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RESUMEN
En este trabajo se presenta un método para medir la variación del
calcio intracelular en células foliculares. Esta propuesta consiste en
dos etapas: (i) La detección de los núcleos de las células; y (ii)
el análisis de las variaciones de fluorescencia. La primera etapa se
realiza a través de la transformada modificada de líneas divisoras
de agua controlada por marcadores (en inglés: Modified-Watershed
Transformation) controlando el proceso de etiquetado de células por
el establecimiento de criterios particulares. El proceso de detección
homogeniza las condiciones de luminosidad a través de un filtro
morfológico y utiliza como descriptores a los bordes de las células.
En la segunda etapa, se asocia la variación de la fluorescencia con los
cambios de Ca2+ intracelular donde la variación se modela como una
función exponencial decreciente. Luego, se presenta un nuevo proceso
morfológico, denominado proceso de reconstrucción medio, que permite
suavizar los datos para el proceso de modelado. Este proceso utiliza la
información del sub modelado y sobre modelado de la señal, mediante
las propiedades de los operadores de reconstrucción, conservando la
estructura interna de la señal original. Finalmente, en un proceso
experimental utilizando células de anfibios, se muestran los resultados
obtenidos después de aplicar la propuesta a un grupo de células.
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ABSTRACT
This paper presents a method for the measurement of the variation
of intracellular calcium in follicular cells. This proposal consists
in two stages: (i) The detection of the cell’s nuclei, and (ii) the
analysis of the fluorescence variations. The first stage is performed
with the modified-watershed transformation, where the marker process
is controlled by establishing own criterion. The detection process
homogenizes the luminance conditions through a morphological filter
and uses as descriptors the edges of the cells. In the second stage, the
variations of fluorescence are associated with changes in intracellular
Ca2+, which are modeled as an exponential decay function. Then,
we present a new morphological process called medium reconstruction
process, that smoothes the data in the process of model creation. This
process uses the information of under and over model of the signal,
through the properties of reconstruction operators, keeping the internal
structure of the original signal. Finally, using amphibian cells in an
experimental process, the results obtained are showed after applying
the proposal to a group of cells.

Keywords: cells, markers, segmentation, filtering.

INTRODUCCIÓN

El Calcio (Ca2+) es un ion responsable
de controlar diversos procesos celulares
[1,2]. El Ca2+ actúa como un segundo
mensajero intracelular, desencadenando
diversos eventos patológicos, como lesiones
y muerte de las células, además que
participa en eventos patológicos globales como
hipertensión, arritmia cardíaca, problemas
hematológicos, enfermedades musculares,
trastornos hormonales, entre otros [1,3,4]. La
función del Ca2+ en estas enfermedades, resulta
por consecuencia un tema de interés. En
tiempo reciente, se sabe que el Ca2+ que induce
condiciones patológicas, se puede encontrar
con la ayuda de sustancias que interfieren con
el movimiento o activación del Ca2+ [4,5].
Debido a esta importancia del Ca2+, se han
desarrollado técnicas (ópticas y no ópticas) para
analizar la dinámica y la concentración del
Ca2+ intracelular. En concreto, las técnicas
de microscopía de fluorescencia se utilizan
frecuentemente para observar la variación de
la concentración de Ca2+ intracelular aplicando
como marcadores los indicadores fluorescentes.
Estos indicadores estimulan las células causando
un efecto de fluorescencia6. La fluorescencia se
detecta mediante un microscopio y un arreglo

de sensores CCD. Para determinar las células
con mayores variaciones de fluorescencia, se
analiza una secuencia de video que contiene la
evolución del marcador en el tiempo. El usuario
selecciona manualmente y analiza todas las
imágenes de la secuencia con el fin de determinar
los cambios de fluorescencia en el tiempo. Sin
embargo, este proceso consume tiempo, además
que los recursos humanos son susceptibles a
errores de medición. Por tal circunstancia, el
proceso de segmentación de las células y el
estudio de la dinámica del Ca2+ intracelular,
representan el principal objetivo en este trabajo.
Una tarea de utilidad en el estudio del Ca2+

intracelular consiste en la segmentación de cada
célula mediante el análisis de las imágenes de
la secuencia de video en forma automática. Sin
embargo, la segmentación de las imágenes es una
tarea que resulta difícil debido a las condiciones
cambiantes del medio ambiente que en ocasiones
suelen ser incontrolables. En la literatura se
observa que de acuerdo a las propiedades de las
células, varios métodos de segmentación han sido
propuestos.

La mayoría de estos consisten en segmentar
diferentes partes de las células tales como el
núcleo o la células completas (citoplasma y
núcleo)[7]. Para segmentar diferentes tipos
de células han surgido diferentes enfoques:
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Nattkemper et al. [8] usa redes neuronales
para segmentar de células, sin embargo su
enfoque se fundamenta en el aprendizaje previo
de prototipos los cual limita la robustez del
método. Pham et al. [9] se basa en el
algoritmo fuzzy c-means para segmentar las
células. Anoraganingrum et. al.[10] aplica región
de crecimiento y segmentación adaptativo para
localizar y segmentar las células. Gauthier [11]
propone un método para segmentar las células
utilizando una umbralización jerárquica. Metzler
et al.[12] hace uso de la morfología multiescala
para separar células. Whablby et al.[13] utiliza el
algoritmo de Watershed para segmentar células
pero no separa el solapamiento entre estas.

La Línea Divisora de Aguas controlada
por Marcadores, por otro lado, es el método
tradicional de segmentación de imágenes basado
en Morfológica Matemática [14, 15,16]. Pero, el
éxito de este método depende de la detección
correcta de los marcadores en la imagen.
Los marcadores se pueden detectar de forma
manual o automática. Por otro lado enfoques
automáticos ayudan al especialista a ahorrar
tiempo y recursos. Sin embargo, existen factores
que afectan al rendimiento de la detección
automática de los marcadores, tales como el
ruido, las oclusiones de células y los cambios
bruscos en las imágenes. Estos factores
pueden producir sobre segmentación en las
imágenes, creando regiones que contienen células
múltiples. Por esta razón, varios enfoques han
sido desarrollados para mejorar el proceso de
segmentación de células[13].

En este trabajo, se introduce un método
para analizar automáticamente la variación de
calcio intracelular. Este enfoque consiste en
dos etapas: 1) El mejoramiento de imágenes
de la secuencia y la segmentación de células, y
2) el modelado de la variación del calcio. El
mejoramiento de las imágenes se realiza con un
filtro morfológico que homogeniza las condiciones
lumínicas. El proceso de segmentación de las
células se realiza usando las Líneas Divisoras
de Aguas Controlada por Marcadores y por
filtros por reconstrucción, los cuales son
utilizados para detectar los marcadores de
manera eficiente; después, mediante la propiedad
de homotopía en una imagen discreta, se

calcula el gradiente. En general este método
permite segmentar células aisladas y también
células que se forman componentes conexas más
complejas (componentes no conexas). En una
determinada imagen de la secuencia, para una
célula particular, el volumen de la cantidad
de calcio está altamente correlacionado con
la intensidad lumínica observada. Utilizando
la intensidad lumínica, el volumen para cada
célula es calculado, y de forma general,
también su comportamiento a lo largo de la
secuencia. Con la información obtenida en las
diferentes imágenes, mediante un ajuste por
mínimos cuadrados se estiman los parámetros
del comportamiento de la variación de la
fluorescencia para una función exponencial.
Este modelo es una función exponencial
decreciente. Para mejorar el modelo un proceso
morfológico novedoso denominado filtro medio
es introducido. Sin embargo, la medición
en cada imagen de la secuencia y el error
de detección causa que el volumen contenga
un error inducido. De tal forma que puede
afectar en la estimación paramétrica del modelo
exponencial. Por esta situación, se introduce un
proceso morfológico que utilice las propiedades
de los filtros por reconstrucción (sub modelado
y sobre modelado), conservando la estructura
morfológica de la información de la señal original.
Finalmente, el procedimiento mostrado permite
estimar de una manera robusta la ecuación de
decaimiento que modela el comportamiento del
Ca2+.

El trabajo está organizado de la siguiente
manera. En la siguiente sección se presenta
una revisión de los fundamentos de morfología
matemática. En la sección 3, se presenta
un método basado en la transformada Líneas
Divisoras de Aguas Controlada por Marcadores
para la detección automática de las células.
Luego, en la sección 4, se muestra el
procedimiento para estimar el volumen de
cada célula marcada a partir de la intensidad
de fluorescencia a lo largo del tiempo.
Posteriormente se presenta el procedimiento
morfológico para mejorar los datos de los
volúmenes de las células estimadas para toda
la secuencia de imágenes; después el ajuste
por mínimos cuadrados para estimar el modelo
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exponencial. Por último, en la sección 5 se
presentan y discuten los resultados luego de
aplicar la propuesta a un conjunto de células
de anfibios y las conclusiones.

CONCEPTOS BÁSICOS DEL
FILTRADO MORFOLÓGICO

La Morfología Matemática se basa
principalmente en transformaciones crecientes
e idempotentes [14-16]. El uso de ambas
propiedades juega un papel fundamental en la
teoría del filtrado morfológico y desarrollo de
esquemas de agrupamiento en sistemas discretos.
A toda transformación creciente e idempotente
se le conoce como filtro morfológico [16-17]. Los
filtros morfológicos básicos son la apertura γµB
y la cerradura ϕµB morfológicas; ambas usan un
elemento estructural dado µB. Típicamente el
elemento estructural B se representa una base
y origen en el centro del mismo; por ejemplo,
3 × 3 píxeles. Consecuentemente B̂ denota a
su conjunto transpuesto que está definido por
B̂ = {−x : x ∈ B} ; µ es un factor de escala.
Bajo esta notación, la apertura y la cerradura
morfológica están definidas respectivamente por:

γµBf(x) = δµB(εµB(f));
y

ϕµBf(x) = εµB(δµB(f))
(1)

Donde εµB(f(x)) = Λ{f(y) : y ∈ µB̆x y
δµB(f(x)) = V {f(y) : y ∈ µB̆x}, son la erosión
y la dilatación respectivamente, mientras que
Λ es el operador ínfimo y V el supremo. Por
simplicidad de la notación, el conjunto B será
omitido de las expresiones; asumiendo que γµ y
γµB son equivalentes. En particular, cuando el
factor de escala µ = 1, también será omitido,
esto es δµB = δB = δ.

Otra clase de filtros está formada
por la apertura y la cerradura por
reconstrucción[17,18]. Estos filtros morfológicos
se construyen utilizando las transformaciones
conocidas como dilatación y erosión geodésicas.

Estas transformaciones están dadas por δ1
f (g) =

fΛδB(g) con f ≥ g, para la dilatación geodésica
y ε1

f (g) = f ∨ εB(g) con f ≤ g, para la erosión.
A partir de estas transformaciones geodésicas
básicas se construyen las transformaciones por
reconstrucción iterando dichas transformaciones
hasta la estabilidad (idempotencia) [18].

R(f, g) = lim
n→∞

δnf (g) = δ1
fδ

1
f . . . δ

1
f (g)︸ ︷︷ ︸

Hasta estabilidad

R∗(f, g) = lim
n→∞

εnf (g) = ε1
f ε

1
f . . . ε

1
f (g)︸ ︷︷ ︸

Hasta estabilidad

(2)

En particular cuando la función g está dada por
la erosión o la dilatación se obtienen la apertura
y cerradura por reconstrucción:

γ̃λ(f) = R(f, ελ(f))
y

ϕ̃λ(f) = R ∗ (f, δλ(f))
(3)

DETECCIÓN AUTOMÁTICA DE
CÉLULAS

La transformada de líneas divisoras de
aguas es un método muy útil en la
segmentación de imágenes basado en Morfología
Matemática[17,18]. Esta transformación hace
uso de un conjunto de filtros morfológicos. Esta
transformada se utiliza para la segmentación
de imágenes, evitando la sobre-segmentación[16-
18]. El criterio de sobre-segmentación consiste
en establecer un límite superior en el número
de regiones mínimas detectadas. Este proceso
se realiza con la imposición de los mínimos
de los marcadores, mediante el uso de la
propiedad de homotopía de los operadores. Sin
embargo, es necesario hacer algunos supuestos
para utilizar este enfoque. Una suposición
importante consiste en definir marcadores
unívocos para cada uno de los objetos de interés.
Particularmente estos marcadores representan el
centro del objeto (en el caso de células, el núcleo
de la misma; y (2) la estimación de los contornos
es calculada con operadores morfológicos[17-19].
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𝑇ℎ𝑤!Β 𝐼 = 𝛾! 𝐼! 𝑥 − 𝐼! 𝑥  (4) 

 

Donde las dimensiones del elemento estructural 𝜆𝐵 están relacionadas con las condiciones lumínicas del 

escenario, de tal manera que la distribución de luminosidad en la imagen puede ser representada por una 

apertura morfológica  𝛾!. Cuando la dimensión del elemento estructural es morfológicamente similar a los efectos 

de la luminosidad causada por una fuente de luz global, estos efectos pueden ser disminuidos por la apertura 

morfológica, en cambio, otras variaciones, que representan cambios locales de luminosidad son ignorados. Este 

proceso es ilustrado en la Figura 1,  donde las imágenes han sido codificadas en pseudo-color.  

  

(a) (b)  

  
(c) (d) 

Figura 1. (a) Imagen original; (b) imagen original representada en pseudo-color; (c) apertura morfológica; e  (d) 

imagen obtenida después de la corrección del fondo. 

 

En general las imágenes estaban formadas por células aisladas y también por células que se tocan formando 

componentes conexas más complejas (componentes no convexas) como se ilustra en la Figura 2(a).	
  Al aplicar 

directamente la transformada mínima sobre las imágenes se observa que varios mínimos regionales son 

detectados, incluyendo datos con ruido (Figura 2(b)). Para evitar la detección de mínimos adicionales, se aplica 

una cerradura por reconstrucción. En la Figura 2(c) se aprecia el efecto de aplicar un filtro en la detección de 

mínimos locales. Particularmente, la mayoría de los núcleos de las células son detectados, pero otros han sido 

omitidos; esto es debido a que parte del  citoplasma no está completamente cerrado, es decir es no conexo. Esta 

situación se soluciona utilizando las subsecuentes imágenes de la secuencia, donde de igual forma, los mínimos 

son detectados. El objetivo consiste en detectar para toda la secuencia de imágenes los mínimos que 

representan a los centros de las células, aunque existan mínimos espurios. La repetibilidad del proceso tendrá 

por consecuencia que la probabilidad de encontrar los centros de las células sea alta, mientras, que aquellos 

Figura 1. (a) Imagen original; (b) imagen original representada en pseudo-color; (c) apertura
morfológica; e (d) imagen obtenida después de la corrección del fondo.

DETECCIÓN DE MARCADORES

Debido a las características de las imágenes, el
núcleo de las células es utilizado como un buen
marcador. Un mínimo regionalM de una imagen
en escala de grises I es una componente conexa
de pixeles con altitud uniforme sin vecinos
inferiores. Como se observa en la Figura 1(a)
el núcleo de las células está rodeado de una
región brillante (citoplasma). Sin embargo, las
condiciones lumínicas de cada célula difieren
entre sí, afectando la detección de los núcleos.
Por tal sentido, para homogenizar las condiciones
lumínicas se utiliza un filtro Top Hat. Entonces,
para una secuencia de imágenes {Ii}i∈S la
transformación Top-Hat es definida como:

ThwλB(I) = γµ(Ii)(x)− (Ii)(x) (4)

Donde las dimensiones del elemento estructural
λB están relacionadas con las condiciones
lumínicas del escenario, de tal manera que la
distribución de luminosidad en la imagen puede
ser representada por una apertura morfológica
γµ. Cuando la dimensión del elemento
estructural es morfológicamente similar a los

efectos de la luminosidad causada por una
fuente de luz global, estos efectos pueden
ser disminuidos por la apertura morfológica,
en cambio, otras variaciones, que representan
cambios locales de luminosidad son ignorados.
Este proceso es ilustrado en la Figura 1, donde
las imágenes han sido codificadas en pseudo-
color.

En general las imágenes estaban formadas
por células aisladas y también por células
que se tocan formando componentes conexas
más complejas (componentes no convexas)
como se ilustra en la Figura 2(a). Al aplicar
directamente la transformada mínima sobre
las imágenes se observa que varios mínimos
regionales son detectados, incluyendo datos con
ruido (Figura 2(b)). Para evitar la detección
de mínimos adicionales, se aplica una cerradura
por reconstrucción. En la Figura 2(c) se aprecia
el efecto de aplicar un filtro en la detección de
mínimos locales. Particularmente, la mayoría
de los núcleos de las células son detectados,
pero otros han sido omitidos; esto es debido a
que parte del citoplasma no está completamente
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(a) (b) (c) 

   

(d) (e) (f) 

 
(g) 

 

Figura 2. (a) Imagen original; (b) mínimos regionales de la imagen original;  (c) mínimos obtenidos después de 

aplicar una cerradura por reconstrucción; (d) función construida de los mínimos a partir de la secuencia de 

imágenes; (e) cerradura morfológica 𝜑!!!;   (f) mininos obtenidos por la diferencia: 𝑀! 𝑥 = 𝑀! 𝑥 − 𝛾!!!(𝑀! 𝑥 ,  y 

(g) conjunto de marcadores obtenidos por la función 𝐼!(𝑥). 

 

Operador Gradiente 

La Transformada de Líneas Divisoras de Aguas controlada por Marcadores hace uso del operador de gradiente 

para imponer los marcadores15-19. En este sentido, el gradiente morfológico puede utilizarse como un detector de 

contornos. Sea 𝐼(𝑥) una función definida en ℤ! y 𝐵 el elemento estructural básico de dimensión 3×3, con centro 

en el punto 𝑥. La transformación en un espacio discreto es definida como: 

∇!𝐼(𝑥) = 𝛿!𝐼 𝑥 − 𝜀!𝐼(𝑥). 

 

(6) 

En Morfología Matemática existen otras dos variantes del gradiente: (a) el gradiente interno y  (b) el gradiente 

externo, que están definidos respectivamente, como sigue: 

Figura 2. (a) Imagen original; (b) mínimos regionales de la imagen original; (c) mínimos obtenidos
después de aplicar una cerradura por reconstrucción; (d) función construida de los mínimos a partir
de la secuencia de imágenes; (e) cerradura morfológica ϕλ=3; (f) mininos obtenidos por la diferencia:
Mi(x) = Mi(x)− γλ=6Mi(x), y (g) conjunto de marcadores obtenidos por la función Im(x).

cerrado, es decir es no conexo. Esta
situación se soluciona utilizando las subsecuentes
imágenes de la secuencia, donde de igual forma,
los mínimos son detectados. El objetivo
consiste en detectar para toda la secuencia de
imágenes los mínimos que representan a los
centros de las células, aunque existan mínimos
espurios. La repetibilidad del proceso tendrá por
consecuencia que la probabilidad de encontrar
los centros de las células sea alta, mientras, que
aquellos mínimos que representan datos espurios
son descartados. Para obtener la frecuencia
de ocurrencia de los mínimos se construye una
función como sigue:

Sea {Ii}i∈S el conjunto de imágenes de la
secuencia y {Mi}i∈S el conjunto de imágenes que
contiene los mínimos respectivamente. Mi(x) es
una imagen binaria de tal forma que esta toma
el valor de 1 si el punto x pertenece a la región
mínima y 0 en otro caso. Posteriormente con el
resto de las imágenes de la secuencia se calcula
la sumatoria Im como sigue:

Im(x) =
∑
i∈S

Mi(x) (5)

La imagen Im se muestra en la Figura 2(d),
en ella se observan las regiones mínimas que
tienen más frecuencia de observarse en todas las
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3.3 Imposición de Mínimos por Reconstrucción 

 

Una vez que las células marcadas son detectadas, éstas  son impuestas en la imagen  gradiente19. Para llevar a 

cabo esta tarea el siguiente procedimiento fue llevado a cabo: Sea 𝑀 el conjunto de marcadores (núcleos de las 

células) y 𝑔 la imagen del gradiente (contornos de las células). Respectivamente, dos funciones nuevas son 

construidas: La primera, consiste en una función de umbral 𝑓 𝑥 , la cual es definida como 𝑓 𝑥 = 255, 𝑥 ∉ 𝑀;
0,        𝑥 ∈ 𝑀 ; 

mientras que la segunda es construida a través de la imagen gradiente como 𝑔′ 𝑥 = 𝑔(𝑥), 𝑥 ∉ 𝑀;
0,                𝑥 ∈ 𝑀  . La 

reconstrucción  dual morfológica de 𝑓(𝑥) en el interior de 𝑔′(𝑥) se realiza por 𝑅∗ 𝑔′, 𝑓    La función 𝑅∗ 𝑔′, 𝑓     solo 

contiene los mínimos de 𝑀, de tal manera que la transformación de Líneas Divisoras de Aguas se puede aplicar.  

 

   

(a) (b) (c) 

   
(d) (e) (f) 

 

Figura 3. Operadores gradiente. a) Imagen original; (b) gradiente interno; (c) gradiente externo; (d) imagen 

original; (e)gradiente interno y (f)gradiente externo 

Modelado de  la dinámica del calcio intracelular 

 

Figura 3. Operadores gradiente. a) Imagen original; (b) gradiente interno; (c) gradiente externo; (d)
imagen original; (e) gradiente interno y (f) gradiente externo.

imágenes. En este caso, las regiones mínimas,
como corresponden a los núcleos de las células.
Se observa en las Figuras 2(c) y 2(d) que la
mayoría de mínimos son detectados, sin embargo
otras áreas conexas fueron detectadas también.
Para eliminar las áreas conexas adicionales se
aplica un proceso de umbralización.

Para nuestro caso de estudio, se sabe que
cada célula tiene alrededor de cuatro pixeles de
radio. Entonces, un operador morfológico de
cerradura con un tamaño de elemento estructural
de 4 píxeles de dimensión en su radio se utiliza
para conectar las regiones aisladas. Luego, una
cerradura morfológica de tamaño 3 se aplica
para rellenar los agujeros pequeños. Estos
resultados se aprecian en la Figura 2 (c), antes
de aplicar el filtro, y en la Figura 2 (e), después
de aplicar filtro. Posteriormente, en la Figura
2(d), calculando la sumatoria de los mínimos
en la secuencia Im, los mínimos son detectados.
Finalmente, regiones conexas con áreas grandes
son descartadas, denotando los núcleos de las
células.

OPERADOR GRADIENTE

La Transformada de Líneas Divisoras de Aguas
controlada por Marcadores hace uso del operador
de gradiente para imponer los marcadores[15-19].
En este sentido, el gradiente morfológico puede
utilizarse como un detector de contornos. Sea
I(x) una función definida en Z2 y B el elemento
estructural básico de dimensión 3×3, con centro
en el punto x. La transformación en un espacio
discreto es definida como:

∇BI(x) = δBI(x)− εBI(x). (6)

En Morfología Matemática existen otras dos
variantes del gradiente: (a) el gradiente interno
y (b) el gradiente externo, que están definidos
respectivamente, como sigue:

∇BI(x) = I(x)− εBI(x)
∇BI(x) = δBI(x)− I(x)

(7)

Donde δBI(x) y εBI(x), representan la
dilatación y la erosión de la superficie I(x)[17].
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En la Figura 3 se muestran los gradientes
internos y externos correspondientes a dos
secuencias de imágenes distintas. El uso de
alguno de los distintos tipos de gradiente afecta
en que puede generar bordes dobles en la imagen.
Los bordes detectados corresponden a la zona
entre el núcleo de la célula y el citoplasma y otra
entre el citoplasma y el fondo de la imagen. Para
la detección del borde verdadero se realizaron
distintas pruebas en las imágenes. Concluyendo,
el gradiente externo es el que ofrece mayor
suavizado evitando la detección de bordes dobles,
en el caso de la segmentación de las células.

IMPOSICIÓN DE MÍNIMOS POR
RECONSTRUCCIÓN

Una vez que las células marcadas son detectadas,
éstas son impuestas en la imagen gradiente[19].
Para llevar a cabo esta tarea el siguiente
procedimiento fue llevado a cabo: Sea M el
conjunto de marcadores (núcleos de las células)
y g la imagen del gradiente (contornos de las
células). Respectivamente, dos funciones nuevas
son construidas: La primera, consiste en una
función de umbral f(x), la cual es definida

como f (x) =
{

255, x /∈M
0, x ∈M ; mientras que la

segunda es construida a través de la imagen

gradiente como g′ (x) =
{
g(x), x /∈M
0, x ∈M . La

reconstrucción dual morfológica de f(x) en el
interior de g′(x) se realiza por R ∗ (g′, f). La
función R ∗ (g′, f) solo contiene los mínimos
de M , de tal manera que la transformación de
Líneas Divisoras de Aguas se puede aplicar.

Modelado de la dinámica del calcio
intracelular

En esta sección, se aborda el problema de generar
un modelo sobre la dinámica del decaimiento del
calcio intracelular. El procedimiento consiste en
tres partes: (1) la estimación del volumen de
calcio; (2) el ajuste de una curva exponencial y
(3) el cálculo del error.

Estimación del volumen de células

Las intensidades de las células están altamente
correlacionadas con la cantidad de calcio. La
tarea de crear un modelo del comportamiento
de calcio en cada célula, se aborda utilizando la
información del volumen de cada célula calculada
en todas las imágenes de la secuencia. El
histórico del volumen de cada célula se utiliza
como la entrada para generar el modelo de
la evolución de la dinámica del calcio. Las
medidas históricas de los volúmenes se denotan
por {Vn(i)}i∈S donde el subíndice n corresponde
a una célula particular e i representa el volumen
particular para cada tiempo i-ésimo. El volumen
se calcula con una aproximación discreta de
la integral V =

∫ xf
xi

∫ yf
yi
h(x, y)dydx que queda

expresada como la siguiente manera:

V ≈
xf∑
xi

yf∑
yi

h(x, y)∆y∆x (8)

Donde h(x, y) es la intensidad de la células
expresada como una superficie discreta h
(imagen).

En el caso de las imágenes de células se asume
que ∆x = ∆y = 1, debido a que se considera
como unidad métrica el pixel.

MODELADO DE LAS VARIACIONES
DEL CALCIO INTRACELULAR

Como se aprecia en la Figura 4, los estímulos
de la dinámica del calcio muestran un
comportamiento exponencial. Entonces, el
objetivo consiste en crear un modelo de
decaimiento de los estímulos de cada célula
en la secuencia. Donde, la región de interés
está localizada entre los máximos globales y
el final de la señal. Sin embargo, debido
al ruido, no es posible detectar fácilmente el
máximo. Para atenuar este inconveniente, se
realiza un proceso automático para la detección
de máximos para la función {Vn(i)}i∈S . El
proceso consiste en aplicar un filtro secuencial
alternado en un escenario unidimensional [20].
El filtro alternado está constituido por una
secuencia de una cerradura por reconstrucción
seguido por una apertura por reconstrucción
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intracelular. El procedimiento consiste en tres partes: (1) la estimación del volumen de calcio; (2) el ajuste de una 

curva exponencial y (3) el cálculo del error. 

 

 

Estimación del volumen de Células 

 

Las intensidades de las células están altamente correlacionadas con la cantidad de calcio. La tarea de crear un 

modelo del comportamiento de calcio en cada célula, se aborda utilizando la información del volumen de cada 

célula calculada en todas las imágenes de la secuencia. El histórico del volumen de cada célula se utiliza como 

la entrada para generar el modelo de la evolución de la dinámica del calcio. Las medidas históricas de los 

volúmenes se denotan por 𝑉!(𝑖) !∈!  donde el subíndice 𝑛   corresponde a una célula particular y 𝑖 representa el 

volumen particular para cada tiempo i-ésimo. El volumen se calcula con una aproximación discreta de la integral 

𝑉 = ℎ 𝑥, 𝑦 𝑑𝑦𝑑𝑥!!
!!

!!
!!

,  que queda expresada como la siguiente manera: 

 

𝑉 ≈ ℎ 𝑥, 𝑦 ∆𝑦∆𝑥,

!!

!!

!!

!!

 
(8) 

Donde ℎ 𝑥, 𝑦  la intensidad de la células expresada como una superficie discreta ℎ (imagen).  

En el caso de las imágenes de células se asume que ∆𝑥 =   ∆𝑦 = 1, debido a que se considera como unidad 

métrica el pixel. 
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ϕ̃µL(γ̃µL(V ))(i) donde el tamaño de µ es variado
en el intervalo [0, k]. El filtro aplicado a
la señal permite la detección de los máximos
globales de una manera eficiente. La Figura
5 ilustra la detección de un máximo detectado
que corresponde a un elemento conectado en el
espacio de una dimensión. El centro del elemento
de conexión representa la ubicación de máximos,
de tal manera que el máximo global se calcula
con la media de los elementos conectados, es

decir c({xi|xi ∈ R(xi, xj) = 1
n

∑n
i=1 xi}), de tal

manera que R(xi, xj) es una relación equivalente
del criterio de conectividad.

El comportamiento de la dinámica del calcio
para cada célula en particular es modelado como
una función de decaimiento exponencial de la
siguiente manera:

y = αeβx (9)

Donde α y β son parámetros de la función y
los datos utilizados son tomados de la posición
de máxima intensidad de la celula hasta el final
de la secuencia. La estimación de parámetros
se realiza por mínimos cuadrados de la siguiente

manera:
[
α
β

]
=
(
XTX

)−1
XTy, tal que X =

n∑
i=1

yi
n∑
i=1

xiyi
n∑
i=1

xiyi
n∑
i=1

x2
i yi

, y y =


n∑
i=1

yi ln yi
n∑
i=1

xi ln yi

, de
donde se tiene que yi, y xi representan la marca
de tiempo y el área de las intensidades para cada
célula. Para propósitos ilustrativos en la Figura
6 se muestra un ajuste de una célula particular.
La exponencial ayuda a modelar y analizar el
decaimiento de la intensidad registrada en cada
célula.
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𝑦!!
!!! 𝑥!𝑦!!

!!!

𝑥!𝑦!!
!!! 𝑥!!𝑦!!

!!!
 ,y  𝐲 =

𝑦! ln 𝑦!   !
!!!

𝑥! ln 𝑦!!
!!!

 , de 

donde se tiene que 𝑦! , y  𝑥! representan la marca de tiempo y el área de las intensidades para cada célula. Para 

propósitos ilustrativos en la Figura 6 se muestra un ajuste de una célula particular. La exponencial  ayuda a  

modelar y analizar el decaimiento de la intensidad registrada en cada célula. 

 
Figura 6. (a) volumen de las células en el tiempo muestran un comportamiento exponencial. 

 

Error de ajuste del modelo 

 

El criterio para garantizar la correcta construcción de un modelo se define mediante la introducción de dos 

medidas de error: el error BIAS y el error RMSE. La primera medida es un error de modelado mientras que la 

segunda medida es un error de precisión. El error BIAS proporciona información acerca de cómo el modelo se 

ajusta a los datos reales. Errores negativos significa que el modelo está  sub-modelando los datos reales. Por lo 

tanto, el error  BIAS positivo representa sobre-modelado en los datos. Valores cercanos a cero significa que el 

modelo captura la dinámica de los datos reales. Formalmente, el error BIAS se define como: 𝐵𝑖𝑎𝑠 𝑥, 𝑥∗ =

𝑥 − 𝑥∗!
!!! , donde 𝑥 representa los datos reales y 𝑥∗     los datos estimados.  Se observa que cuando el error BIAS 

es igual a cero no significa que el modelo sea correcto. Esto es, las mismas proporciones de las medidas 

estimadas con respecto  a la original están por debajo y arriba de los datos reales. Entonces, para cuantificar el 

error de precisión se utiliza el error RMSE. Este error es la media de las diferencias absolutas entre los datos 

reales y datos del modelado. El error RMSE se define como: 𝑅𝑀𝑆𝐸 𝑥, 𝑥∗ = !
!

𝑥∗ − 𝑥 !!
!!!   donde 𝑥∗representa 

la función de modelado y los datos reales 𝑥. 

El error de modelado, en este contexto está asociado a las diferencias existentes entre la lectura del sensor y el 

ajuste de la curva hecha. Este error además está en función de la resolución del sensor. En cada medición es 

necesario calibrar las intensidades a unidades típicas del experimento (usualmente 𝜇𝑀), pero en el sentido de 

Figura 6. (a) volumen de las células en el tiempo
muestran un comportamiento exponencial.

 
Figura 7. Histograma de la medición experimental de puntos arbitrarios del sensor. A las mediaciones obtenidas 

se les ha restado el valor esperado. 

 

Considerando los operadores básicos de reconstrucción (apertura y cerradura), la propiedades de extensión y 

antiextensión, causan que la aplicación de cada filtro  sobre una señal original 𝑉!   resulte en 𝛾!" 𝑉  o 𝜑!" 𝑉  de 

tal manera que sub-modelan y sobre-modelan la señal original. Ambos filtros mantienen la tendencia global de la 

información topológica de 𝑉!. Por consiguiente, el residuo presenta información topológica importante. Sin 

embargo, la distribución de los datos cambia significativamente: La forma de la derivada de la señal original y la 

señal aproximada son diferentes cambiando las propiedades estadísticas de la pdf. La Figura 8 presenta la 

función de densidad de probabilidad (pdf) a través de su histograma después de aplicar los operadores  

morfológicos de reconstrucción sobre una señal 𝑉!. Observe que el histograma del operador de apertura 

presenta una desviación negativa (ver Figura 8 (a)) , lo que significa que la superficie aproximada es sub 

modelada. Por otro lado, cuando se aplica un operador de cerradura la señal original es sobre modelada y  su 

histograma se desvía hacia el lado positivo del rango (ver Figura 8(b)). 

  
                                    (a)                               (b) 

Figura 8. Histograma de diferencias de la superficie original y la superficie reconstruida (a) 

Histograma del operador apertura, (b) Histograma del operador cerradura. 

 

-8 -6 -4 -2 0 2 4 6 8 10
0

50

100

150

200

250

300

350

Datos centrados en 0

Fr
ec

ue
nc

ia

Figura 7. Histograma de la medición
experimental de puntos arbitrarios del sensor.
A las mediaciones obtenidas se les ha restado el
valor esperado.

Error de ajuste del modelo

El criterio para garantizar la correcta
construcción de un modelo se define mediante
la introducción de dos medidas de error: el error
BIAS y el error RMSE. La primera medida es
un error de modelado mientras que la segunda
medida es un error de precisión. El error
BIAS proporciona información acerca de cómo
el modelo se ajusta a los datos reales. Errores
negativos significa que el modelo está sub-
modelando los datos reales. Por lo tanto, el error
BIAS positivo representa sobre-modelado en los
datos. Valores cercanos a cero significa que el
modelo captura la dinámica de los datos reales.

Formalmente, el error BIAS se define como:
Bias(x, x∗) =

∑n
i=0 x − x∗, donde x representa

los datos reales y x∗ los datos estimados. Se
observa que cuando el error BIAS es igual a
cero no significa que el modelo sea correcto.
Esto es, las mismas proporciones de las medidas
estimadas con respecto a la original están por
debajo y arriba de los datos reales. Entonces,
para cuantificar el error de precisión se utiliza
el error RMSE. Este error es la media de las
diferencias absolutas entre los datos reales y
datos del modelado. El error RMSE se define
como: RMSE(x, x∗) = 1

n

∑n
i=1(x − x∗)2 donde

x∗ representa la función de modelado y los datos
reales x.

El error de modelado, en este contexto
está asociado a las diferencias existentes entre
la lectura del sensor y el ajuste de la curva
hecha. Este error además está en función de
la resolución del sensor. En cada medición es
necesario calibrar las intensidades a unidades
típicas del experimento (usualmente µM), pero
en el sentido de proveer una herramienta general,
se ha optado por representar cada error como un
porcentaje asociado a la resolución del sensor,
que ofrece la incertidumbre de medición.

Mejoramiento de datos

Aún cuando el método de mínimos cuadrados
ofrece el modelo óptimo, este depende de que
la medición de los datos tenga una distribución
normal. Entonces, por la naturaleza del modelo,
resulta difícil verificar que estas medidas tengan
una distribución normal. Como consecuencia,
es necesario facilitar la convergencia de la
aproximación para mejorar los datos. De
acuerdo a la naturaleza de los datos, se asume
que para cada pixel I(x, y), de la imagen,
existe un ruido con un valor esperado 0. Esta
suposición es fácilmente verificable. En la Figura
7, se tiene un histograma de las mediciones de un
punto arbitrario del sensor, en un intervalo de
tiempo. Se observa, que la distribución tiende
a la normalidad, y la variación que rodea la
medición tiene una media 0. Entonces para,
Vn(i), resultante del cálculo del volumen de una
célula de tiempo n sea afectada por ruido aditivo
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Figura 8. Histograma de diferencias de la superficie original y la superficie reconstruida (a) Histograma
del operador apertura, (b) Histograma del operador cerradura.

con media cero de la siguiente manera:

Vn = V ∗n +Nn (10)

Donde V ∗n es una señal libre de ruido y Nn es
el ruido aditivo añadido a la señal original con
media cero. Particularmente, Nn tiene media
cero; los datos de las señales originales V ∗n están
localizados en min{dom(Nn)} y max{dom(Nn)}.
Por otro lado, dado que Nn es una variable
aleatoria, de forma local no debería presentar
media de cero, lo que hace difícil estimar el
valor V ∗n . Como consecuencia, es necesario
analizar la información a nivel local e inferir
la tendencia haciendo una estimación del valor
esperado. Entonces, la propuesta consiste en
explotar algunas propiedades de los operadores
morfológicos. Particularmente los operadores
por reconstrucción son útiles porque permiten
aproximar una superficie iterando sucesivamente
un marcador, obteniendo otra superficie que
tiene propiedades topológicas similares a la
superficie original[21,22]. La aproximación de
un operador no mantiene el nivel original de la
señal, de tal manera que depende de la forma y
las propiedades de elemento estructural usado.
Se debe considerar como un inconveniente, pero
en términos prácticos, es su mayor ventaja
en el sentido, que representan la principal
tendencia de los datos originales, eliminando
las variaciones menores del elemento estructural
(altas frecuencias) de la señal original, resultando

una nueva señal que sobre o sub modela los datos
originales.

Considerando los operadores básicos de
reconstrucción (apertura y cerradura), la
propiedades de extensión y antiextensión,
causan que la aplicación de cada filtro sobre
una señal original Vn resulte en γ̃µL(V ) o
ϕ̃µL(V ) de tal manera que sub-modelan y
sobre-modelan la señal original. Ambos filtros
mantienen la tendencia global de la información
topológica de Vn. Por consiguiente, el residuo
presenta información topológica importante. Sin
embargo, la distribución de los datos cambia
significativamente: La forma de la derivada
de la señal original y la señal aproximada
son diferentes cambiando las propiedades
estadísticas de la pdf. La Figura 8 presenta
la función de densidad de probabilidad (pdf) a
través de su histograma después de aplicar los
operadores morfológicos de reconstrucción sobre
una señal Vn. Observe que el histograma del
operador de apertura presenta una desviación
negativa (ver Figura 8 (a)), lo que significa
que la superficie aproximada es sub modelada.
Por otro lado, cuando se aplica un operador de
cerradura la señal original es sobre modelada y
su histograma se desvía hacia el lado positivo del
rango (ver Figura 8(b)).

La propuesta consiste en mezclar ambos
filtros (apertura y cerradura), preservando la
información estadística de la señal original. Los
efectos del ruido están representados por las
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altas frecuencias. Estas frecuencias deberían ser
eliminadas preservando la tendencia de la señal
original Vn. Las frecuencias descartadas están
directamente relacionadas con el tamaño del
elemento estructural y el proceso de muestreo, es
decir, dado un elemento estructural de tamaño
k representa una temporalidad de kf , donde
f es la frecuencia de adquisición media de Vn.
El proceso de filtrado f(Vn) es estadísticamente
consistente si y sólo si V ∗n , menos Vn preservan
la siguiente igualdad:

ρ(Vn − V ∗n ) = G(0, σ). (11)

La función de distribución de densidad de la
diferencia entre los datos filtrados y los datos
originales es una distribución normal centrada en
el origen. El desarrollo del filtro estadísticamente
correcto debe satisfacer la ecuación (10), donde
se aprecia que la apertura y cerradura de
los operadores de reconstrucción proporcionan
información Bias negativo y Bias positivo de
la superficie aproximada. La señal original se
encuentra entre la apertura por reconstrucción y
la cerradura por reconstrucción respectivamente,
de tal manera que γ̃µL(V ) ≤ Vn ≤ ϕ̃µL(V ).

Por consiguiente, para la estimación de Vn,

utilizando γ̃µL(V ) y ϕ̃µL(V ) teniendo en cuenta
que E[{N1...n}] = 0, una aproximación a Vn es:

FµLµ (V ) = α1γ̃µL(V ) + α2ϕ̃µL(V ) (12)

donde los valores α1 y α2 están dentro del
rango entre [0,1] y su suma es la unidad.
En caso de que γ̃µL(V ) y ϕ̃µL(V ) utilicen el
mismo elemento estructural, α1 = α2 = 0.5.
Estos valores pueden variar dependiendo de
los efectos de la geometría en el proceso de
reconstrucción. El filtro descrito anteriormente
se denota como un proceso de reconstrucción
medio. Una extensión de este filtro implica una
forma secuencial, en donde, las propiedades del
elemento estructural utilizado en la etapa de
reconstrucción debe ser variado de la siguiente
forma: Sea p(µL, k) una función que devuelve
un elemento estructural con otras propiedades
particulares para el instante k, versión secuencial
del filtro medio de reconstrucción se define como:

fp(µL,k)
µ (V ) = fp(µL,k)

µ ·fp(µL,k−1)
µ (V )·· · ··fp(µL,1)

µ (V )
(13)

Se observa que la función p(µL, k) podría
variar el tamaño y la topología del elemento
estructural. La topología y el tamaño afectará
el modelo que se ajusta a los datos reales.

filtrada y sin filtrar. Note que el error BIAS se comporta similar en ambos escenarios,  contrariamente con el error 

RMSE el cual está profundamente reducido cuando la señal es filtrada, lo que significa que ajuste de los datos 

presenta mejores resultados, después de filtrar los datos. Observe el nivel de error asociados a los modelos en 

las columnas referidas a los errores absolutos en función de la resolución del sensor. Estos porcentajes después 

de aplicar el filtro no sobrepasan el 1.5%, lo que en general brinda una precisión alta para las mediciones de 

calcio1,21,22. 

 
 

(a) (b) 

Figura 9. a) Proceso de reconstrucción medio, b) Histograma de diferencias de la superficie original y la 

superficie reconstruida donde el valor esperado está centrado en cero, representando una distribución 

normal.  

 

	
   Filtrado	
   	
   	
   	
   Sin	
  Filtrar	
   	
   	
   	
  
Célula BIAS RMSE BIAS% RMSE% BIAS RMSE BIAS% RMSE% 

1 0.0996 0.0415 0.0389 0.0162 0.0967 385.1 0.0378 150.4297 

2 0.5179 0.4742 0.2023 0.1852 0.1611 1304.4 0.0629 509.5313 

3 0.6913 1.753 0.2700 0.6848 0.3772 7913.6 0.1473 3091.2500 

4 1.1718 1.2087 0.4577 0.4721 0.3229 2906.9 0.1261 1135.5078 

5 0.6538 0.7799 0.2554 0.3046 0.2144 2339.9 0.0838 914.0234 

6 0.7412 1.0012 0.2895 0.3911 0.1904 2306.6 0.0744 901.0156 

7 1.3467 1.2601 0.5261 0.4922 0.2079 1718.6 0.0812 671.3281 

8 1.138 1.3794 0.4445 0.5388 0.2082 2282.1 0.0813 891.4453 

9 0.501 0.4614 0.1957 0.1802 0.1823 1566.5 0.0712 611.9141 

10 1.476 1.1212 0.5766 0.4380 0.1832 1198.6 0.0716 468.2031 

11 1.4346 0.9506 0.5604 0.3713 0.1091 620.1 0.0426 242.2266 

12 1.173 1.6871 0.4582 0.6590 0.3167 4.109 0.1237 1.6051 

13 0.332 0.2412 0.1297 0.0942 0.1132 0.5596 0.0442 0.2186 

14 0.351 0.1794 0.1371 0.0701 0.1601 703.2 0.0625 274.6875 

Figura 9. a) Proceso de reconstrucción medio, b) Histograma de diferencias de la superficie original y
la superficie reconstruida donde el valor esperado está centrado en cero, representando una distribución
normal.



Herrera-Navarro y col. Análisis de la Variación del Calcio Intracelular en Células Foliculares 83

Tabla 1. Errores del modelo ajustado a los datos. Los resultados muestran que se obtienen
pequeños errores de medición cuando es aplicado el filtro propuesto. Los errores marcados en
porcentaje muestran la relación entre el porcentaje del error y la resolución del sensor. Esta
medida representa el porcentaje de error del ajuste.

Filtrado Sin Filtrar

Célula BIAS RMSE BIAS% RMSE% BIAS RMSE BIAS% RMSE%

1 0.0996 0.0415 0.0389 0.0162 0.0967 385.1 0.0378 150.4297
2 0.5179 0.4742 0.2023 0.1852 0.1611 1304.4 0.0629 509.5313
3 0.6913 1.753 0.2700 0.6848 0.3772 7913.6 0.1473 3091.2500
4 1.1718 1.2087 0.4577 0.4721 0.3229 2906.9 0.1261 1135.5078
5 0.6538 0.7799 0.2554 0.3046 0.2144 2339.9 0.0838 914.0234
6 0.7412 1.0012 0.2895 0.3911 0.1904 2306.6 0.0744 901.0156
7 1.3467 1.2601 0.5261 0.4922 0.2079 1718.6 0.0812 671.3281
8 1.138 1.3794 0.4445 0.5388 0.2082 2282.1 0.0813 891.4453
9 0.501 0.4614 0.1957 0.1802 0.1823 1566.5 0.0712 611.9141
10 1.476 1.1212 0.5766 0.4380 0.1832 1198.6 0.0716 468.2031
11 1.4346 0.9506 0.5604 0.3713 0.1091 620.1 0.0426 242.2266
12 1.173 1.6871 0.4582 0.6590 0.3167 4.109 0.1237 1.6051
13 0.332 0.2412 0.1297 0.0942 0.1132 0.5596 0.0442 0.2186
14 0.351 0.1794 0.1371 0.0701 0.1601 703.2 0.0625 274.6875
15 0.7043 0.7558 0.2751 0.2952 0.2293 2077.9 0.0896 811.6797
16 1.6021 3.0539 0.6258 1.1929 0.2142 2721.2 0.0837 1062.9688
17 0.2594 0.1767 0.1013 0.0690 0.1605 999.4 0.0627 390.3906
18 0.1688 0.0566 0.0659 0.0221 0.1144 343.6 0.0447 134.2188

El efecto de aplicar el filtro medio de la
reconstrucción se ilustra en la Figura 9, donde se
presentan los datos originales (de color azul) y
los datos filtrados (color rojo). Como se aprecia,
la señal filtrada sigue la tendencia principal de la
señal original, descartando las altas frecuencias,
manteniendo propiedades estadísticas como se
aprecia en la Figura 9 (b). Esta figura
muestra la diferencia de la señal filtrada y
la señal original. Esta propiedad es ideal
para el filtrado de los datos, mejorando los
resultados cuando los datos son ajustados a
la función de decaimiento exponencial. Para
un análisis detallado el error BIAS y el error
RMSE fueron calculados (ver Tabla 1) ambos
sobre la señal filtrada y sin filtrar. Note que
el error BIAS se comporta similar en ambos
escenarios, contrariamente con el error RMSE
el cual está profundamente reducido cuando la
señal es filtrada, lo que significa que ajuste de
los datos presenta mejores resultados, después

de filtrar los datos. Observe el nivel de error
asociados a los modelos en las columnas referidas
a los errores absolutos en función de la resolución
del sensor. Estos porcentajes después de aplicar
el filtro no sobrepasan el 1.5%, lo que en general
brinda una precisión alta para las mediciones de
calcio[1,21,22].

RESULTADOS OBTENIDOS Y
DISCUSIÓN

La propuesta descrita anteriormente es probada
bajo un método experimental que consiste en
analizar una secuencia de 1000 imágenes que
contienen en su interior células de ranas Xenopus
laevis. Particularmente, para medir el efecto
del Ca2+ las células fueron excitadas aplicando
Fluor -4. El proceso se ilustra en la Figura
10. El diagrama de proceso resume la secuencia
de etapas de procesamiento realizadas sobre la
secuencia.
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15 0.7043 0.7558 0.2751 0.2952 0.2293 2077.9 0.0896 811.6797 

16 1.6021 3.0539 0.6258 1.1929 0.2142 2721.2 0.0837 1062.9688 

17 0.2594 0.1767 0.1013 0.0690 0.1605 999.4 0.0627 390.3906 

18 0.1688 0.0566 0.0659 0.0221 0.1144 343.6 0.0447 134.2188 

 

Tabla 1. Errores del modelo ajustado a los datos. Los resultados muestran que se  obtienen pequeños errores de 

medición cuando es aplicado el filtro propuesto. Los errores marcados en porcentaje muestran la relación entre el 

porcentaje del error y la resolución del sensor. Esta medida representa el porcentaje de error del ajuste. 

  

Resultados Obtenidos y Discusión  
 

La propuesta descrita anteriormente es probada bajo un método experimental que consiste en analizar una 

secuencia de 1000 imágenes que contienen en su interior células de ranas Xenopus laevis. Particularmente, para 

medir el efecto del Ca$^{2+}$  las células fueron excitadas aplicando Fluor -4. El proceso se ilustra en la Figura 

10. El diagrama de proceso resume la secuencia de etapas de procesamiento realizadas sobre la secuencia. 

 

La secuencia de imágenes fue adquirida por investigadores del Instituto de Neurobiología, Campus UNAM-UAQ. 

La secuencia se obtuvo  de células de ranas Xenopus laevis. El calcio es medido indirectamente con la 

excitación de las células través de Fluor-4 (por Molecular Probes). El material óptico consiste en un microscopio 

de fluorescencia con un sensor de cámara Olympus IX71 en 485 a 520 𝑛𝑚 de longitud de onda (excitación-

emisión); las imágenes fueron obtenidas con una cámara de adquisición QEI Evolution Media Cybernetics; a 30 

frames por segundo (fps) con una resolución de 320×240 píxeles. Finalmente, para propósitos de prueba, 1,000 

imágenes fueron utilizadas; que representa una secuencia de 33 segundos. 

 
Figura 10. Diagrama de bloques de la propuesta. 

 

La detección de células es una tarea difícil  debido a que existen factores que afectan directamente el proceso de 

análisis en las imágenes como el ruido, el bajo contraste, la luminosidad no homogénea del escenario y las 
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Figura 10. Diagrama de bloques de la propuesta.

La secuencia de imágenes fue adquirida por
investigadores del Instituto de Neurobiología,
Campus UNAM-UAQ. La secuencia se obtuvo
de células de ranas Xenopus laevis. El calcio
es medido indirectamente con la excitación de
las células través de Fluor-4 (por Molecular
Probes). El material óptico consiste en un
microscopio de fluorescencia con un sensor
de cámara Olympus IX71 en 485 a 520 nm
de longitud de onda (excitación-emisión); las
imágenes fueron obtenidas con una cámara de
adquisición QEI Evolution Media Cybernetics; a
30 frames por segundo (fps) con una resolución
de 320×240 píxeles. Finalmente, para propósitos
de prueba, 1,000 imágenes fueron utilizadas; que
representa una secuencia de 33 segundos.

La detección de células es una tarea
difícil debido a que existen factores que
afectan directamente el proceso de análisis
en las imágenes como el ruido, el bajo
contraste, la luminosidad no homogénea del
escenario y las características particulares de las
células(contornos no definidos y solapamiento
) afectando el reconocimiento de las células
de interés. Después de la adquisición de

las imágenes, el primer paso para estudiar el
comportamiento de Ca2+ consiste en encontrar
y segmentar de manera automática cada célula
en la secuencia. Este proceso es realizado
aplicando el enfoque Líneas Divisoras de Aguas
Controlada por Marcadores. Sin embargo a
partir de la primera imagen adquirida no se
garantiza la detección de células correctas. Para
hacer la detección de células un proceso más
robusto, para cada imagen en la secuencia,
cada célula es detectada automáticamente, como
se describe en las secciones anteriores. La
concentración de calcio se lleva a cabo por la
medida de luminosidad de cada célula. La
relación entre la intensidad de luminancia de
las células está altamente correlacionada con la
concentración de calcio; es decir, células con
alta luminancia tendrán mayor concentración de
calcio. Por otro lado, la creación del modelo de
comportamiento resulta una tarea difícil, debido
a que el comportamiento observado no es lineal
siendo apropiado el uso de métodos de auto-
regresión. Por otro lado observe que el modelado
es útil a partir de la excitación de las células,
por lo que la dinámica del calcio se modela como
una función exponencial a través de método de
mínimos cuadrados.

Los datos seleccionados abarcan desde la
ubicación de máximos al final de la secuencia.
Para mejorar la precisión del modelado, antes
de aplicar el método de mínimos cuadrados,
el proceso de reconstrucción es aplicado.
Finalmente en la Figura 11, se muestra que las
células son detectadas automáticamente. En
la Figura 11(b) se muestran las células que
presentaron los cambios de fluorescencia más
importantes, es decir aquellos con la mayor
variación de fluorescencia, mientras que la
Figura 11(c) se observa la dinámica que es
modelada como una exponencial superpuesta
sobre los datos de medida. El uso del
proceso medio descarta las altas frecuencias
suavizado el comportamiento de las variaciones
de luminancia. La disminución de altas
frecuencias garantiza que el ajuste exponencial
sea más robusto y preciso tiene más importancia,
incluso aún cuando los datos se ven afectados por
ruido.
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Tabla 2. Índices de reconocimiento de las diferentes combinaciones del
detector de células.

Células

Detectadas(+) No detectadas(-)

Prueba Células detectadas(+) VP=0.94 FP=0.06
Células no detectadas (-) FN=0.04 VN=0.96

a)

características particulares de las células(contornos no definidos y solapamiento ) afectando el reconocimiento 

de las células de interés. Después de la adquisición de las imágenes,  el primer paso para estudiar el 

comportamiento de Ca 2+ consiste en encontrar y segmentar de manera automática cada célula en la secuencia. 

Este proceso  es realizado  aplicando el enfoque Líneas Divisoras de Aguas Controlada por Marcadores. Sin 

embargo a partir de la primera imagen adquirida no se garantiza la detección de células correctas. Para hacer la 

detección de células  un proceso más robusto, para cada  imagen en la secuencia,  cada célula es detectada 

automáticamente, como se describe en las secciones anteriores. La concentración de calcio se lleva a cabo por 

la medida de  luminosidad de cada célula. La relación entre la intensidad de luminancia de las células está 

altamente correlacionada con la concentración de calcio; es decir, células con alta luminancia tendrán mayor 

concentración de calcio. Por otro lado, la creación del modelo de comportamiento resulta una tarea difícil, debido 

a que el comportamiento observado no es lineal siendo apropiado el uso de métodos de auto-regresión. Por otro 

lado observe que el modelado es útil a partir de la excitación de las células, por  lo que la dinámica del calcio  se 

modela como una función exponencial a través de método de mínimos cuadrados. 

 

Los datos seleccionados abarcan desde la ubicación de  máximos al final de la secuencia. Para mejorar la 

precisión del modelado, antes de aplicar el método de mínimos cuadrados, el proceso  de reconstrucción es 

aplicado. Finalmente en la Figura 11, se muestra que las células son detectadas automáticamente.	
  En la Figura 

10(b) se muestran las células que presentaron los cambios de fluorescencia más importantes, es decir aquellos 

con la mayor variación de fluorescencia, mientras que la Figura 10(c) se observa la dinámica que es modelada 

como una exponencial superpuesta sobre los datos de medida. El uso del proceso medio descarta las altas 

frecuencias  suavizado el comportamiento de las variaciones de luminancia. La  disminución de altas frecuencias  

garantiza que el ajuste exponencial sea más robusto y preciso tiene más importancia, incluso aún cuando los 

datos se ven afectados por ruido. 

  
(a) (b) 

b)

características particulares de las células(contornos no definidos y solapamiento ) afectando el reconocimiento 

de las células de interés. Después de la adquisición de las imágenes,  el primer paso para estudiar el 

comportamiento de Ca 2+ consiste en encontrar y segmentar de manera automática cada célula en la secuencia. 

Este proceso  es realizado  aplicando el enfoque Líneas Divisoras de Aguas Controlada por Marcadores. Sin 

embargo a partir de la primera imagen adquirida no se garantiza la detección de células correctas. Para hacer la 

detección de células  un proceso más robusto, para cada  imagen en la secuencia,  cada célula es detectada 

automáticamente, como se describe en las secciones anteriores. La concentración de calcio se lleva a cabo por 

la medida de  luminosidad de cada célula. La relación entre la intensidad de luminancia de las células está 

altamente correlacionada con la concentración de calcio; es decir, células con alta luminancia tendrán mayor 

concentración de calcio. Por otro lado, la creación del modelo de comportamiento resulta una tarea difícil, debido 

a que el comportamiento observado no es lineal siendo apropiado el uso de métodos de auto-regresión. Por otro 

lado observe que el modelado es útil a partir de la excitación de las células, por  lo que la dinámica del calcio  se 

modela como una función exponencial a través de método de mínimos cuadrados. 

 

Los datos seleccionados abarcan desde la ubicación de  máximos al final de la secuencia. Para mejorar la 

precisión del modelado, antes de aplicar el método de mínimos cuadrados, el proceso  de reconstrucción es 

aplicado. Finalmente en la Figura 11, se muestra que las células son detectadas automáticamente.	
  En la Figura 

10(b) se muestran las células que presentaron los cambios de fluorescencia más importantes, es decir aquellos 

con la mayor variación de fluorescencia, mientras que la Figura 10(c) se observa la dinámica que es modelada 

como una exponencial superpuesta sobre los datos de medida. El uso del proceso medio descarta las altas 

frecuencias  suavizado el comportamiento de las variaciones de luminancia. La  disminución de altas frecuencias  

garantiza que el ajuste exponencial sea más robusto y preciso tiene más importancia, incluso aún cuando los 

datos se ven afectados por ruido. 

  
(a) (b) 

c)  
(c) 

 

Figura 11. (a)Células segmentadas, (b) células con mayor intensidad y ( c) ajuste de mínimos cuadrados. 

Para medir la eficiencia global del método para las secuencias de imágenes se calcularon dos indicadores 
estadísticos: sensibilidad (𝑆) y especificidad (𝐸).   

La sensibilidad (𝑆) o fracción de verdaderos positivos (𝐹𝑉𝑃) se calcula a partir de la siguiente relación: 

𝑆 =
𝑉𝑃

𝑉𝑃 + 𝐹𝑁
 (14) 

donde V𝑃 es verdaderos positivos y 𝐹𝑁 falsos negativos. 

Mientras que la especificidad (𝐸) o fracción de verdaderos negativos (𝐹𝑉𝑁) se calcula de la manera siguiente: 

𝐸 =
𝑉𝑁

𝐹𝑃 + 𝑉𝑁
 

 

(15) 

donde 𝑉𝑁 es verdaderos negativos y 𝐹𝑃 falsos positivos. En la tabla 2 se muestran los índices de reconocimiento 
obtenidos. A partir de esta tabla los estadísticos 𝑆 y 𝐸 se calculan, obteniendo 𝑆 = 0.95 y 𝐸 = 0.94.  Estos valores 
indican que el índice de reconocimiento de las células tiene una confiabilidad mayor del 94%, lo cual valida el 
método propuesto garantizando una correcta segmentación y localización de las células.  
 
 

    

 
Tabla 2. Índices de reconocimiento de las diferentes combinaciones del detector de células. 
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 Células 
 

Prueba 
 Detectadas(+) No detectadas(-) 
Células detectadas(+) 𝑉𝑃 = 0.94	
   𝐹𝑃 = 0.06	
  
Células no detectadas (-) 𝐹𝑁 = 0.04	
   𝑉𝑁 = 0.96	
  

Figura 11. (a)Células segmentadas, (b) células
con mayor intensidad y ( c) ajuste de mínimos
cuadrados.

Para medir la eficiencia global del método
para las secuencias de imágenes se calcularon
dos indicadores estadísticos: sensibilidad (S) y

especificidad (E).
La sensibilidad (S) o fracción de verdaderos

positivos (FV P ) se calcula a partir de la
siguiente relación:

S = V P

V P + FN
(14)

donde V P es verdaderos positivos y FN falsos
negativos.

Mientras que la especificidad (E) o fracción
de verdaderos negativos (FV N) se calcula de la
manera siguiente:

E = V N

FP + V N
(15)

donde V N es verdaderos negativos y FP falsos
positivos. En la tabla 2 se muestran los índices de
reconocimiento obtenidos. A partir de esta tabla
los estadísticos S y E se calculan, obteniendo
S = 0.95 y E = 0.94. Estos valores indican que
el índice de reconocimiento de las células tiene
una confiabilidad mayor del 94%, lo cual valida
el método propuesto garantizando una correcta
segmentación y localización de las células.

CONCLUSIONES

En este artículo se presenta un método
automático para el estudio de calcio intracelular
aplicando el método de Líneas Divisoras de
Aguas controlada por Marcadores para la
segmentación y la introducción de un nuevo
proceso de reconstrucción para el mejoramiento
de los datos. El método de segmentación de los
marcadores resulta eficiente para encontrar todas
las células en la secuencia de imágenes. Por
otro lado, el modelado de los datos es robusto
debido a que descarta la medición del ruido.
Finalmente, los operadores de reconstrucción
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se aplican sobre una dimensión de datos el
resultado es útil para el desarrollo de filtros que
ayuda a crear modelos de la dinámica del calcio
intracelular.
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