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RESUMEN
Objetivo: Presentar una simplificación del Problema Inverso
Electroencefalográfico (PIE) del caso de varias capas conductoras a una
región homogénea con condición de Neumann Nula. Metodología: Se
divide el PIE en tres problemas, dos de los cuales se resuelven usando el
potencial medido en el cuero cabelludo y con estas soluciones y el tercer
problema se lleva a cabo la simplificación. Para validar la simplificación
se genera un ejemplo sintético usando el modelo de esferas concéntricas.
Resultados: Por medio de la simplificación la fuente se determina
a partir de la ecuación de Poisson con una condición de Neumann
nula y un dato adicional sobre la frontera de la región homogénea, el
cual se obtiene de la medición. Esto es válido para regiones generales
con fronteras suficientemente suaves. Adicionalmente, para el caso
de esferas concéntricas, se plantea el PIE para el caso de una fuente
dipolar (que representa a focos epilépticos) usando esta simplificación
y la técnica de la función de Green. Conclusión: La simplificación
presentada aquí permite analizar el PIE en una región lo cual simplifica
su estudio teórico y numérico. En particular, puede ser útil para el
análisis del problema de identificación de los parámetros de una fuente
dipolar.

Palabras clave: fuentes electroencefalográficas, focos epilépticos,
condición de Neumann, función de Green, teoría de distribuciones.
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ABSTRACT

Objective: To give a simplification of the Inverse
Electroencephalographic Problem (IEP) from the case of multilayer
conductive medium to the case of a homogeneous region with null
Neumann condition. Methodology: IEP is divided in three problems,
two of which are resolved using the measurements of potential on the
scalp and with these solutions and the third problem the simplification
is carried out. In order to validate the simplification a synthetic
example is generated using the model of concentric spheres. Results:
Through of simplification, the source is determined from the Poisson
equation with null Neumann condition and an additional data on
the boundary of the homogeneous region, which is obtained from
the measurement. This is valid for regions with smooth boundary.
Additionally, in the case of concentric spheres, it is statement the
identification problem for dipolar sources (representing epileptic
focus) using this simplification and Green function. Conclusion: The
simplification presented here allows us to analyze the inverse problem
in one region, which simplifies the theoretical and numerical study.
In particular it may be useful to analyze the problem of parameter
identification of a dipolar source.

Keywords: electroencephalographic source, dipolar focus, Neumann
condition, Green function, distribution theory.

INTRODUCCIÓN

En diversos campos de la investigación, se
presentan situaciones en las cuales es necesario
conocer las causas que producen cierto fenómeno
a través de la información parcial que se obtiene
del mismo [1]. Este tipo de problemas son
llamados de identificación y son ampliamente
estudiados en muchos campos de la investigación,
entre otros la medicina, donde hay un gran
interés en el problema de identificación de fuentes
bioeléctricas cerebrales, a partir de los datos
obtenidos por medio de un electroencefalograma
(EEG) ya que permiten detectar posibles
anomalías (daños, mal funcionamiento, etc.) lo
que se ha hecho tradicionalmente a través de
diferentes técnicas de diagnóstico.

Para los problemas de identificación se
usan modelos matemáticos, con los cuales se
desarrollan técnicas no invasivas. Entre estas
se encuentran la tomografía por emisión de
positrones, la resonancia magnética nuclear, la
electroencefalografía, la cual es de particular

de interés para nosotros. Por medio de esta
técnica se registran los potenciales en un
electroencefalograma (EEG); estos potenciales
provienen de la actividad eléctrica de los tejidos
excitables, y se captan midiendo la diferencia de
potencial existente entre un electrodo explorador
y otro de referencia. A las fuentes que son
generadas por la actividad electroquímica de
estos órganos se les conoce como fuentes
bioeléctricas y se considera que están compuestos
por grandes conglomerados de neuronas que
actúan simultáneamente. Entre las ventajas
de la técnica del EEG se encuentran que
la información que proporciona se captura
en tiempo real, de manera simple, es no
invasiva además de económica. En algunos casos
podemos considerar que los generadores están
concentrados en una región del cerebro y que
pueden representarse por funciones de cuadrado
integrable definidas sobre esa región. En el
caso particular en que se tiene una fuente
dipolar (con la cual se representan a los focos
epilépticos), es necesario enfocar el análisis de
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este problema a través de las distribuciones o
funciones generalizadas. Para el estudio de este
problema se consideran el problema directo e
inverso electroencefalográfico. El primero de ellos
consiste en hallar el EEG cuando conocemos a
la fuente. El segundo consiste en determinar la
fuente a partir del EEG.

En este trabajo se presenta una simplificación
del PIE, la cual se basa, como primer paso, en
separar el problema en dos sub problemas. El
primero de ellos puede ser calculado a partir del
EEG en el cuero cabelludo. Para el segundo de
ellos, se divide en otros dos, uno de los cuales
puede calcularse también (indirectamente) de la
medición. De esta manera, el problema inverso se
reduce a un problema de identificación de fuentes
en un medio homogéneo con una condición de
Neumann nula en la frontera de dicho medio,
con lo que se pueden usar los resultados que
se tienen para este último problema el cual ha
sido utilizado para realizar experimentación y
para hallar resultados teóricos. Para validar el
método se presenta la solución del problema
inverso para el caso de fuentes distribuidas en el
volumen cerebral. Para fuentes dipolares (focos
epilépticos) se halla la solución para una región
anular homogénea usando una función de Green.
En el caso de una esfera la función de Green
puede calcularse en forma explícita y el potencial
producido en un punto se obtiene realizando un
producto punto de vectores en el espacio por lo
que el problema inverso se reduce a un problema
de mínimos cuadrados no lineales en un medio
homogéneo. En el desarrollo de este trabajo no
se considera el caso de errores en la medición.

Debido a que la epilepsia ataca a una parte
importante de la población mundial [2] se han
dedicado esfuerzos para su estudio los cuales
pueden dividirse, en desarrollo de algoritmos y
en desarrollo tecnológico para obtener sistemas
de visualización de la zona afectada. Este trabajo
se enmarca dentro del primero de ellos.

MODELO MATEMÁTICO

El modelo matemático que se presenta en este
trabajo ha sido ampliamente utilizado para el
estudio del problema de identificación en ([1],
[3], [4], [5]); en él la cabeza humana ha sido

modelada por medio de capas conductoras con
conductividad constante y diferente en cada
capa. La actividad eléctrica del cerebro es
registrada en el cuero cabelludo por medio del
EEG. Se considera para la modelación que el
EEG es producido por grandes conglomerados
de neuronas que se activan simultáneamente.
A estos conglomerados se les conoce como
generadores o fuentes bioeléctricas ([4], [6]).
Adicionalmente, se supone que las corrientes
que pueden producirse en la región Ω se deben
únicamente a la actividad eléctrica del cerebro
y pueden ser de dos tipos: óhmicas e impresas.
Las primeras se deben al movimiento de cargas
iónicas a través del fluido extracelular en el
cerebro y las segundas a las corrientes de
difusión a través de las membranas neuronales
([6]) las cuales se denotan por Jp y son las
de interés en el problema de identificación,
ya que el soporte de estas puede darnos
información sobre la ubicación espacial de la zona
afectada. Tomando en cuenta lo anterior, se
demuestra que el estudio del Problema Inverso
Electroencefalográfico (PIE) puede ser realizado
a través del siguiente problema de valores en la
frontera ([1], [4], [5], [7]):

∆u1 = f en Ω1, (1)

∆u2 = 0 en Ω2, (2)

u1 = u2 en S1, (3)

σ1
∂u1
∂n1

= σ2
∂u2
∂n1

en S1, (4)

∂u2
∂n2

= 0, en S2, (5)

donde Ω = Ω̄1 ∪Ω2 representa a la cabeza, Ω1 el
cerebro, Ω2 el resto de las capas que componen
la cabeza (líquido intracraneal, cráneo, cuero
cabelludo), σ1 y σ2 son las conductividades de Ω1
y Ω2 las cuales se suponen constantes (ver figura
1), f = divJp/σ1 es llamada la fuente, ui =
u|Ωi

i = 1, 2 y u representa al potencial eléctrico
en Ω. El símbolo ∆ representa al operador
laplaciano, que también se simboliza como ∇2.
Obsérvese que en este caso podremos recuperar
sólo una parte de la fuente bioeléctrica Jp. Las
condiciones de frontera (3)-(4) son llamadas de
transmisión y la condición de frontera (5), se
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obtiene al considerar que la conductividad de
ΩC es cero (la conductividad del aire). De
las fórmulas de Green se deduce la siguiente
condición de compatibilidad∫

Ω1
f(x)dx = 0. (6)

En el caso en que sólo se consideren fuentes
corticales, su presencia se refleja sobre la
condición de frontera asociada con la igualdad
de flujos de corriente. Si denotamos por jp a
la densidad de corriente cortical entonces dicha
condición de frontera toma la forma:

σ1
∂u1
∂n1

= σ2
∂u2
∂n1

+ jp · n1 en S1.

Se denomina a jp · n1 fuente cortical y
satisface una condición de compatibilidad similar
a la (6). Sin embargo, si consideramos
simultáneamente tanto fuentes corticales como
volumétricas esta condición se convierte en∫

Ω1
f(x)dx +

∫
∂Ω1

jp · n1dx = 0. El caso de

fuentes corticales ha sido estudiado en [8] y
se busca la solución como la suma de un
potencial de capa doble definido S1 más uno
de capa simple definido sobre S2. En este
caso la densidad dipolar definida sobre S1 puede
representar la actividad de neuronas piramidales
y, por lo tanto, brindar información sobre la
zona activa de la corteza cerebral. Sin embargo,
en ese trabajo sólo se consideraron fuentes que
pueden representarse por funciones de cuadrado
integrable y no por funciones generalizadas con
las cuales se representan las fuentes dipolares.
Este caso debe estudiarse matemáticamente con
detalle para asegurar la existencia de soluciones
de este problema además de interpretarse
apropiadamente el planteamiento matemático
para que dichas soluciones tengan un sentido en
el problema real. La discusión sobre este tema
no se aborda en este trabajo por lo que no se
considera la presencia de fuentes corticales.

Al problema (1)-(5) se llama Problema de
Contorno Electroencefalográfico (PCE).

Definición 1. Se llama Problema Directo
Electroencefalográfico al problema que consiste en
hallar la solución u(x) del PCE cuando se conoce
f(x) = divJp/σ1.
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Figura 1: Representación de la cabeza como dos
medios conductores homogéneos acoplados.

Definición 2. El Problema inverso asociado
al PCE consiste en dada una función V
definida sobre S, encontrar f(x) de manera
que para la solución u(x) del problema directo
correspondiente a dicha f(x), se cumpla que
u|S = V .

SIMPLIFICACIÓN DEL PROBLEMA A
UNA REGIÓN

Problemas que permiten la
simplificación

Para resolver el Problema Inverso Electro-
encefalográfico, primero se desacopla el problema
(1)-(5) en los dos problemas siguientes:

Primer problema. Resolver el problema de
Cauchy en la región anular Ω2 dado V sobre S2:

∆u2 = 0 en Ω2,

u2 = V,
∂u2
∂n2

= 0 en S2.
(7)

Segundo problema. Después de hallar u2
en el primer problema por medio de los datos
de Cauchy sobre S2 usando las condiciones de
transmisión (3)-(4) el PIE se reduce a hallar f a
través del problema:

∆u1 = f en Ω1,

u1 = ϕ,
∂u1
∂n

= ψ en S1,
(8)
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donde ϕ = u2|S1 y ψ = σ2
σ1

∂u2
∂n1

∣∣∣
S1
.

La condición de transmisión (4)
correspondiente a la igualdad de los flujos de
corriente, lleva a que∫

S1
ψ(s)ds = 0. (9)

Para reducir a una región, consideremos el
Tercer problema. Para el estudio

del problema (8) tomamos los siguientes dos
problemas:

∆ū = 0 en Ω1,

∂ū

∂n1
= ψ en S1,

(10)

∆û = f en Ω1,

∂û

∂n
= 0 en S1,

(11)

Notemos que u1 = û+ ū si elegimos f en (11) a
través del dato adicional:

û|S1
= ϕ̂ = ϕ− ū|S1

. (12)

La solución del problema (10) se toma ortogonal
a las constantes, con lo cual es única. Debido a
que ψ es conocida a partir de los datos de Cauchy,
el problema (10) puede separarse del resto y
sólo considerarse para el estudio del problema
de identificación, al problema (11)-(12), el cual
corresponde al caso del PIE para una sola región
con una condición de contorno de Neumann
nula y que llamaremos Problema Inverso
Electroencefalográfico Simplificado (PIES).
Nótese que la condición de compatibilidad sobre
ψ para el problema (10) es la dada por (9).
Llamaremos al problema (11), Problema de
Contorno Electroencefalográfico Simplificado
(PCES).

El desarrollo de esta sección es válido para
regiones generales con frontera suficientemente
suave que incluyen el caso de las geometrías
que pueden aproximar con mayor precisión a la
geometría de la cabeza de un paciente específico.
En la sección siguiente se desarrollan los tres
problemas anteriores para el caso en el que
la cabeza se modela por medio de esferas
concéntricas, a fin de ilustrar cómo funciona la
propuesta realizada en esta sección.

EJEMPLIFICACIÓN DE LA TÉCNICA
PROPUESTA USANDO EL CASO DE

ESFERAS CONCÉNTRICAS

Es conocido [9] que para fuentes bioeléctricas
volumétricas representadas por funciones de
cuadrado integrable, la solución del PIE es única
si la fuente es una función armónica y satisface
la condición (6).

Para ejemplificar la metodología sobre la
reducción a una sola región, consideremos el
caso de fuentes f representadas por funciones
armónicas que satisfacen (6) (con lo que, como
se dijo anteriormente, garantizamos unicidad de
la solución del problema de identificación) en el
caso en que la cabeza se modela por dos esferas
concéntricas lo cual es elegido por claridad de
la exposición. En este caso se pueden realizar
todos los cálculos de manera analítica sin recurrir
a los métodos numéricos. Sin embargo, los
resultados se pueden generalizar al caso en el que
las capas no son necesariamente esféricas para lo
cual sería necesario utilizar métodos numéricos
para validar los resultados que se presenten.

Primer problema. Resolver el Problema
de Cauchy en la región anular Ω2 compuesta por
esferas concéntricas, dada la medición sin error
V :

∆u2 = 0, en Ω2 =
{
z ∈ R3 : R1 < |z| < R2

}
,

u2 = V, sobre S2 =
{
z ∈ R3 : |z| = R2

}
,

∂u2
∂n

= 0, sobre S2 =
{
z ∈ R3 : |z| = R2

}
.

(13)
Sean Ynm los armónicos esféricos y Vnm los
coeficientes de Fourier de V en la base que ellos
forman. En este caso se tiene que V está dado
por

V =
∞∑
n=0

n∑
m=−n

VnmYnm(θ, φ), (14)

de donde la correspondiente solución del
problema (13) es

u2(r, θ, φ) =
∞∑
n=0

n∑
m=−n

[
n+ 1
2n+ 1

(
r

R2

)n

+ n

2n+ 1

(
R2
r

)n+1
]
VnmYnm(θ, φ). (15)
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Debe observarse que para que la serie dada
en (15) converja, los coeficientes de Fourier deben
converger muy rápidamente debido a la presencia
del término

(
R2
r

)n+1
.

El potencial u2 sobre S1 es

ϕ =
∞∑
n=0

n∑
m=−n

[
n+ 1
2n+ 1

(
R1
R2

)n

+ n

2n+ 1

(
R2
R1

)n+1
]
VnmYnm(θ, φ). (16)

Usando la expresión (15) puede ser calculado
∂u2
∂n1

sobre S1:

ψ = σ2
σ1

∂u2
∂n1

∣∣∣∣
S1

= σ2
σ1

∂u2
∂n1

∣∣∣∣
r=R1

= σ2
σ1

∞∑
n=0

n∑
m=−n

n(n+ 1)
2n+ 1

[
R1

n−1

R2
n −

Rn+1
2

Rn+2
1

]
VnmYnm(θ, φ).

(17)

Segundo problema. Resolver el problema
(10):

∆ū = 0, en Ω1,

∂ū

∂n1
= ψ, sobre S1.

Como ū es armónica esta se busca en la forma
ū(r, θ, φ) =

∞∑
n=0

n∑
m=−n

Anmr
nYnm(θ, φ). Se halla

que

∂ū

∂n

∣∣∣∣
S1

=
∞∑
n=1

n∑
m=−n

nAnmR1
nYnm(θ, φ).

Utilizando la condición ∂ū
∂n

∣∣∣
S1

= σ2
σ1

∂u2
∂n1

∣∣∣
S1

= ψ se
tiene que

Anm = σ2
σ1

(n+ 1)
(2n+ 1)R1

n−1

[
Rn−1

1
Rn2

− Rn+1
2

Rn+2
1

]
Vnm

Por lo tanto, la solución del problema (10) viene

dado por

ū(r, θ, φ) =
∞∑
n=1

n∑
m=−n

σ2
σ1

(n+ 1)
(2n+ 1)R1

n−1[
Rn−1

1
Rn2

− Rn+1
2

Rn+2
1

]
Vnmr

nYnm(θ, φ)

de aquí que

ū|S1
=
∞∑
n=0

n∑
m=−n

σ2(n+ 1)R1
σ1(2n+ 1)

[
Rn−1

1
Rn2

− Rn+1
2

Rn+2
1

]
VnmYnm(θ, φ). (18)

Tercer problema. En este paso se resuelve el
PIES.

Sea ϕ̂ =
∞∑
n=0

n∑
m=−n

ϕ̂nmYnm(θ, φ), donde ϕ̂ =

ϕ − ū|S1
. De las ecuaciones (16) y (18) se tiene

que

ϕ̂ = ϕ− ū|S1
=
∞∑
n=0

n∑
m=−n

{
n+ 1
2n+ 1

(
R1
R2

)n
(

1− σ2
σ1

)
+
(
R2
R1

)n+1 ( n

2n+ 1 + σ2(n+ 1)
σ1(2n+ 1)

)}
VnmYnm(θ, φ),

de donde los coeficientes de Fourier de ϕ̂ son:

ϕ̂nm =
{
n+ 1
2n+ 1

(
R1
R2

)n (
1− σ2

σ1

)
+
(
R2
R1

)n+1 ( n

2n+ 1 + σ2(n+ 1)
σ1(2n+ 1)

)}
Vnm.

(19)
Ahora, el problema inverso de identificación
de la fuente f se puede estudiar en la región
homogénea Ω1 y consiste en hallar f a partir del
problema:

∆û = f en Ω1,

∂û

∂n
= 0 en S1,

con la información adicional û = ϕ̂ sobre S1. En
este caso la solución del PIES está dada por

f(r, θ, φ) = − 1
R2

1

∞∑
n=1

n∑
m=−n

n(2n+ 3)ϕ̂nm(
r

R1

)n
Ynm(θ, φ),

(20)
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Figura 2. Comparación de las superficies de nivel de las fuentes exacta y recuperada para r = 1.

la cual está en función de los coeficientes de
Fourier ϕ̂nm de ϕ̂ dados por (19) (que a su
vez están dados en términos de los coeficientes
de Fourier de la medición V ). En términos
prácticos la serie (20) debe truncarse para poder
graficarla. Más aún, para el problema directo
las series deben truncarse en el entendido que
entre más términos se tomen de la misma, mejor
será la aproximación. En el problema inverso el
truncamiento debe hacerse en función del error
en los datos. Como en este caso no estamos
considerando error en las mediciones no se ha
analizado este hecho.

En el siguiente ejemplo sintético, la serie (20)
asociada a la fuente sólo tiene un número finito
de términos.

Ejemplo. Consideremos el caso en que R1 =
1, R2 = 1.2, σ1 = 3 y σ2 = 1 y

f(r, θ, φ) = 2r5cos(4φ)sen4(θ)cos(θ).

En coordenadas cartesianas f(x, y, z) =
2
(
x4 − 6x2y2 + y4) z. Esta fuente produce la

medición

V (φ, θ) = − 22σ1R
13
1 R

5
2 cos(4φ)sen4(θ) cos(θ)

65
[
6R11

1 (σ1 − σ2) +R11
2 (5σ1 + 6σ2)

] .
(21)

Los coeficientes de Fourier de la medición V son
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√

2πR13
1 R

5
2

(195)
√

385
[
6R11

1 (σ1 − σ2) +R11
2 (5σ1 + 6σ2)

]
= V5,−4.

Usando el método propuesto calculamos ϕ̂:

ϕ̂ = − 22σ1R
13
1 R

5
2

65
[
6R11
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6
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)
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Sustituyendo estos coeficientes en la ecuación
(20) se halla que la fuente correspondiente a la
medición dada por (21) está dada por:

f(r, θ, φ) =− 65
R2

1

(
r

R1

)5
[ϕ̂5,4Y5,4(φ, θ)

+ ϕ̂5,−4Y5,−5(φ, θ)] .

Las representaciones gráficas de las fuentes
exacta y recuperada, están dadas por la figura
2.

Como no se consideran errores en la
medición, la fuente exacta y la recuperada
prácticamente coinciden. De hecho, en la tabla I
se muestran los valores para los diferentes tipos
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Tabla I. Valores de los diferentes tipos de errores.
EA ER EMC

3.8858× 10−8 6.7982× 10−8 3.4710× 10−8

de error. Mediante EA, ER y EMC denotamos
el error absoluto, el error relativo y el error
en media cuadrática entre la fuente exacta y la
recuperada, respectivamente.

Los valores presentados en la Tabla I,
muestran que el método recupera a la fuente
exacta considerando aritmética exacta. Para el
caso de errores en la medición, debido a que
el problema de Cauchy (8) es mal planteado
[9], la fuente obtenida por el método puede
variar sustancialmente de la fuente exacta y más
aún, pequeños cambios en la geometría también
pueden provocar también cambios sustanciales
en la solución del problema de identificar a
las fuentes. Para ver esto, basta considerar
que en vez de tener la medición sobre el cuero
cabelludo, la tenemos en una curva paralela muy
cercana al mismo (hacia el interior de la cabeza).
Para tener el valor de la medición en dicha
superficie paralela, debemos resolver el problema
de Cauchy para la ecuación de Laplace en la
región anular formada por estas dos superficies,
y por lo dicho arriba sobre su inestabilidad,
tendremos cambios importantes en el valor del
potencial en la mencionada superficie paralela,
y por ende, en la localización de la fuente. Por
ello, en este caso es necesario usar métodos de
regularización como el de Tijonov que tomen en
cuenta lo mencionado arriba.

PLANTEAMIENTO DEL PROBLEMA
INVERSO PARA FUENTES

DIPOLARES

En esta sección plantearemos el problema de
determinar los parámetros de una fuente dipolar
usando la simplificación presentada en este
trabajo. Para ello, dada la medición V sobre el
cuero cabelludo, calcularemos ϕ̂ dada por (12)
siguiendo los pasos descritos en las secciones
anteriores. Estudiaremos ahora el problema (11).

Solución del PCES

En lo que sigue consideraremos el problema (11),
al que hemos denotado por PCES, pero por
simplicidad utilizaremos u en vez de û y Ω en
vez de Ω1.

Como primer paso para el estudio del
problema de identificación se debe estudiar
la solubilidad del PCES. En este trabajo
estamos interesados en el caso en que la
fuente corresponde a un foco epiléptico
y la representación matemática de este
tipo de fuentes es por medio de las
funciones generalizadas o distribuciones. Más
precisamente, un foco epiléptico concentrado en
el punto a puede representarse en la forma ([4]):

Jp = pδ(x− a) , (22)

donde p representa al momento dipolar y δ(x−a)
es la función delta de Dirac concentrada en a.
La idea básica para hallar la solución en este
caso es la siguiente: ya que δ(x − a) es el límite
de funciones suaves concentradas alrededor de
a, para cada una de dichas funciones suaves,
se busca la solución clásica en términos de una
función de Green y se toma el límite de dichas
soluciones clásicas para hallar la solución que
corresponde a f = divJp/σ1 cuando Jp está
dado por (22). Para ello comencemos con la
siguiente

Definición 3. Diremos que u ∈ C2(Ω) ∩ C1(Ω̄)
es solución clásica del PCES si satisface la
ecuación y la condición de contorno de dicho
problema en sentido usual.

Notemos que una condición necesaria de
existencia de la solución clásica del PCES es que:∫

Ω
fdΩ = 0 , (23)

la cual se obtiene de las fórmulas de Green.
Además la solución clásica del PCE es única
salvo constantes y puede expresarse en términos
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de la función de Green que se define a
continuación.

Definición 4. Se llama función de Green del
PCES a la función G(y, x) que satisface el
siguiente problema de contorno

∆G(y, x) = δ(y − x)− 1
m(Ω) , x, y ∈ Ω , (24)

∂G

∂n

∣∣∣∣
S

= 0, x ∈ S = ∂Ω, y ∈ Ω , (25)

donde m(Ω) es el volumen de la región Ω.

Consideremos los siguientes espacios: C0(Ω)
es el conjunto de funciones continuas que se
anulan en una vecindad de la frontera de Ω y

C⊥0 =
{
f ∈ C0(Ω) :

∫
Ω
f dΩ = 0

}
.

Teorema 1. Si f ∈ C⊥0 entonces la solución
clásica u del PCES está dada por:

u(x) =
∫

Ω
G(y, x)f(y)dΩ , (26)

donde G es la función de Green que satisface el
problema (24)-(25).

Para cada fn ∈ C⊥0 (Ω), a partir de (22), la
solución del PCES, con f sustituido por fn, está
dada por:

un(x) =
∫

Ω
G(y, x)fn(y)dΩ . (27)

Si además fn ∈ C⊥0 (Ω) converge a f =
divJp/σ1, con Jp dada por (19), se tiene que
lim
n→∞

un existe y no depende de la sucesión que
converja a f . A tal límite se le llama solución del
PCES ([7]).

Pasemos ahora al caso en que la fuente
bioeléctrica está dada por

f = div [pδ(x− a)]
σ1

(28)

La solución del PCES cuando Jp = pδ(x − a)
viene dada por:

u(x) =
[ p
σ1
· OyG(y, x)

]∣∣∣∣
y=a

. (29)

Este resultado puede consultarse en [7]. De
esta forma el potencial producido por una fuente
dipolar, se expresa en función del momento
dipolar y el gradiente de la función de Green.

Para la solución de este problema pueden
usarse otras técnicas como la presentada en
[10], en donde se propone un método libre de
mallas que es computacionalmente eficiente. Sin
embargo, para el caso de fuentes dipolares la
expresión (29) para x ∈ S es muy sencilla,
representa a la solución del problema directo, es
decir, al potencial teórico medido en la frontera
de Ω. Claramente es necesario conocer a la
función de Green en (29) para poder calcular el
potencial teórico. Esto se realiza en la siguiente
sección para el caso en que la región Ω es una
esfera.

CASO DE UNA REGIÓN ESFÉRICA

Función de Green

En esta sección consideramos el caso en que Ω
corresponde a una esfera de radio uno en la cual
la función de Green está dada por ([11]):

G(y, x) = 1
4πr + g(y, x), (30)

donde r = |x − y|, g(x, y) = αR2 +
g1(y, x), para α = − 1

6m(Ω) , R
2 = ||y||2, m(Ω)

es el volumen de Ω y g1 una función armónica
que satisface el problema

∆g1(y, x) = 0, x, y ∈ Ω , (31)

∂g1
∂n

= − ∂

∂n

[ 1
4πr + αR2

]
, x ∈ S = ∂Ω, y ∈ Ω .

(32)
La elección de α = −1/6m(Ω) garantiza la

existencia y la unicidad (salvo constantes) de la
función g1 y, por lo tanto, de la función de Green
G.

Cuando x está sobre el eje z, es decir, cuando
x = (0, 0, z0) se tiene que

G(y, x) = 1
4πr + 1

z0

1
4πr1

− w

4π −
R2

8π + C, (33)
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en donde

z0′ = 1
z0
, r1 = |y − x′|, x′ =

(
0, 0, 1

z0

)
,

w = loge(z0′ − z + r1), C = − z
2
0

8π −
1

4π logez0.

La constante C se elige de la condición:∫
Ω
G(y, x)dy = 0, (34)

con la cual garantizamos que la función de Green
es única.

Nótese que cuando z0 = 1 se tiene que el
punto x corresponde al polo norte de la esfera.
Tendremos entonces el potencial en ese punto.
Para el caso en que x no coincida con el polo
norte, se realiza un cambio de coordenadas para
colocar el eje z en la dirección del punto x y
que éste coincida con el polo norte (para lo cual
se usan matrices de rotación). Así tendremos el
potencial teórico en cada punto de la superficie.

Modelos que consideran una geometría real
de la cabeza [10], han sido empleados para
el estudio de este problema cuando se tiene
una fuente dipolar, los cuales podrían dar
información sobre la posible ubicación de la
fuente. Sin embargo, de acuerdo con [12] un
modelo muy detallado de la cabeza humana
podría no ser necesario para el estudio tanto del
problema directo como del inverso.

Planteamiento del problema inverso

A partir de los resultados presentados en
este trabajo, el problema de determinar los
parámetros de una fuente dipolar, a saber, el
momento dipolar p y la posición a, puede
estudiarse a partir del funcional de mínimos
cuadrados

min
P,a
‖u(x)− ϕ̂‖2

donde x pertenece a la superficie de la esfera
interior que representa al cerebro, u está dada
por (29) y la función de Green por (33). Se
debe proponer un algoritmo estable el cual puede
basarse en la técnica de mínimos cuadrados
no lineales planteado en este trabajo junto con
algún método de regularización para tratar la
inestabilidad del problema.

CONCLUSIONES

En este trabajo por medio de una simplificación
se redujo el PIE al análisis de un problema de
Poisson (definido en una sola región homogénea
con conductividad constante) con una condición
de contorno de Neumann nula junto con el
dato que se determina de la medición sobre el
cuero cabelludo (ver sección 3). Este caso ha
sido estudiado como un primer paso para el
análisis del PIE. En este trabajo se demuestra
que este problema tiene una relación estrecha con
el problema de varias capas conductoras. Esto se
deriva del hecho que el flujo de corriente es nulo
en la superficie del cuero cabelludo debido a que
el aire se considera un aislante. En aquellos casos
en que esta condición física se cumpla, pueden
aplicarse los resultados presentados aquí.

Se validó, usando la técnica de los armónicos
esféricos, la simplificación en el caso en que la
cabeza se modela por esferas concéntricas y la
fuente es una función armónica. Para el caso
de fuentes dipolares, se planteó el problema de
identificar los parámetros de una fuente dipolar
usando la simplificación. Para el caso en que las
mediciones tengan errores, se debe proponer un
algoritmo regularizado ya este problema es mal
planteado debido a que pequeños errores en la
medición, pueden generar grandes cambios en la
localización de la fuente.
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