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En este trabajo se presenta un método para medir la variacién del
calcio intracelular en células foliculares. Esta propuesta consiste en
dos etapas: (i) La deteccién de los nicleos de las células; y (ii)
el andlisis de las variaciones de fluorescencia. La primera etapa se
realiza a través de la transformada modificada de lineas divisoras
de agua controlada por marcadores (en inglés: Modified-Watershed
Transformation) controlando el proceso de etiquetado de células por
el establecimiento de criterios particulares. El proceso de detecciéon
homogeniza las condiciones de luminosidad a través de un filtro
morfolégico y utiliza como descriptores a los bordes de las células.
En la segunda etapa, se asocia la variacién de la fluorescencia con los
cambios de Ca?" intracelular donde la variacién se modela como una
funcién exponencial decreciente. Luego, se presenta un nuevo proceso
morfolégico, denominado proceso de reconstruccién medio, que permite
suavizar los datos para el proceso de modelado. Este proceso utiliza la
informacién del sub modelado y sobre modelado de la senal, mediante
las propiedades de los operadores de reconstruccion, conservando la
estructura interna de la senal original. Finalmente, en un proceso
experimental utilizando células de anfibios, se muestran los resultados

obtenidos después de aplicar la propuesta a un grupo de células.
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This paper presents a method for the measurement of the variation
of intracellular calcium in follicular cells. This proposal consists
in two stages: (i) The detection of the cell’s nuclei, and (ii) the
analysis of the fluorescence variations. The first stage is performed
with the modified-watershed transformation, where the marker process
is controlled by establishing own criterion. The detection process
homogenizes the luminance conditions through a morphological filter
and uses as descriptors the edges of the cells. In the second stage, the
variations of fluorescence are associated with changes in intracellular
Ca®", which are modeled as an exponential decay function. Then,
we present a new morphological process called medium reconstruction
process, that smoothes the data in the process of model creation. This
process uses the information of under and over model of the signal,
through the properties of reconstruction operators, keeping the internal
structure of the original signal. Finally, using amphibian cells in an
experimental process, the results obtained are showed after applying
the proposal to a group of cells.

Keywords: cells, markers, segmentation, filtering.

INTRODUCCION

El Calcio (Ca?") es un ion responsable
de controlar diversos procesos celulares
[1,2]. El Ca?t actia como un segundo
mensajero intracelular, desencadenando
diversos eventos patolégicos, como lesiones
y muerte de las células, ademdas que
participa en eventos patoldgicos globales como
hipertensiéon, arritmia cardiaca, problemas
hematologicos, enfermedades musculares,
trastornos hormonales, entre otros [1,3,4]. La
funcién del Ca?T en estas enfermedades, resulta
por consecuencia un tema de interés. En
tiempo reciente, se sabe que el Ca?t que induce
condiciones patologicas, se puede encontrar
con la ayuda de sustancias que interfieren con
el movimiento o activacién del Ca?t [4,5].
Debido a esta importancia del Ca?t, se han
desarrollado técnicas (Opticas y no épticas) para
analizar la dindmica y la concentracién del
Ca?t intracelular. En concreto, las técnicas
de microscopia de fluorescencia se utilizan
frecuentemente para observar la variacién de
la concentracién de Ca?* intracelular aplicando
como marcadores los indicadores fluorescentes.
Estos indicadores estimulan las células causando
un efecto de fluorescencia6. La fluorescencia se
detecta mediante un microscopio y un arreglo

de sensores CCD. Para determinar las células
con mayores variaciones de fluorescencia, se
analiza una secuencia de video que contiene la
evolucién del marcador en el tiempo. El usuario
selecciona manualmente y analiza todas las
imégenes de la secuencia con el fin de determinar
los cambios de fluorescencia en el tiempo. Sin
embargo, este proceso consume tiempo, ademas
que los recursos humanos son susceptibles a
errores de medicién. Por tal circunstancia, el
proceso de segmentacion de las células y el
estudio de la dindmica del Ca?t intracelular,
representan el principal objetivo en este trabajo.
Una tarea de utilidad en el estudio del Ca?*t
intracelular consiste en la segmentacién de cada
célula mediante el andlisis de las imédgenes de
la secuencia de video en forma automatica. Sin
embargo, la segmentacién de las imagenes es una
tarea que resulta dificil debido a las condiciones
cambiantes del medio ambiente que en ocasiones
suelen ser incontrolables. En la literatura se
observa que de acuerdo a las propiedades de las
células, varios métodos de segmentacion han sido
propuestos.

La mayoria de estos consisten en segmentar
diferentes partes de las células tales como el
nicleo o la células completas (citoplasma vy
nicleo)[7].  Para segmentar diferentes tipos
de células han surgido diferentes enfoques:
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Nattkemper et al. [8] usa redes neuronales
para segmentar de células, sin embargo su
enfoque se fundamenta en el aprendizaje previo
de prototipos los cual limita la robustez del
método.  Pham et al. [9] se basa en el
algoritmo fuzzy c-means para segmentar las
células. Anoraganingrum et. al.[10] aplica regién
de crecimiento y segmentacién adaptativo para
localizar y segmentar las células. Gauthier [11]
propone un método para segmentar las células
utilizando una umbralizacion jerarquica. Metzler
et al.[12] hace uso de la morfologia multiescala
para separar células. Whablby et al.[13] utiliza el
algoritmo de Watershed para segmentar células
pero no separa el solapamiento entre estas.

La Linea Divisora de Aguas controlada
por Marcadores, por otro lado, es el método
tradicional de segmentacién de imagenes basado
en Morfolégica Matematica [14, 15,16]. Pero, el
éxito de este método depende de la deteccién
correcta de los marcadores en la imagen.
Los marcadores se pueden detectar de forma
manual o automatica. Por otro lado enfoques
automaticos ayudan al especialista a ahorrar
tiempo y recursos. Sin embargo, existen factores
que afectan al rendimiento de la deteccién
automatica de los marcadores, tales como el
ruido, las oclusiones de células y los cambios
bruscos en las ima&agenes. Estos factores
pueden producir sobre segmentacién en las
imagenes, creando regiones que contienen células
multiples. Por esta razén, varios enfoques han
sido desarrollados para mejorar el proceso de
segmentacién de células[13].

En este trabajo, se introduce un método
para analizar automdaticamente la variaciéon de
calcio intracelular. Este enfoque consiste en
dos etapas: 1) El mejoramiento de imégenes
de la secuencia y la segmentaciéon de células, y
2) el modelado de la variacién del calcio. El
mejoramiento de las imagenes se realiza con un
filtro morfolégico que homogeniza las condiciones
luminicas. El proceso de segmentacién de las
células se realiza usando las Lineas Divisoras
de Aguas Controlada por Marcadores y por
filtros por reconstruccién, los cuales son
utilizados para detectar los marcadores de
manera eficiente; después, mediante la propiedad
de homotopia en una imagen discreta, se

calcula el gradiente. En general este método
permite segmentar células aisladas y también
células que se forman componentes conexas mas
complejas (componentes no conexas). En una
determinada imagen de la secuencia, para una
célula particular, el volumen de la cantidad
de calcio estda altamente correlacionado con
la intensidad luminica observada. Utilizando
la intensidad luminica, el volumen para cada
célula es calculado, y de forma general,
también su comportamiento a lo largo de la
secuencia. Con la informacién obtenida en las
diferentes iméagenes, mediante un ajuste por
minimos cuadrados se estiman los paridmetros
del comportamiento de la variacién de la
fluorescencia para una funcién exponencial.
Este modelo es una funciéon exponencial
decreciente. Para mejorar el modelo un proceso
morfolégico novedoso denominado filtro medio
es introducido. Sin embargo, la medicién
en cada imagen de la secuencia y el error
de deteccién causa que el volumen contenga
un error inducido. De tal forma que puede
afectar en la estimacién paramétrica del modelo
exponencial. Por esta situacién, se introduce un
proceso morfologico que utilice las propiedades
de los filtros por reconstruccién (sub modelado
y sobre modelado), conservando la estructura
morfologica de la informacién de la senial original.
Finalmente, el procedimiento mostrado permite
estimar de una manera robusta la ecuacion de
decaimiento que modela el comportamiento del
Ca’*.

El trabajo estd organizado de la siguiente
manera. En la siguiente seccién se presenta
una revisiéon de los fundamentos de morfologia
matematica. En la secciéon 3, se presenta
un método basado en la transformada Lineas
Divisoras de Aguas Controlada por Marcadores
para la deteccién automatica de las células.
Luego, en la seccién 4, se muestra el
procedimiento para estimar el volumen de
cada célula marcada a partir de la intensidad
de fluorescencia a lo largo del tiempo.
Posteriormente se presenta el procedimiento
morfolégico para mejorar los datos de los
volimenes de las células estimadas para toda
la secuencia de iméagenes; después el ajuste
por minimos cuadrados para estimar el modelo
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exponencial. Por tultimo, en la seccién 5 se
presentan y discuten los resultados luego de
aplicar la propuesta a un conjunto de células
de anfibios y las conclusiones.

CONCEPTOS BASICOS DEL
FILTRADO MORFOLOGICO

La Morfologia Matematica  se basa
principalmente en transformaciones crecientes
e idempotentes [14-16]. El uso de ambas
propiedades juega un papel fundamental en la
teoria del filtrado morfolégico y desarrollo de
esquemas de agrupamiento en sistemas discretos.
A toda transformacién creciente e idempotente
se le conoce como filtro morfoldgico [16-17]. Los
filtros morfolégicos basicos son la apertura v,p
y la cerradura ¢, p morfoldgicas; ambas usan un
elemento estructural dado puB. Tipicamente el
elemento estructural B se representa una base
y origen en el centro del mismo; por ejemplo,
3 x 3 pixeles. Consecuentemente B denota a
su conjunto transpuesto que estd definido por
B ={—z:2 € B} ; pues un factor de escala.
Bajo esta notacién, la apertura y la cerradura
morfologica estan definidas respectivamente por:

YuB f(x) = 0up(enn(f));
y (1)
SD,uBf(x) = E,uB(duB(f))
Donde e,p5(f(z)) = AMf(y) + vy € uB. vy
SuB(f(2)) = V{f(y) : y € uB,}, son la erosion
y la dilatacién respectivamente, mientras que
A es el operador infimo y V el supremo. Por
simplicidad de la notacién, el conjunto B sera
omitido de las expresiones; asumiendo que 7, y
YuB son equivalentes. En particular, cuando el
factor de escala p = 1, también serd omitido,
esto es d,p = dp = 9.

Otra clase de filtros estd formada
por la apertura y la cerradura por
reconstruccién[17,18]. Estos filtros morfolégicos
se construyen utilizando las transformaciones
conocidas como dilatacién y erosion geodésicas.

Estas transformaciones estan dadas por 5}(g) =
fAdB(g) con f > g, para la dilatacién geodésica
y 5}(9) = fVep(g) con f < g, para la erosién.
A partir de estas transformaciones geodésicas
basicas se construyen las transformaciones por
reconstruccién iterando dichas transformaciones
hasta la estabilidad (idempotencia) [18].

R(f,9) = lim &%(g) = 655 ...04(g)
Hasta estabilidad

* — ien an() 11 1 (2)
R*(f,g) = lim €%(g) = e ef... €4(9)
—_———

n—00
Hasta estabilidad

En particular cuando la funcién g esta dada por
la erosién o la dilatacion se obtienen la apertura
y cerradura por reconstruccion:

An(f) = R(f,ex(f))
Y (3)
&A(f) = R (f,0x(f))

DETECCION AUTOMATICA DE
CELULAS

La transformada de lineas divisoras de
aguas es un método muy util en la
segmentacion de imagenes basado en Morfologia
Matemética[l17,18]. Esta transformacién hace
uso de un conjunto de filtros morfolégicos. Esta
transformada se utiliza para la segmentacion
de imégenes, evitando la sobre-segmentacién[16-
18]. El criterio de sobre-segmentacion consiste
en establecer un limite superior en el ntimero
de regiones minimas detectadas. Este proceso
se realiza con la imposicién de los minimos
de los marcadores, mediante el uso de la
propiedad de homotopia de los operadores. Sin
embargo, es necesario hacer algunos supuestos
para utilizar este enfoque. Una suposicién
importante consiste en definir marcadores
univocos para cada uno de los objetos de interés.
Particularmente estos marcadores representan el
centro del objeto (en el caso de células, el nicleo
de la misma; y (2) la estimacion de los contornos
es calculada con operadores morfolégicos[17-19].
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(c)

Figura 1.

(a) Imagen original; (b) imagen original representada en pseudo-color; (c) apertura

morfolégica; e (d) imagen obtenida después de la correccién del fondo.

DETECCION DE MARCADORES

Debido a las caracteristicas de las imagenes, el
nucleo de las células es utilizado como un buen
marcador. Un minimo regional M de una imagen
en escala de grises I es una componente conexa
de pixeles con altitud uniforme sin vecinos
inferiores. Como se observa en la Figura 1(a)
el nucleo de las células estd rodeado de una
region brillante (citoplasma). Sin embargo, las
condiciones luminicas de cada célula difieren
entre si, afectando la deteccién de los ntcleos.
Por tal sentido, para homogenizar las condiciones
luminicas se utiliza un filtro Top Hat. Entonces,
para una secuencia de imdgenes {I;}ics la
transformacion Top-Hat es definida como:

Thwxp(I) = vu(Li)(z) — (L) (z) (4)

Donde las dimensiones del elemento estructural
AB estan relacionadas con las condiciones
luminicas del escenario, de tal manera que la
distribucién de luminosidad en la imagen puede
ser representada por una apertura morfolégica
Vo Cuando la dimensiéon del elemento
estructural es morfolégicamente similar a los

efectos de la luminosidad causada por una
fuente de luz global, estos efectos pueden
ser disminuidos por la apertura morfoldgica,
en cambio, otras variaciones, que representan
cambios locales de luminosidad son ignorados.
Este proceso es ilustrado en la Figura 1, donde
las imédgenes han sido codificadas en pseudo-
color.

En general las imagenes estaban formadas
por células aisladas y también por células
que se tocan formando componentes conexas
méas complejas (componentes no convexas)
como se ilustra en la Figura 2(a). Al aplicar
directamente la transformada minima sobre
las imagenes se observa que varios minimos
regionales son detectados, incluyendo datos con
ruido (Figura 2(b)).
de minimos adicionales, se aplica una cerradura
por reconstrucciéon. En la Figura 2(c) se aprecia
el efecto de aplicar un filtro en la deteccién de
minimos locales. Particularmente, la mayoria
de los nicleos de las células son detectados,
pero otros han sido omitidos; esto es debido a
que parte del citoplasma no estd completamente

Para evitar la deteccién
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(b)

(9)
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Figura 2. (a) Imagen original; (b) minimos regionales de la imagen original; (¢) minimos obtenidos
después de aplicar una cerradura por reconstruccién; (d) funciéon construida de los minimos a partir
de la secuencia de imédgenes; (e) cerradura morfolégica py—3; (f) mininos obtenidos por la diferencia:
M;(x) = M;(x) — ya=¢M;(x), y (g) conjunto de marcadores obtenidos por la funcién I,,(x).

cerrado, es decir es no conexo. Esta
situacién se soluciona utilizando las subsecuentes
imégenes de la secuencia, donde de igual forma,
los El objetivo
consiste en detectar para toda la secuencia de
imagenes los minimos que representan a los
centros de las células, aunque existan minimos
espurios. La repetibilidad del proceso tendra por
consecuencia que la probabilidad de encontrar
los centros de las células sea alta, mientras, que
aquellos minimos que representan datos espurios
son descartados. Para obtener la frecuencia
de ocurrencia de los minimos se construye una
funcién como sigue:

minimos son detectados.

Sea {I;}ics el conjunto de imdgenes de la
secuencia y {M; };cs el conjunto de imagenes que
contiene los minimos respectivamente. M;(z) es
una imagen binaria de tal forma que esta toma
el valor de 1 si el punto = pertenece a la regién
minima y 0 en otro caso. Posteriormente con el
resto de las imégenes de la secuencia se calcula
la sumatoria I, como sigue:

I, (x) = Z M;(x)

€S

()

La imagen I, se muestra en la Figura 2(d),
en ella se observan las regiones minimas que
tienen mas frecuencia de observarse en todas las
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(d)

V)

Figura 3. Operadores gradiente. a) Imagen original; (b) gradiente interno; (c) gradiente externo; (d)
imagen original; (e) gradiente interno y (f) gradiente externo.

imagenes. En este caso, las regiones minimas,
como corresponden a los nucleos de las células.
Se observa en las Figuras 2(c) y 2(d) que la
mayoria de minimos son detectados, sin embargo
otras dreas conexas fueron detectadas también.
Para eliminar las areas conexas adicionales se
aplica un proceso de umbralizacion.

Para nuestro caso de estudio, se sabe que
cada célula tiene alrededor de cuatro pixeles de
radio. Entonces, un operador morfolégico de
cerradura con un tamafio de elemento estructural
de 4 pixeles de dimensién en su radio se utiliza
para conectar las regiones aisladas. Luego, una
cerradura morfolégica de tamano 3 se aplica
para rellenar los agujeros pequefios.  Estos
resultados se aprecian en la Figura 2 (c), antes
de aplicar el filtro, y en la Figura 2 (e), después
de aplicar filtro. Posteriormente, en la Figura
2(d), calculando la sumatoria de los minimos
en la secuencia I,,,, los minimos son detectados.
Finalmente, regiones conexas con areas grandes
son descartadas, denotando los niicleos de las
células.

OPERADOR GRADIENTE

La Transformada de Lineas Divisoras de Aguas
controlada por Marcadores hace uso del operador
de gradiente para imponer los marcadores[15-19].
En este sentido, el gradiente morfolégico puede
utilizarse como un detector de contornos. Sea
I(z) una funcién definida en Z2 y B el elemento
estructural bésico de dimensién 3 x 3, con centro
en el punto z. La transformacién en un espacio
discreto es definida como:

Vpl(x) =06pl(z) —epl(x). (6)

En Morfologia Matemética existen otras dos
variantes del gradiente: (a) el gradiente interno
y (b) el gradiente externo, que estdn definidos
respectivamente, como sigue:

Vpl(z)=1(z) —epl(x)

Vpl(z)=4dpl(x) — I(x) @

Donde épl(z) y epl(x), representan la
dilatacién y la erosién de la superficie I(x)[17].
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En la Figura 3 se muestran los gradientes
internos y externos correspondientes a dos
secuencias de imagenes distintas. El uso de
alguno de los distintos tipos de gradiente afecta
en que puede generar bordes dobles en la imagen.
Los bordes detectados corresponden a la zona
entre el nicleo de la célula y el citoplasma y otra
entre el citoplasma y el fondo de la imagen. Para
la deteccién del borde verdadero se realizaron
distintas pruebas en las imagenes. Concluyendo,
el gradiente externo es el que ofrece mayor
suavizado evitando la deteccién de bordes dobles,
en el caso de la segmentacién de las células.

IMPOSICION DE MINIMOS POR
RECONSTRUCCION

Una vez que las células marcadas son detectadas,
éstas son impuestas en la imagen gradiente[19].
Para llevar a cabo esta tarea el siguiente
procedimiento fue llevado a cabo: Sea M el
conjunto de marcadores (nticleos de las células)
y g la imagen del gradiente (contornos de las
células). Respectivamente, dos funciones nuevas
son construidas: La primera, consiste en una
funcién de umbral f(z), la cual es definida

255, x ¢ M
como f (x) = 0. zeM

segunda es construida a través de la imagen

: ron ) o9@), x¢g M
gradiente como ¢ (z) = 0. zeM La
reconstruccién dual morfolégica de f(z) en el
interior de ¢'(z) se realiza por R * (¢, f). La
funcién R * (¢, f) solo contiene los minimos
de M, de tal manera que la transformacién de

Lineas Divisoras de Aguas se puede aplicar.

; mientras que la

Modelado de la dinamica del calcio
intracelular

En esta seccién, se aborda el problema de generar
un modelo sobre la dindmica del decaimiento del
calcio intracelular. El procedimiento consiste en
tres partes: (1) la estimaciéon del volumen de
calcio; (2) el ajuste de una curva exponencial y
(3) el célculo del error.

Estimacion del volumen de células

Las intensidades de las células estan altamente
correlacionadas con la cantidad de calcio. La
tarea de crear un modelo del comportamiento
de calcio en cada célula, se aborda utilizando la
informacién del volumen de cada célula calculada
en todas las im&agenes de la secuencia. El
histérico del volumen de cada célula se utiliza
como la entrada para generar el modelo de
la evolucién de la dindamica del calcio. Las
medidas histoéricas de los volimenes se denotan
por {V,,(i)}ies donde el subindice n corresponde
a una célula particular e ¢ representa el volumen
particular para cada tiempo i-ésimo. El volumen
se calcula con una aproximacién discreta de
la integral V' = [/ fyyzf h(z,y)dydx que queda
expresada como la siguiente manera:

Tf Yr

V ~ Z Z h(z,y)AyAx (8)

Ti Yi

Donde h(z,y) es la intensidad de la células
expresada como una superficie discreta 5h
(imagen).

En el caso de las imégenes de células se asume
que Ax = Ay = 1, debido a que se considera
como unidad métrica el pixel.

MODELADO DE LAS VARIACIONES
DEL CALCIO INTRACELULAR

Como se aprecia en la Figura 4, los estimulos
de la dindmica del calcio muestran un
comportamiento exponencial. Entonces, el
objetivo consiste en crear un modelo de
decaimiento de los estimulos de cada célula
en la secuencia. Donde, la regién de interés
estd localizada entre los méximos globales y
el final de la sefial. Sin embargo, debido
al ruido, no es posible detectar ficilmente el
maximo. Para atenuar este inconveniente, se
realiza un proceso automdtico para la deteccién
de méaximos para la funcion {V,(i)}ics. El
proceso consiste en aplicar un filtro secuencial
alternado en un escenario unidimensional [20].
El filtro alternado estd constituido por una
secuencia de una cerradura por reconstruccién
seguido por una apertura por reconstruccion
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Figura 4. Volumen de las células en el tiempo
muestran un comportamiento exponencial.

Sur(Fur(V))(i) donde el tamaio de p es variado
en el intervalo [0,k]. El filtro aplicado a
la senal permite la detecciéon de los maximos
globales de una manera eficiente. La Figura
5 ilustra la deteccién de un maximo detectado
que corresponde a un elemento conectado en el
espacio de una dimensién. El centro del elemento
de conexién representa la ubicacién de maximos,
de tal manera que el maximo global se calcula
con la media de los elementos conectados, es
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decir c({z;|z; € R(xi,xj) = > i1 2:}), de tal
manera que R(x;,x;) es una relacién equivalente
del criterio de conectividad.

El comportamiento de la dinamica del calcio
para cada célula en particular es modelado como
una funcién de decaimiento exponencial de la
siguiente manera:

y= e (9)

Donde a y S son parametros de la funciéon y
los datos utilizados son tomados de la posicién
de maxima intensidad de la celula hasta el final
de la secuencia. La estimaciéon de pardmetros
se realiza por minimos cuadrados de la siguiente

manera g = (XTX) IXT}G tal que X =
n n n
2Yi o 2Tl > Yyilny;
L Yy = | & , de
S ziyi Y 2y S i Iny;
i=1 i=1 i=1

donde se tiene que y;, y x; representan la marca
de tiempo y el drea de las intensidades para cada
célula. Para propésitos ilustrativos en la Figura
6 se muestra un ajuste de una célula particular.
La exponencial ayuda a modelar y analizar el
decaimiento de la intensidad registrada en cada
célula.
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Figura 5. Dindmica de la concentracion del calcio para (a) la senal original que contiene varios maximos
causados por el ruido, y (b) filtrado de la senal original permite detectar un maximo global.
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Figura 6. (a) volumen de las células en el tiempo
muestran un comportamiento exponencial.
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Figura 7. Histograma de la medicion
experimental de puntos arbitrarios del sensor.
A las mediaciones obtenidas se les ha restado el
valor esperado.

Error de ajuste del modelo

El criterio para garantizar la correcta
construcciéon de un modelo se define mediante
la introduccién de dos medidas de error: el error
BIAS y el error RMSE. La primera medida es
un error de modelado mientras que la segunda
medida es un error de precision. El error
BIAS proporciona informacién acerca de cémo
el modelo se ajusta a los datos reales. Errores
negativos significa que el modelo estd sub-
modelando los datos reales. Por lo tanto, el error
BIAS positivo representa sobre-modelado en los
datos. Valores cercanos a cero significa que el
modelo captura la dindmica de los datos reales.

Formalmente, el error BIAS se define como:
Bias(z,z*) = Y i ogx — x*, donde x representa
los datos reales y zx los datos estimados. Se
observa que cuando el error BIAS es igual a
cero no significa que el modelo sea correcto.
Esto es, las mismas proporciones de las medidas
estimadas con respecto a la original estan por
debajo y arriba de los datos reales. Entonces,
para cuantificar el error de precisién se utiliza
el error RMSE. Este error es la media de las
diferencias absolutas entre los datos reales y
datos del modelado. El error RMSE se define
como: RMSE(z,xx) = L3 | (z — 2x)? donde
x* representa la funcién de modelado y los datos
reales x.

El error de modelado, en este contexto
estd asociado a las diferencias existentes entre
la lectura del sensor y el ajuste de la curva
hecha. Este error ademés estd en funcién de
la resolucién del sensor. En cada medicién es
necesario calibrar las intensidades a unidades
tipicas del experimento (usualmente puM), pero
en el sentido de proveer una herramienta general,
se ha optado por representar cada error como un
porcentaje asociado a la resolucién del sensor,
que ofrece la incertidumbre de medicién.

Mejoramiento de datos

Aun cuando el método de minimos cuadrados
ofrece el modelo 6ptimo, este depende de que
la medicién de los datos tenga una distribucién
normal. Entonces, por la naturaleza del modelo,
resulta dificil verificar que estas medidas tengan
una distribucién normal. Como consecuencia,
es necesario facilitar la convergencia de la
aproximacion para mejorar los datos. De
acuerdo a la naturaleza de los datos, se asume
que para cada pixel I(x,y), de la imagen,
existe un ruido con un valor esperado 0. Esta
suposicion es facilmente verificable. En la Figura
7, se tiene un histograma de las mediciones de un
punto arbitrario del sensor, en un intervalo de
tiempo. Se observa, que la distribucion tiende
a la normalidad, y la variacién que rodea la
medicién tiene una media 0. Entonces para,
Vi (i), resultante del célculo del volumen de una
célula de tiempo n sea afectada por ruido aditivo
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Figura 8. Histograma de diferencias de la superficie original y la superficie reconstruida (a) Histograma
del operador apertura, (b) Histograma del operador cerradura.

con media cero de la siguiente manera:
Vo=V, + N, (10)

Donde V, es una senal libre de ruido y N,, es
el ruido aditivo anadido a la sefial original con
media cero. Particularmente, N,, tiene media
cero; los datos de las sefiales originales V" estan
localizados en min{dom(N,,)} y max{dom(Ny,)}.
Por otro lado, dado que N, es una variable
aleatoria, de forma local no deberia presentar
media de cero, lo que hace dificil estimar el
valor V7. Como consecuencia, es mnecesario
analizar la informaciéon a nivel local e inferir
la tendencia haciendo una estimacién del valor
esperado. Entonces, la propuesta consiste en
explotar algunas propiedades de los operadores
morfolégicos.  Particularmente los operadores
por reconstruccién son ttiles porque permiten
aproximar una superficie iterando sucesivamente
un marcador, obteniendo otra superficie que
tiene propiedades topoldgicas similares a la
superficie original[21,22]. La aproximacién de
un operador no mantiene el nivel original de la
senal, de tal manera que depende de la forma y
las propiedades de elemento estructural usado.
Se debe considerar como un inconveniente, pero
en términos practicos, es su mayor ventaja
en el sentido, que representan la principal
tendencia de los datos originales, eliminando
las variaciones menores del elemento estructural
(altas frecuencias) de la senal original, resultando

una nueva sefial que sobre o sub modela los datos
originales.

Considerando los operadores bdsicos de
reconstruccién (apertura y cerradura), la
propiedades de extensiéon y antiextension,
causan que la aplicaciéon de cada filtro sobre
una sefial original V;, resulte en #,.(V) o
Qur.(V) de tal manera que sub-modelan y
sobre-modelan la senal original. Ambos filtros
mantienen la tendencia global de la informacién
topolégica de V,,. Por consiguiente, el residuo
presenta informacién topoldgica importante. Sin
embargo, la distribucion de los datos cambia
significativamente: La forma de la derivada
de la senal original y la sefial aproximada
son diferentes cambiando las propiedades
estadisticas de la pdf. La Figura 8 presenta
la funcién de densidad de probabilidad (pdf) a
través de su histograma después de aplicar los
operadores morfolégicos de reconstruccién sobre
una senial V,,. Observe que el histograma del
operador de apertura presenta una desviacién
negativa (ver Figura 8 (a)), lo que significa
que la superficie aproximada es sub modelada.
Por otro lado, cuando se aplica un operador de
cerradura la senal original es sobre modelada y
su histograma se desvia hacia el lado positivo del
rango (ver Figura 8(b)).

La propuesta consiste en mezclar ambos
filtros (apertura y cerradura), preservando la
informacién estadistica de la senal original. Los
efectos del ruido estan representados por las
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altas frecuencias. Estas frecuencias deberian ser
eliminadas preservando la tendencia de la senal
original V,,. Las frecuencias descartadas estan
directamente relacionadas con el tamafio del
elemento estructural y el proceso de muestreo, es
decir, dado un elemento estructural de tamaifo
k representa una temporalidad de kf, donde
f es la frecuencia de adquisicién media de V.
El proceso de filtrado f(V},) es estadisticamente
consistente si y sélo si V', menos V,, preservan
la siguiente igualdad:

p(Vo = V) = G(0,0). (11)

La funcién de distribucion de densidad de la
diferencia entre los datos filtrados y los datos
originales es una distribucién normal centrada en
el origen. El desarrollo del filtro estadisticamente
correcto debe satisfacer la ecuacién (10), donde
se aprecia que la apertura y cerradura de
los operadores de reconstruccién proporcionan
informacién Bias negativo y Bias positivo de
la superficie aproximada. La senal original se
encuentra entre la apertura por reconstrucciéon y
la cerradura por reconstruccién respectivamente,
de tal manera que 7,.(V) <V, < @,rn(V).

Por consiguiente, para la estimacién de V,,
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utilizando 7,1 (V) y ¢.r(V) teniendo en cuenta
que E[{Ni._,}] =0, una aproximacién a V,, es:

FIV) = a19un(V) + a2@ur(V) (12)

donde los valores a; y g estdn dentro del
rango entre [0,1] y su suma es la unidad.
En caso de que 7,.(V) v ¢ur(V) utilicen el
mismo elemento estructural, oy = as = 0.5.
Estos valores pueden variar dependiendo de
los efectos de la geometria en el proceso de
reconstruccion. El filtro descrito anteriormente
se denota como un proceso de reconstruccion
medio. Una extension de este filtro implica una
forma secuencial, en donde, las propiedades del
elemento estructural utilizado en la etapa de
reconstruccion debe ser variado de la siguiente
forma: Sea p(uL,k) una funcién que devuelve
un elemento estructural con otras propiedades
particulares para el instante k, versién secuencial
del filtro medio de reconstruccién se define como:

ffj(“L’k)(V) — fﬁ(uL,k).fﬁ(uLyk—l)(V).. . ..fﬁ(ﬂLvl)(V)

(13)

Se observa que la funcién p(ulL, k) podria

variar el tamafio y la topologia del elemento

estructural. La topologia y el tamafo afectard
el modelo que se ajusta a los datos reales.
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Figura 9. a) Proceso de reconstruccién medio, b) Histograma de diferencias de la superficie original y
la superficie reconstruida donde el valor esperado esté centrado en cero, representando una distribucién

normal.
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Tabla 1. Errores del modelo ajustado a los datos. Los resultados muestran que se obtienen
pequenos errores de medicién cuando es aplicado el filtro propuesto. Los errores marcados en
porcentaje muestran la relacion entre el porcentaje del error y la resolucion del sensor. Esta
medida representa el porcentaje de error del ajuste.

Filtrado Sin Filtrar

Célula BIAS RMSE BIAS% RMSE% BIAS RMSE BIAS% RMSE%
1 0.0996 0.0415 0.0389 0.0162  0.0967 385.1  0.0378  150.4297
2 0.5179 0.4742 0.2023 0.1852  0.1611 1304.4 0.0629  509.5313
3 0.6913 1.753  0.2700 0.6848  0.3772 7913.6 0.1473 3091.2500
4 1.1718 1.2087 0.4577 0.4721  0.3229 2906.9 0.1261 1135.5078
5 0.6538 0.7799  0.2554 0.3046  0.2144 2339.9 0.0838 914.0234
6 0.7412 1.0012 0.2895 0.3911  0.1904 2306.6 0.0744 901.0156
7 1.3467 1.2601 0.5261 0.4922 0.2079 1718.6 0.0812 671.3281
8 1.138 1.3794  0.4445 0.5388  0.2082 2282.1 0.0813  891.4453
9 0.501 0.4614 0.1957 0.1802 0.1823 1566.5 0.0712 611.9141
10 1.476 1.1212 0.5766 0.4380 0.1832 1198.6 0.0716  468.2031
11 1.4346 0.9506 0.5604 0.3713  0.1091 620.1 0.0426  242.2266
12 1.173 1.6871  0.4582 0.6590  0.3167 4.109  0.1237 1.6051
13 0.332 0.2412 0.1297 0.0942 0.1132 0.5596  0.0442 0.2186
14 0.351 0.1794 0.1371 0.0701  0.1601 703.2  0.0625  274.6875
15 0.7043 0.7558 0.2751 0.2952  0.2293 2077.9 0.0896 811.6797
16 1.6021 3.0539 0.6258 1.1929  0.2142 2721.2 0.0837 1062.9688
17 0.2594 0.1767 0.1013 0.0690  0.1605 999.4  0.0627  390.3906
18 0.1688 0.0566 0.0659 0.0221  0.1144 343.6  0.0447 134.2188

El efecto de aplicar el filtro medio de la
reconstruccion se ilustra en la Figura 9, donde se
presentan los datos originales (de color azul) y
los datos filtrados (color rojo). Como se aprecia,
la senal filtrada sigue la tendencia principal de la
senal original, descartando las altas frecuencias,
manteniendo propiedades estadisticas como se
aprecia en la Figura 9 (b). Esta figura
muestra la diferencia de la senal filtrada y
la sefial original.  Esta propiedad es ideal
para el filtrado de los datos, mejorando los
resultados cuando los datos son ajustados a
la funcién de decaimiento exponencial. Para
un analisis detallado el error BIAS y el error
RMSE fueron calculados (ver Tabla 1) ambos
sobre la senal filtrada y sin filtrar. Note que
el error BIAS se comporta similar en ambos
escenarios, contrariamente con el error RMSE
el cual estd profundamente reducido cuando la
senial es filtrada, lo que significa que ajuste de
los datos presenta mejores resultados, después

de filtrar los datos. Observe el nivel de error
asociados a los modelos en las columnas referidas
a los errores absolutos en funcién de la resolucién
del sensor. Estos porcentajes después de aplicar
el filtro no sobrepasan el 1.5%, lo que en general
brinda una precisién alta para las mediciones de
calcio[1,21,22].

RESULTADOS OBTENIDOS Y
DISCUSION

La propuesta descrita anteriormente es probada
bajo un método experimental que consiste en
analizar una secuencia de 1000 im&agenes que
contienen en su interior células de ranas Xenopus
laevis. Particularmente, para medir el efecto
del Ca?* las células fueron excitadas aplicando
Fluor -4. EI proceso se ilustra en la Figura
10. El diagrama de proceso resume la secuencia
de etapas de procesamiento realizadas sobre la
secuencia.
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Figura 10. Diagrama de bloques de la propuesta.

La secuencia de imagenes fue adquirida por
investigadores del Instituto de Neurobiologia,
Campus UNAM-UAQ. La secuencia se obtuvo
de células de ranas Xenopus laevis. El calcio
es medido indirectamente con la excitaciéon de
las células través de Fluor-4 (por Molecular
Probes). El material Optico consiste en un
microscopio de fluorescencia con un sensor
de cdmara Olympus IX71 en 485 a 520 nm
de longitud de onda (excitacién-emisién); las
imagenes fueron obtenidas con una camara de
adquisicién QEI Evolution Media Cybernetics; a
30 frames por segundo (fps) con una resolucién
de 320 x 240 pixeles. Finalmente, para propositos
de prueba, 1,000 imagenes fueron utilizadas; que
representa una secuencia de 33 segundos.

La deteccion de células es wuna tarea
dificil debido a que existen factores que
afectan directamente el proceso de andlisis
en las imAagenes como el ruido, el bajo
contraste, la luminosidad no homogénea del
escenario y las caracteristicas particulares de las
células(contornos no definidos y solapamiento
) afectando el reconocimiento de las células
de interés. Después de la adquisicién de

las imagenes, el primer paso para estudiar el
comportamiento de Ca?* consiste en encontrar
y segmentar de manera automatica cada célula
en la secuencia. Este proceso es realizado
aplicando el enfoque Lineas Divisoras de Aguas
Controlada por Marcadores. Sin embargo a
partir de la primera imagen adquirida no se
garantiza la detecciéon de células correctas. Para
hacer la deteccién de células un proceso mas
robusto, para cada imagen en la secuencia,
cada célula es detectada automaticamente, como
se describe en las secciones anteriores. La
concentracién de calcio se lleva a cabo por la
medida de luminosidad de cada célula. La
relaciéon entre la intensidad de luminancia de
las células esta altamente correlacionada con la
concentracion de calcio; es decir, células con
alta luminancia tendran mayor concentracion de
calcio. Por otro lado, la creaciéon del modelo de
comportamiento resulta una tarea dificil, debido
a que el comportamiento observado no es lineal
siendo apropiado el uso de métodos de auto-
regresion. Por otro lado observe que el modelado
es util a partir de la excitacién de las células,
por lo que la dindmica del calcio se modela como
una funcién exponencial a través de método de
minimos cuadrados.

Los datos seleccionados abarcan desde la
ubicaciéon de maximos al final de la secuencia.
Para mejorar la precision del modelado, antes
de aplicar el método de minimos cuadrados,
el proceso de reconstruccién es aplicado.
Finalmente en la Figura 11, se muestra que las
células son detectadas automaticamente. En
la Figura 11(b) se muestran las células que
presentaron los cambios de fluorescencia mas
importantes, es decir aquellos con la mayor
variacion de fluorescencia, mientras que la
Figura 11(c) se observa la dindmica que es
modelada como una exponencial superpuesta
sobre los datos de medida. El uso del
proceso medio descarta las altas frecuencias
suavizado el comportamiento de las variaciones
de luminancia. La disminucién de altas
frecuencias garantiza que el ajuste exponencial
sea mas robusto y preciso tiene mas importancia,
incluso atin cuando los datos se ven afectados por
ruido.
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Tabla 2. Indices de reconocimiento de las diferentes combinaciones del
detector de células.

Células
Detectadas(+) No detectadas(-)
Prueba  Células detectadas(+) VP=0.94 FP=0.06
Células no detectadas (-) FN=0.04 VN=0.96
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Figura 11. (a)Células segmentadas, (b) células
con mayor intensidad y ( ¢) ajuste de minimos
cuadrados.

Para medir la eficiencia global del método
para las secuencias de iméagenes se calcularon
dos indicadores estadisticos: sensibilidad (S) y

especificidad (F).

La sensibilidad (S) o fraccién de verdaderos
positivos (FVP) se calcula a partir de la
siguiente relacion:

VP

S=VPIFN (14)

donde VP es verdaderos positivos y F'IN falsos
negativos.

Mientras que la especificidad (E) o fraccién
de verdaderos negativos (F'VN) se calcula de la
manera siguiente:

VN

F=e—"
FP+VN

(15)
donde VN es verdaderos negativos y F'P falsos
positivos. En la tabla 2 se muestran los indices de
reconocimiento obtenidos. A partir de esta tabla
los estadisticos S y E se calculan, obteniendo
S =095y E =0.94. Estos valores indican que
el indice de reconocimiento de las células tiene
una confiabilidad mayor del 94%, lo cual valida
el método propuesto garantizando una correcta
segmentacion y localizacion de las células.

CONCLUSIONES

En este articulo se presenta un método
automatico para el estudio de calcio intracelular
aplicando el método de Lineas Divisoras de
Aguas controlada por Marcadores para la
segmentacion y la introduccién de un nuevo
proceso de reconstrucciéon para el mejoramiento
de los datos. El método de segmentacion de los
marcadores resulta eficiente para encontrar todas
las células en la secuencia de imagenes. Por
otro lado, el modelado de los datos es robusto
debido a que descarta la medicion del ruido.
Finalmente, los operadores de reconstruccion



86 Revista Mexicana de Ingenieria Biomédica - volumen 34 - nimero 1 - Abril, 2013

se aplican sobre una dimensién de datos el
resultado es util para el desarrollo de filtros que
ayuda a crear modelos de la dindmica del calcio
intracelular.
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