± 0.13 0.48 ± 0.26 

14 0.90 ± 0.12 0.57 ± 0.29 0.87 ± 0.12 0.47 ± 0.28 

Average 0.92 ± 0.11 0.69 ± 0.29 0.90 ± 0.11 0.66 ± 0.29 

 
*The difference is highly significant, with a Student’s t-test (p < 0.01). 

Number of samples: 372 for subject 1,504 for the rest. 

	
Tabla	4	

	
Subject 

Traditional	Approach Proposed	Method 

Accuracy Kappa Accuracy Kappa 

1 0.99 ± 0.08 0.95 ± 0.33 0.98 ± 0.08 0.94 ± 0.33 

2 0.96 ± 0.09 0.87 ± 0.30 0.95 ± 0.09 0.85 ± 0.30 

3 0.86 ± 0.12 0.30 ± 0.25 0.86 ± 0.12 0.33 ± 0.26 

4 0.95 ± 0.10 0.82 ± 0.30 0.95 ± 0.10 0.79 ± 0.30 

5 0.98 ± 0.07 0.94 ± 0.31 0.98 ± 0.10 0.92 ± 0.30 

6 0.86 ± 0.12 0.58 ± 0.27 0.84 ± 0.13 0.53 ± 0.27 

7 0.88 ± 0.12 0.48 ± 0.28 0.87 ± 0.12 0.49 ± 0.28 

8 0.90 ± 0.11 0.67 ± 0.28 0.88 ± 0.12 0.62 ± 0.28 

9 0.95 ± 0.09 0.86 ± 0.30 0.94 ± 0.10 0.82 ± 0.29 

10 0.95 ± 0.10 0.79 ± 0.30 0.94 ± 0.10 0.78 ± 0.30 

11 0.95 ± 0.09 0.83 ± 0.30 0.94 ± 0.10 0.80 ± 0.29 

12 0.89 ± 0.12 0.43 ± 0.27 0.89 ± 0.12 0.45 ± 0.27 

13 0.85 ± 0.12 0.58 ± 0.27 0.82 ± 0.13 0.52 ± 0.26 

14 0.89 ± 0.12 0.46 ± 0.28 0.88 ± 0.12 0.46 ± 0.28 

Average 0.92 ± 0.29 0.68 ± 0.11 0.91 ± 0.29 0.66 ± 0.11 

 
*The difference is highly significant, with a Student’s t-test (p < 0.01). 

Number of samples: 372 for subject 1,504 for the rest. 
 

By contrast, when we trained the classifier with the 
proposed method, the performance improved signifi-
cantly. The improvement of kappa indicates that the 
classifiers learn features from both P300 and non-P300 
classes. This is because the accuracy gets greater values 
than pe when the number of averaged samples by trial is 
increased. Consequently, the accuracy, and thus kappa, 
will be higher, as seen in Figures 1 and 2. The reasons 
for this are balanced data, similar statistical properties 
for training and test samples, and more statistical vari-
ation by class due to an increase in sample size. Here, it 
is necessary to remark that the inconvenience of using 
unbalanced classes with single trials for training dis-
criminative classifiers is due to the difference in statis-
tical properties of the data used for testing the classi-
fier. Again, the advantage of training with re-sampled 
and averaged samples is statistically significant.

By contrast, although results of stepwise and Bayesian 
LDA were similar between them, they are different from 
the discriminative classifiers. ANOVA tests give significant 

differences in the methods, whereas the Student’s t-test 
does not reject the statistical equality of the results, as pre-
sented in Tables 5 and 6. The discrepancy of the statistics 
is due to the origin of the standard deviation in each test. 
The Student’s test employs weighted pooling of the vari-
ances, whereas ANOVA uses the mean square of the error 
from the data. Thus, the standard deviation by subject lies 
between 0,07 and 0,13 for accuracy and between 0,25 and 
0,33 for kappa, the mean square errors are around 0,0006 
for accuracy and 0,006 for kappa. This means that the dif-
ferences of magnitude between standard deviations are 
around 183 for accuracy and 48 for Cohen’s kappa index. 
Therefore, with the same averaged metrics, both types of 
tests give different results: ANOVA sees a gap between the 
levels of the design variable, whereas the Student’s t-test 
gives small values of the statistics.

Another issue worth considering is the nature of the 
LDA-based classifiers. They try to fit the data to a set of 
Gaussian models, with a mean by class and a common 
covariance matrix [25]. When new data are presented to the 
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classifier, they are compared with each model. Later, a 
class is assigned to the data when the highest score or 
probability value is obtained from the corresponding 
model of the set. This score or probability comes from the 
distance between the data and each mean. In our study, 
both classifiers map the data to a score value, according to 
a model of regression before the generation of Gaussian 
models. This means that the models are also scalar rather 
than multivariate, unlike discriminative classifiers, where 
the mapping to the class is direct [25]. Consequently, dis-
criminative models are more affected by the statistical 
nature of the data. This is reflected in the difference of the 
results between generative and discriminative classifiers.

CONCLUSIONS
In this study, a bootstrapping method is presented to 

solve two important problems in the P300 speller. The 
method generates a new training set by re-sampling 
with replacement from the original set, reaching two 
important goals at the same time. 

First, the number of trials across classes is balanced. 
It avoids dropping data in the process, as suggested in 
other approaches [13] [14] [15] [16] [17], which prevents a pos-
sible bias in the classification results. 

Second, the statistical properties of the training data 
are made equivalent between the training and the test 
sets. This is achieved when the number of averaged 
trials for each instance in training equals the number 
of averaged samples during testing. 

Unbalanced classes and the difference in statistical 
properties are considerable issues present in the state-
of-the-art implementations of the P300 classification 
task.

Results presented here indicate that the proposed 
method improves significantly the detection of P300 
and non-P300 classes in linear discriminative classifi-
ers, by dealing with the aforementioned issues.
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