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ABSTRACT
In this work, a Brain Computer interface able to decode imagery motor task from EEG is presented. The method uses 
time-frequency representation of the brain signal recorded in different regions of the brain to extract important fea-
tures. Principal Component Analysis and Sequential Forward Selection methods are compared in their ability to re-
present the feature set in a compact form, removing at the same time unnecessary information. Finally, two method 
based on machine learning are implemented for the task of classification. Results show that it is possible to decode 
the mental activity of the subjects with accuracy above 80%. Furthermore, visualization of the main components 
extracted from the brain signal allow for physiological insights on the activity that take place in the sensorimotor 
cortex during execution of imaginary movement of different parts of the body.
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RESUMEN
En este trabajo es presentada una Interfaz Cerebro Computadora que tiene la capacidad de decodificar actividades 
motrices. El método utiliza representación en el dominio de la frecuencia y el tiempo de las señales del cerebro gra-
badas en distintas regiones de este mismo, con el fin de extraer características importantes. Los métodos: Análisis 
de Componentes Principales y Selección Secuencial, son comparados en términos de su capacidad para representar 
características de la señal de una forma compacta, removiendo de esta forma, información innecesaria. Finalmente, 
dos métodos basados en aprendizaje de máquinas fueron implementados para la clasificación de actividades mo-
trices utilizando solo las señales cerebrales. Los resultados muestran que es posible decodificar la actividad mental 
en los sujetos con una precisión superior al 80%. Además, la visualización de las componentes principales extraídas 
de las señales del cerebro permite un analísis de la actividad que toma lugar en la corteza cerebral sensorimotora 
durante la ejecución de la imaginación de movimientos de distintas partes del cuerpo.

PALABRAS CLAVE: Ritmos Sensorimotores, BCI, Descomposición Espectral, Selección de Características, PCA, SFS, SVM, LDA.
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INTRODUCTION
Brain computer interfaces (BCI) are systems that aim 

to establish a non muscular communication path 
between a person and the environment. BCI systems 
are aimed to population who suffer from motor dis-
abilities, making use of different phenomena present 
in the brain activity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. However, the 
application of BCI is not restricted only to rehabilita-
tion. Recently, BCI has been used for entertainment in 
multimedia games with healthy people [1, 11]. Different 
methods for acquiring the brain signals can be used in 
BCIs, however for practical considerations the electro-
encephalogram (EEG) is most used. EEG has the 
advantage of being a non-invasive technique, of easy 
use, low risk for the subject and relatively cheap com-
pared to other techniques as electrocorticography 
(ECoG) which is an invasive method that need of sur-
gery for correct placement of the recording electrodes 
over the brain cortex.

Depending on the activity executed by a person, dif-
ferent potentials are elicited in the brain signal, such 
as P300, steady-state evoked potentials (SSVEP), slow 
cortical potentials (SCP) and sensorimotor rhythms 
(SMR). Those potentials can be used as features for 
decoding subjects intention and provide mechanism 
for interaction with the environment [12].

Of great interest is the SMR, these rhythms are 
observed as a decrease in the activity in the Alpha 
band (8-12 Hz) and Beta band (16-26 Hz) when the 
subject executes motor task. Interestingly the decrease 
in the power in the frequencies mentioned before is 
also observed when the subject imagines the 
movement, which is of especial interest in applications 
for people with degenerative diseases. Topographically, 
the decrease in power occurs over the brain areas 
known as the primary motor cortex and the 
sensorimotor cortex. Several methods have been 
proposed for extraction of the features of the SMR 
such as adaptive auto-regressive models (AAR) [13, 14], 

common spatial pattern (CSP) [15], filter bank CSP 
(FBCSP) [16], Common Spatial Subspace Decomposition 
(CSSD) [17, 18] among others. After feature extraction, 
classification is performed using machine learning 
techniques. Of particular interest are the Linear 
Discriminant Analysis (LDA) due to its simplicity and 
the Support Vector Machines for its optimal 
performance. These two machine learning techniques 
dominate the BCI literature [19, 20, 12, 13, 5, 21, 14].

In this work a method based on short time Fourier 
Transform (STFT) is presented for feature extraction. 
Algorithms for feature selection based on Sequential 
Forward Selection (SFS) and Principal Component 
Analysis (PCA) are compared. Finally, classifiers based 
on LDA and SVM were implemented and compared in 
terms of performance.

METHODS
Data-set Description Data-set 2b from BCI competi-

tion IV was used for this analysis. The experimental 
paradigm was applied to nine subjects. Each subject 
was sitting in an armchair in front of a screen at the 
eye level from one meter of distance. There were five 
sessions, whereby the first two sessions were for train-
ing purpose. The other were feedback sessions, conse-
quently the subject knew the immediate results of the 
imagery tasks. The imagery task concern to two 
classes, which were the motor imagery of left hand 
(class 1) and right hand (class 2). Given that the ses-
sions were recorded in different days, only one of the 
sessions was used for each subjects. This was done due 
to the session transfer problem that is present given 
that the conditions of the experiment may change 
across sessions.

The description of the experiment can be seem in 
Figure 1. For each session, an electro-oculogram (EOG) 
was realized before starting the experiment in order to 
estimate its influence on the electroencephalogram 
signals (EEG). Each session is composed of six runs 



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | Vol. 39 | No. 1 | ENERO - ABRIL 201898

with ten trials each per class, for a total of 120 trial for 
each class in the session used. Each trial began with a 
fixation cross and an acoustic sound that indicated the 
start of the trial. Then, a cue indicating the motor 
imagery task to be executed by the subject appeared. 
In parallel, the EOG signal was recorded together with 
the EEG, in order to use for removal of the artifacts 
caused by subject’s eye movements.

The EEG signal was recorded through three bipolar 
electrodes centered on C3, Cz and C4 (see Figure 1) 
with a sample frequency of 250 Hz. The EEG record-
ings were bandpass filtered between 0.5 Hz and 100 Hz 
and the line component of 50 Hz was removed using a 
notch filter.

The electrode Fz was used as a signal reference. The 
EOG signal was recorded through three monopolar 
electrodes as displayed on Figure 1 (left mastoid serv-
ing as a reference for the signal). These channels were 
recorded in parallel with the EEG signal, with the 
same amplifier settings.

FIGURE 1. a) Electro-oculogram (EOG) monopolar
electrodes location. b) Electro-encephalogram (EEG)

bipolar electrodes location. c) Description of the
experiment for feedback sessions.

Feature Extraction
For feature extraction, the STFT was computed for 

each trial obtaining a representation of the changes of 
power with time for each frequency value. Since EEG 
signals are of non-stationary nature, the use of the 
STFT is required instead of the Fourier transform. The 
Fourier Transform (FT) is defined as:

where ω means the angular frequency and X(ω) is the 
FT of x(t). The STFT [22] computes the Fourier trans-
form at different time intervals of the signal using a 
window function. In this way the new domain, which 
is the frequency domain, change over time. The STFT 
is defined as:

in this case τ refers to the corresponding time of the 
FT computed and g(t) concern to the time window 
function. In this work a Hamming window was used. 
The time window function define the time resolution 
and the frequency resolution [20]. However there is a 
trade of between frequency resolution and time reso-
lution. The best of compromise can be obtained using 
overlapping windows.

Feature Selection
After feature extraction using the STFT, two approa-

ches of feature selection were applied to data.

Principal Component Analysis (PCA)
PCA is a dimensionality reduction method. Given a 

set of signals, PCA find a projection to a new space 
where the new total variance of the original data is 
mapped to a reduced number of components. The 
components are ranked according to the amount of 
variance retained. The component with the maximum 
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variance is termed the principal component. In this 
fashion, the data is represented in a compact form, 
reducing the number of features to be input to the 
classifier in subsequent stages. The k-th principal com-
ponent can be computed as:

where X is the data matrix and w is the projection 
vector. The projection vector which extracts the maxi-
mum variance must fulfill the following expression:

It can be shown that the solution for this optimization 
problem is that the set of filters w that extract the prin-
cipal components is in fact the eigenvectors of XT X [21].

Sequential Forward Selection (SFS)
This method uses an iterative approach for selection 

of relevant features. It initializes with an empty fea-
ture vector. Each feature is tested individually and the 
feature providing the higher improvement in classifi-
cation is selected. Once the first feature is fixed, the 
process is repeated with the remaining features. This 
iterative process is repeated until when further inclu-
sion of features does not incur in a increased perfor-
mance [23, 20]. We selected a threshold of 1% as mini-
mum accuracy increase in order to include a feature in 
the set of selected features.

Classification

Linear Discriminant Analysis (LDA)
Linear discriminant analysis is a method for classifi-

cation based on linear separation of two or more 
classes. The operation principle is to find a straight 
line that divides two regions (in a two classes prob-
lem), such that depending on the location of a new test 

sample the algorithm determine to which class the 
new sample belongs.

The straight line is ruled by the following equation

where wT are denominated the weight vector, w0 is a 
bias and x is the sample vector [19]. Basically, when a 
sample x+ is located over the straight line y(x+)= 0. 
Hence, y(x) represents the distance r from the sample 
to the decision surface. Accordingly, r and y(x) are 
related by

r determine the class assigned to the sample.The 
parameters wT and w0 are learned from training data 
such that the error in classification is minimized.

Support Vector Machines (SVM)
This classification algorithm is based on projections 

onto a vector that is composed of the sum of particu-
lars vectors denominated support vectors.  It follows 
that the projection of any sample vector u onto the 
decision vector w has to be greater or lower than a 
constraint b.

The decision vector must be orthogonal to the hyper-
plane which separates the classes. In order to achieve 
a good performance with this classifier, the width of 
the gap that separates classes must be maximized. 
After some algebra [21], the width of the gap to maxi-
mize is as follows:
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as a matter of fact, to maximize the width of the gap 
it is necessary to minimize the magnitude of w. 
Applying the Lagrange's method for optimization pro-
blems it is found that the decision vector has to be:

in this equation, the vector xi is the group of samples 
vectors used for creating the decision vector w, they 
are called support vectors. The others are parameters, 
such as αi which is the Lagrange multiplier and yi is a 
parameter that indicate the class at which the support 
vector belongs. This classifier was used with a kernel 
function of type linear. The cost parameter (C) was 
trained using cross-validation. The formulation of 
C-Support vector classification (C-SVC) was used. Prior 
to the classification, training data were centered and 
scaled between [-1, 1]. For a fair validation, test data 
was also centered using the parameters learned over 
the training data [24].

RESULTS AND DISCUSSION
Average of the spectrogram of single trials, for all 

electrodes and each classes in subject 4 is shown in 
Figure 2 as an example of the features extracted using 
STFT. It is observed that the magnitude of the spec-
trum decreases at the electrode C3 around 10 Hz and 
20 Hz when the subject execute the motor imagery 
task corresponding to the movement of the right hand. 
Similar activity is observed at electrode C4 in the same 
frequency bands when the subject executes the imag-
ination activity referring to the left hand movement. 
This phenomena is observed across subjects and is 
termed in the literature Event Related 
De-synchronization (ERD). Based on this, the feature 
vector is composed of the average activity across time 
(between 3.5 to 5.5 secs) for each individual frequency. 
That is, the feature vector represent the power in each 
frequency band during 2 seconds after the beginning 
of the motor task. The size of the feature vector is 

defined by the frequency resolution used in the calcu-
lation of STFT. In this work a frequency resolution of 1 
Hz was used and the frequencies of interest are in the 
range of 2 Hz to 30 Hz. This gives a features vector of 
29 elements per electrode, which sum to a total of 87 
features. Following the feature extraction, PCA and 
SFS (see Methods section) were tested for dimension-
ality reduction. These method aim to retain most of 
the information present in the feature vector but in a 
compact way. This is important because reducing the 
number of features avoid over fitting of the classifier.

Training and testing were implemented using a five-
fold cross-validation procedure. The data was seg-
mented in five folds. Four folds were used for training 
and one for testing. This is repeated five times giving 
statistical robustness to the results.

In the case of PCA, the projection to the new space is 
learned in the training set and used in the testing 
stage. In the case of SFS, the training set is further 
divided in 3 sub-folds to learn which features are rele-
vant. Once this is learned, the selection is applied to 
the testing data.

FIGURE 2. Spectrogram over time and frequency from S4.
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TABLE 1. Results for Cross-Validation Accuracy
with and without PCA approach. 

 LDA (%) LDA after PCA (%) SVM (%) 
S01 67.50 86.87 81.87 
S04 82.50 91.87 90.62 
S05 63.12 64.37 80.00 
S06 68.12 79.37 72.50 
S07 72.50 86.87 90.00 
S08 73.75 83.75 84.37 
S09 58.12 75.56 78.75 

Average 69.37 81.23 82.58 
 
 
 
 
 

 LDA (%) SVM (%) 
S01 78.12 80.00 
S04 96.25 93.12 
S05 83.75 80.00 
S06 77.50 71.87 
S07 87.50 86.25 
S08 81.25 82.50 
S09 83.12 83.75 

Average 83.92 82.50 
 

Classification results using PCA are shown in Table 1. 
Using the original feature vector results in poor classi-
fication performance while using PCA produces a sig-
nificant increase in the performance. In the case of 
LDA this can be explained by the nature of the classi-
fier. LDA works under the assumption that the distri-
bution of the features is Gaussian and that the covari-
ance matrix of the feature vector is diagonal. This last 
condition imply uncorrelated features, a condition 
that is difficult to fulfill in practical problems. However, 
PCA projects the data to another space where the com-
ponents are uncorrelated, that is, the covariance 
matrix is diagonal.

This makes the data more fitted to the assumptions of 
LDA and therefore better performance is achieved. In 
Table 1 the results obtained using SVM are also shown. 
As SVM is a discriminative method, no assumption is 
made about the distribution of the data. More import-
ant, the classification depends only on the support 
vectors (see methods) making the algorithm very 
robust, therefore PCA is not required for achieving 
good results with SVM.

SFS was also tested for feature selection. Results in 
Table 2 show the performance of LDA and SVM when 
SFS is used. Similar performances are observed com-
paring SFS to PCA in the case of LDA, and SVM does 
not seem to benefit from feature selection. To test 

whether the differences using PCA or SFS are signifi-
cant, a paired t-test was performed. The results show 
no significant differences (at 0.05 level) between SFS 
and PCA in LDA or SVM.

FIGURE 3. Spectrogram over time and frequency from S9.

TABLE 2. Results for Cross-Validation Accuracy
with SFS approach.

 LDA (%) LDA after PCA (%) SVM (%) 
S01 67.50 86.87 81.87 
S04 82.50 91.87 90.62 
S05 63.12 64.37 80.00 
S06 68.12 79.37 72.50 
S07 72.50 86.87 90.00 
S08 73.75 83.75 84.37 
S09 58.12 75.56 78.75 

Average 69.37 81.23 82.58 
 
 
 
 
 

 LDA (%) SVM (%) 
S01 78.12 80.00 
S04 96.25 93.12 
S05 83.75 80.00 
S06 77.50 71.87 
S07 87.50 86.25 
S08 81.25 82.50 
S09 83.12 83.75 

Average 83.92 82.50 
 

While no statistical differences are observed in 
between methods, SFS has the possibility of provide 
qualitative information about what features are more 
important. For instance, the average of the spectro-
gram for Subject 9 are shown in Figure 3. Note that the 
frequency band with strongest variation related to the 
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task is outside of the standard definition of Alpha 
band. Therefore fixing the features would have pro-
duced poor results for this subject. In order to visual-
ize the spatial characteristic of the signals, the best 
feature selected using SFS was plotted in the scalp for 
each electrode. This is shown in Figure 4. The left and 
right images for each subject correspond to the left 
and right hand imagination respectively. These topog-
raphies are indicative of which electrode is more sig-
nificant discriminant between classes. To illustrate 
this in a more particular way, lets take Subject 1 and 4 
as examples. In Subject 1, the electrode Cz has more 
power or energy in relation to other electrodes, which 
means that has discriminant information for class one, 
meanwhile, class two is discriminated by electrode 
C4. On the other hand, in Subject 4 class one is dis-
criminated by looking at the electrode C3 and the class 
two conserve the same discriminant electrode as sub-
ject one. Moreover, the SFS method selected the fre-
quency bands around the Alpha band as main feature 
for all subjects. It is worth noting the inverse relation-
ship between class and the hemisphere with strongest 
activity. The hemisphere with strongest activity is the 

one with lower power due to the nature of the Alpha 
rhythm. This inverse relationship is related to the 
physiology of the neural system where structures in 
the left hemisphere control the motor functions in the 
right part of the body and vice-versa. In addition, 
according to [25], the motor output leads to a continu-
ous rhythmic sub-cortical discharge of neurons. 
Therefore, depending on the cortex activation, cortical 
cells would be affected doing the same activity. In this 
sense, Figure 4 also shows a pattern in all subjects 
about the location in the scalp of these discharges 
depending on the current imagination of the hand 
movement.

It is necessary to note that PCA will also provide a 
way  to determine what is being extracted as main 
feature. The projection matrix w (see methods sec-
tion) acts a spatial filter across features. However, 
given that the method has as priority to accommodate 
the highest amount of variance in few components, 
its operation is highly influenced by artifacts occur-
ring in particular frequency bands, if such artifacts 
contain high amplitude.

FIGURE 4. Topographical distribution of energy.
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CONCLUSIONS
In this work, a BCI system able to classify two differ-

ent types of imaginary motor movement is presented. 
Feature extraction is performed by Short Time Fourier 
Transform, providing a representation of the brain 
signals in the time-frequency domain. Feature selec-
tion methods based on Principal Component Analysis 
and Sequential Forward Selection are implemented 
and compared as methods for a compact representa-
tion of the information available in the EEG signals. 
After feature selection, machine learning algorithms 
are used for classification. LDA and SVM were com-
pared as their use in the BCI community is extensive. 
Results show that it is possible classify the mental 
imagery of subjects with accuracy above 80%, these 
results as good as the winner algorithm of the BCI 
competition IV [26].  Also  LDA  obtain more benefits 
from the feature selection than SVM. This is mainly 
due to the nature of the classifiers. LDA makes assump-
tions that are not usually fulfilled in real data 
(Gaussianity and uncorrelated features) which affect 

the performance of the system. SVM on the other side 
can deal with non-Gaussian data and is less affected 
the size of the feature vector that are input to the clas-
sifiers. Beyond the performance obtained, informa-
tion about the spatial characteristics of the brain 
activity were obtained by plotting the topographical 
distribution of the more important features detected 
by SFS.

Our future work will involve adding new features to 
the system that could improve the performance. Some 
features to consider would be the difference of the 
instantaneous phase of signals and the relationships 
among different frequencies and electrodes.
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