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Objetivo:

Electroencefalografico (PIE) del caso de varias capas conductoras a una

Presentar una simplificacién del Problema Inverso

regién homogénea con condiciéon de Neumann Nula. Metodologia: Se
divide el PIE en tres problemas, dos de los cuales se resuelven usando el
potencial medido en el cuero cabelludo y con estas soluciones y el tercer
problema se lleva a cabo la simplificacién. Para validar la simplificacién
se genera un ejemplo sintético usando el modelo de esferas concéntricas.
Resultados: Por medio de la simplificaciéon la fuente se determina
a partir de la ecuacién de Poisson con una condicién de Neumann
nula y un dato adicional sobre la frontera de la regién homogénea, el
cual se obtiene de la medicién. Esto es valido para regiones generales
con fronteras suficientemente suaves. Adicionalmente, para el caso
de esferas concéntricas, se plantea el PIE para el caso de una fuente
dipolar (que representa a focos epilépticos) usando esta simplificacién
y la técnica de la funcién de Green. Conclusién: La simplificaciéon
presentada aqui permite analizar el PIE en una regién lo cual simplifica
su estudio tedrico y numérico. En particular, puede ser tutil para el
analisis del problema de identificaciéon de los parametros de una fuente

dipolar.

Palabras clave: fuentes electroencefalograficas, focos epilépticos,

condicién de Neumann, funcién de Green, teoria de distribuciones.
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ABSTRACT

Objective: To give a  simplification of the Inverse
Electroencephalographic Problem (IEP) from the case of multilayer
conductive medium to the case of a homogeneous region with null
Neumann condition. Methodology: TEP is divided in three problems,
two of which are resolved using the measurements of potential on the
scalp and with these solutions and the third problem the simplification
is carried out. In order to validate the simplification a synthetic
example is generated using the model of concentric spheres. Results:
Through of simplification, the source is determined from the Poisson
equation with null Neumann condition and an additional data on
the boundary of the homogeneous region, which is obtained from
the measurement. This is valid for regions with smooth boundary.
Additionally, in the case of concentric spheres, it is statement the
identification problem for dipolar sources (representing epileptic
focus) using this simplification and Green function. Conclusion: The
simplification presented here allows us to analyze the inverse problem
in one region, which simplifies the theoretical and numerical study.
In particular it may be useful to analyze the problem of parameter

identification of a dipolar source.

INTRODUCCION

En diversos campos de la investigacién, se
presentan situaciones en las cuales es necesario
conocer las causas que producen cierto fenémeno
a través de la informacién parcial que se obtiene
del mismo [1]. Este tipo de problemas son
llamados de identificacion y son ampliamente
estudiados en muchos campos de la investigacion,
entre otros la medicina, donde hay un gran
interés en el problema de identificacién de fuentes
bioeléctricas cerebrales, a partir de los datos
obtenidos por medio de un electroencefalograma
(EEG) ya que permiten detectar posibles
anomalias (dafios, mal funcionamiento, etc.) lo
que se ha hecho tradicionalmente a través de
diferentes técnicas de diagnéstico.

Para los problemas de identificacién se
usan modelos matematicos, con los cuales se
desarrollan técnicas no invasivas. Entre estas
se encuentran la tomografia por emisién de
positrones, la resonancia magnética nuclear, la
electroencefalografia, la cual es de particular

Keywords: electroencephalographic source, dipolar focus, Neumann

condition, Green function, distribution theory.

de interés para nosotros. Por medio de esta
técnica se registran los potenciales en un
electroencefalograma (EEG); estos potenciales
provienen de la actividad eléctrica de los tejidos
excitables, y se captan midiendo la diferencia de
potencial existente entre un electrodo explorador
y otro de referencia. A las fuentes que son
generadas por la actividad electroquimica de
estos o6rganos se les conoce como fuentes
bioeléctricas y se considera que estan compuestos
por grandes conglomerados de neuronas que
actian simultidneamente. Entre las ventajas
de la técnica del EEG se encuentran que
la informacién que proporciona se captura
en tiempo real, de manera simple, es no
invasiva ademas de econémica. En algunos casos
podemos considerar que los generadores estan
concentrados en una region del cerebro y que
pueden representarse por funciones de cuadrado
integrable definidas sobre esa regién. En el
caso particular en que se tiene una fuente
dipolar (con la cual se representan a los focos
epilépticos), es necesario enfocar el andlisis de
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este problema a través de las distribuciones o
funciones generalizadas. Para el estudio de este
problema se consideran el problema directo e
inverso electroencefalogréfico. El primero de ellos
consiste en hallar el EEG cuando conocemos a
la fuente. El segundo consiste en determinar la
fuente a partir del EEG.

En este trabajo se presenta una simplificacion
del PIE, la cual se basa, como primer paso, en
separar el problema en dos sub problemas. El
primero de ellos puede ser calculado a partir del
EEG en el cuero cabelludo. Para el segundo de
ellos, se divide en otros dos, uno de los cuales
puede calcularse también (indirectamente) de la
medicién. De esta manera, el problema inverso se
reduce a un problema de identificacién de fuentes
en un medio homogéneo con una condicién de
Neumann nula en la frontera de dicho medio,
con lo que se pueden usar los resultados que
se tienen para este ultimo problema el cual ha
sido utilizado para realizar experimentacién y
para hallar resultados tedricos. Para validar el
método se presenta la solucién del problema
inverso para el caso de fuentes distribuidas en el
volumen cerebral. Para fuentes dipolares (focos
epilépticos) se halla la solucién para una regiéon
anular homogénea usando una funciéon de Green.
En el caso de una esfera la funcién de Green
puede calcularse en forma explicita y el potencial
producido en un punto se obtiene realizando un
producto punto de vectores en el espacio por lo
que el problema inverso se reduce a un problema
de minimos cuadrados no lineales en un medio
homogéneo. En el desarrollo de este trabajo no
se considera el caso de errores en la medicién.

Debido a que la epilepsia ataca a una parte
importante de la poblacion mundial [2] se han
dedicado esfuerzos para su estudio los cuales
pueden dividirse, en desarrollo de algoritmos y
en desarrollo tecnolégico para obtener sistemas
de visualizacién de la zona afectada. Este trabajo
se enmarca dentro del primero de ellos.

MODELO MATEMATICO

El modelo mateméatico que se presenta en este
trabajo ha sido ampliamente utilizado para el
estudio del problema de identificacién en ([1],
(3], [4], [5]); en él la cabeza humana ha sido
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modelada por medio de capas conductoras con
conductividad constante y diferente en cada
capa. La actividad eléctrica del cerebro es
registrada en el cuero cabelludo por medio del
EEG. Se considera para la modelacién que el
EEG es producido por grandes conglomerados
de neuronas que se activan simultdneamente.
A estos conglomerados se les conoce como
generadores o fuentes bioeléctricas ([4], [6]).
Adicionalmente, se supone que las corrientes
que pueden producirse en la regién €2 se deben
Unicamente a la actividad eléctrica del cerebro
y pueden ser de dos tipos: éhmicas e impresas.
Las primeras se deben al movimiento de cargas
ibnicas a través del fluido extracelular en el
cerebro y las segundas a las corrientes de
difusién a través de las membranas neuronales
([6]) las cuales se denotan por JP y son las
de interés en el problema de identificacién,
ya que el soporte de estas puede darnos
informacién sobre la ubicacién espacial de la zona
afectada. Tomando en cuenta lo anterior, se
demuestra que el estudio del Problema Inverso
Electroencefalografico (PIE) puede ser realizado
a través del siguiente problema de valores en la
frontera ([1], [4], [5], [7]):

Aup = f en , (1)
Aug =0 en o, (2)
up =ug en Si, (3)

8’11,1 8UQ
gm_ _ Yv2 4
Tig, =0 en St, (4)

Ousy

87’]12 - 07 en 52, (5)

donde Q = Oy Uy representa a la cabeza, {2y el
cerebro, )y el resto de las capas que componen
la cabeza (liquido intracraneal, créneo, cuero
cabelludo), o1 y o2 son las conductividades de
y {23 las cuales se suponen constantes (ver figura
1), f = divJ?/o; es llamada la fuente, u; =
U|Qf i1 = 1,2 y u representa al potencial eléctrico
en Q. EIl simbolo A representa al operador
laplaciano, que también se simboliza como V2.
Obsérvese que en este caso podremos recuperar
sblo una parte de la fuente bioeléctrica JP. Las
condiciones de frontera (3)-(4) son llamadas de
transmision y la condicién de frontera (5), se
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obtiene al considerar que la conductividad de
Q¢ es cero (la conductividad del aire). De
las férmulas de Green se deduce la siguiente
condiciéon de compatibilidad

f(z)dz = 0. (6)
951

En el caso en que sélo se consideren fuentes
corticales, su presencia se refleja sobre la
condiciéon de frontera asociada con la igualdad
de flujos de corriente. Si denotamos por j? a
la densidad de corriente cortical entonces dicha
condicion de frontera toma la forma:

6u1 8u2
Ol — = 02—
(977,1 8711

Se denomina a jP - m; fuente cortical y
satisface una condiciéon de compatibilidad similar
a la (6). Sin embargo, si consideramos
simultaneamente tanto fuentes corticales como

volumétricas esta condicién se convierte en
Jo, f(x)dz + [ jP-nidz = 0. El caso de
o

fuentes corticales ha sido estudiado en [8] y
se busca la solucibn como la suma de un
potencial de capa doble definido S; m&s uno
de capa simple definido sobre S3. En este
caso la densidad dipolar definida sobre S7 puede
representar la actividad de neuronas piramidales
y, por lo tanto, brindar informacion sobre la
zona activa de la corteza cerebral. Sin embargo,
en ese trabajo sélo se consideraron fuentes que
pueden representarse por funciones de cuadrado
integrable y no por funciones generalizadas con
las cuales se representan las fuentes dipolares.
Este caso debe estudiarse mateméaticamente con
detalle para asegurar la existencia de soluciones
de este problema ademéas de interpretarse
apropiadamente el planteamiento matematico
para que dichas soluciones tengan un sentido en
el problema real. La discusién sobre este tema
no se aborda en este trabajo por lo que no se
considera la presencia de fuentes corticales.

Al problema (1)-(5) se llama Problema de
Contorno Electroencefalografico (PCE).

Definicion 1. Se llama Problema Directo
Electroencefalogrdfico al problema que consiste en
hallar la solucién u(x) del PCE cuando se conoce
flx) = divI?/oy.

Figura 1: Representaciéon de la cabeza como dos
medios conductores homogéneos acoplados.

Definicion 2. El Problema inverso asociado
al PCE consiste en dada una funcion V
definida sobre S, encontrar f(x) de manera
que para la solucion u(z) del problema directo
correspondiente a dicha f(x), se cumpla que

uls =V.

SIMPLIFICACION DEL PROBLEMA A
UNA REGION

Problemas que permiten la
simplificacion

Para resolver el Problema Inverso Electro-
encefalografico, primero se desacopla el problema
(1)-(5) en los dos problemas siguientes:

Primer problema. Resolver el problema de
Cauchy en la regién anular 29 dado V' sobre Ss:

Aus =0 en o,
7
UQZ‘/,%:OGHSQ. ()
8722

Segundo problema. Después de hallar ug
en el primer problema por medio de los datos
de Cauchy sobre Ss usando las condiciones de
transmision (3)-(4) el PIE se reduce a hallar f a
través del problema:

Auy = f en 4,
8u1 (8)

up =, = €n Sl?

on



Morin-Castillo y cols. Simplificacién del Problema Inverso Electroencefalografico a una Sola Regién Homogénea con

Condicién de Neumann Nula
- — 02 9up
donde = wals, y ¥ = 254|
La  condicibn  de  transmisién  (4)
correspondiente a la igualdad de los flujos de
corriente, lleva a que

P(s)ds = 0. 9)
S1

Para reducir a una regién, consideremos el

Tercer problema. Para el estudio
del problema (8) tomamos los siguientes dos
problemas:

Au=20 en Ql,
8a (10)
87711 = en Sl,
Al=f en Qq,
i 11
ai =0 en Sl, ( )
on

Notemos que u; = 4 + u si elegimos f en (11) a
través del dato adicional:

g, = ¢ = v — g, (12)

La solucién del problema (10) se toma ortogonal
a las constantes, con lo cual es tinica. Debido a
que 1 es conocida a partir de los datos de Cauchy,
el problema (10) puede separarse del resto y
s6lo considerarse para el estudio del problema
de identificacién, al problema (11)-(12), el cual
corresponde al caso del PIE para una sola regién
con una condicion de contorno de Neumann
nula y que llamaremos Problema Inverso
Electroencefalografico  Simplificado ~ (PIES).
Noétese que la condiciéon de compatibilidad sobre
1 para el problema (10) es la dada por (9).
Llamaremos al problema (11), Problema de
Contorno Electroencefalografico Simplificado
(PCES).

El desarrollo de esta seccién es valido para
regiones generales con frontera suficientemente
suave que incluyen el caso de las geometrias
que pueden aproximar con mayor precision a la
geometria de la cabeza de un paciente especifico.
En la seccién siguiente se desarrollan los tres
problemas anteriores para el caso en el que
la cabeza se modela por medio de esferas
concéntricas, a fin de ilustrar como funciona la
propuesta realizada en esta seccién.
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EJEMPLIFICACION DE LA TECNICA
PROPUESTA USANDO EL CASO DE
ESFERAS CONCENTRICAS

Es conocido [9] que para fuentes bioeléctricas
volumétricas representadas por funciones de
cuadrado integrable, la solucion del PIE es tnica
si la fuente es una funciéon arménica y satisface
la condicién (6).

Para ejemplificar la metodologia sobre la
reducciéon a una sola regién, consideremos el
caso de fuentes f representadas por funciones
armonicas que satisfacen (6) (con lo que, como
se dijo anteriormente, garantizamos unicidad de
la solucién del problema de identificacién) en el
caso en que la cabeza se modela por dos esferas
concéntricas lo cual es elegido por claridad de
la exposicion. En este caso se pueden realizar
todos los calculos de manera analitica sin recurrir
a los métodos numéricos. Sin embargo, los
resultados se pueden generalizar al caso en el que
las capas no son necesariamente esféricas para lo
cual serfa necesario utilizar métodos numéricos
para validar los resultados que se presenten.

Primer problema. Resolver el Problema
de Cauchy en la region anular (2o compuesta por
esferas concéntricas, dada la medicién sin error
V:

Aup =0, en O = {2 € R*: Ry <|z| < R},

ug =V, SObreSQZ{ZER3:‘z|:R2}7

%:0, Sobreng{Z€R3:]z\=R2}~

on
(13)
Sean Y, los arménicos esféricos y V., los
coeficientes de Fourier de V' en la base que ellos
forman. En este caso se tiene que V estd dado
por

V=33 Vaam(00), (1)

n=0m=—n

de donde la correspondiente soluciéon del
problema (13) es

uz(r, 0, ¢) = i z”: {27;111 (f;)n

n=0m=—n

" (RQ)"H] VimYam(8,0).  (15)

2n+1\ r
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Debe observarse que para que la serie dada
en (15) converja, los coeficientes de Fourier deben
converger muy rapidamente debido a la presencia

n+1
del término (%) .

El potencial us sobre S7 es

_OO n n+1 (R\"
p=2 2 {2n+1(R2)

n=0m=-—n

n R2 n+1
+2n+1<31> ] VamYum (0, ¢).  (16)

Usando la expresion (15) puede ser calculado

Quy .
o sobre Si:

_ 20u| 02 0u Z 3
N o1 0ny S B o1 Ong r:R1 n=0m=—n
nin+1) [R"' Ry
- annm 07 N
2n+1 | R"  RpP? " 09

(17)

Segundo problema. Resolver el problema
(10):

Au = 07 en Ql,

ou

—— =1, sobre 5.
8n1

Como 7 es armonica esta se busca en la forma
o n

ﬂ(?", 9’ ¢) = Z Z AnmrnYnm(e,Qb) Se halla

n=0m=—n
que

Z Z nAnle nm(e ¢)

n=1m=-—n

Utilizando la condiciéon % = 22 gu2
1S o1 Ony

—wse

tiene que

A, 02 (n+1) leb—l Rg“]

o1 (2n+1)R" ' | Ry~ RyP?

Por lo tanto, la solucién del problema (10) viene

dado por

(n+1)
u(r,6,9) = Z Z o1 2n+1)R1" !

n=1m=-—n

lR? 1 RgH—l

") Vnm nYnm 0;
RS R?+2‘| r ( ¢)

de aqui que

B oo(n+1)Ry [RY! Ry
U|Sl nz:om;n 2n+ ) [RS }%711—~_2

Tercer problema. En este paso se resuelve el
PIES.

Sea @ =3 S GrumYom(0, ), donde ¢ —

n=0m=-—n
¢ — ulg,- De las ecuaciones (16) y (18) se tiene

que
R n+1 /R\"
Py = Z Z {2n+1<R2>

n=0m=-—n

-2+ (&) Gt fe)
o1 Ry 2n +1 01(2n—|—1)

de donde los coeficientes de Fourier de ¢ son:

Vannm(07 (b):
o ={5r1(m) (1-5)
Prm = 2n+ 1\ Ry 01

(7)) e Son 1) } Yo
(19)

Ahora, el problema inverso de identificacion
de la fuente f se puede estudiar en la regién
homogénea €2y y consiste en hallar f a partir del
problema;:

At =f en Q,
o4
% =0 en 5y,

con la informacién adicional & = @ sobre S;. En
este caso la solucion del PIES estda dada por

1 ) n

n*l m=—n (20)

() Yom(0:0

f(r,0,0) =
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Fuente exacta
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Fuente calculada por la simplificacicon

Figura 2. Comparacion de las superficies de nivel de las fuentes exacta y recuperada para r = 1.

la cual estd en funcién de los coeficientes de
Fourier ¢p, de ¢ dados por (19) (que a su
vez estan dados en términos de los coeficientes
de Fourier de la medicién V).
practicos la serie (20) debe truncarse para poder
graficarla. Maéas adn, para el problema directo
las series deben truncarse en el entendido que
entre més términos se tomen de la misma, mejor
serd la aproximacion. En el problema inverso el
truncamiento debe hacerse en funcién del error
en los datos. Como en este caso no estamos
considerando error en las mediciones no se ha
analizado este hecho.

En términos

En el siguiente ejemplo sintético, la serie (20)
asociada a la fuente sélo tiene un nimero finito
de términos.

Ejemplo. Consideremos el caso en que Ry =
1, Ro=12, 01 =3yo2=1y

f(r,0,0) = 2rcos(4¢)sen*(A)cos(h).

En coordenadas cartesianas f(z,y,z) =
2 (z* — 622y + y*) 2. Esta fuente produce la
medicién

V(6,0) = — 2201R13R2 cos(4¢)sen*(0) cos(0)

(21)
Los coeficientes de Fourier de la medicién V son

(—176)01v21 RIPRS
Vsa=

65 [6R1 (01 — 02) + Ri(5oq + 602)]

= V5,-4.

)

(195)v/385 [6R} (01 — 02) + R (501 + 602)]

Usando el método propuesto calculamos ¢:

2201 RI* R} y
65 [6R11(0‘1 — 09) + R3Y (501 + 602)]

() (-2 (&) G2)

Cos 4<p sen (6) cos(0),

¢ =

donde sus coeficientes de Fourier son
o= ai(i) (- 7)
P54 = 11\ Ry o1
R\ /5 609
*(31) (11+ 1101> Yo
_ 6<R1)5<1_02>
N 11 R2 g1
R2 6 5 60‘2
— — Vs _4.
+<31> (11 - 1101) St
Sustituyendo estos coeficientes en la ecuacién

(20) se halla que la fuente correspondiente a la
medicién dada por (21) estd dada por:

S
o

5
F(r,0,0) = ff% (Rl) (65.4Y5.4(6,0)

+ ¢5-4Y5 _5(0,0)].

Las representaciones graficas de las fuentes
exacta y recuperada, estan dadas por la figura
2.

Como no se consideran errores en la
medicién, la fuente exacta y la recuperada
practicamente coinciden. De hecho, en la tabla I
se muestran los valores para los diferentes tipos
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Tabla I. Valores de los diferentes tipos de errores.

EA

ER

EMC

3.8858 x 1078

6.7982 x 1078

3.4710 x 1078

de error. Mediante EA, ER y EMC denotamos
el error absoluto, el error relativo y el error
en media cuadratica entre la fuente exacta y la
recuperada, respectivamente.

Los wvalores presentados en la Tabla I,
muestran que el método recupera a la fuente
exacta considerando aritmética exacta. Para el
caso de errores en la medicién, debido a que
el problema de Cauchy (8) es mal planteado
[9], la fuente obtenida por el método puede
variar sustancialmente de la fuente exacta y mas
aun, pequenos cambios en la geometria también
pueden provocar también cambios sustanciales
en la solucién del problema de identificar a
las fuentes. Para ver esto, basta considerar
que en vez de tener la medicién sobre el cuero
cabelludo, la tenemos en una curva paralela muy
cercana al mismo (hacia el interior de la cabeza).
Para tener el valor de la medicién en dicha
superficie paralela, debemos resolver el problema
de Cauchy para la ecuaciéon de Laplace en la
regién anular formada por estas dos superficies,
y por lo dicho arriba sobre su inestabilidad,
tendremos cambios importantes en el valor del
potencial en la mencionada superficie paralela,
y por ende, en la localizacién de la fuente. Por
ello, en este caso es necesario usar métodos de
regularizacién como el de Tijonov que tomen en
cuenta lo mencionado arriba.

PLANTEAMIENTO DEL PROBLEMA
INVERSO PARA FUENTES
DIPOLARES

En esta seccion plantearemos el problema de
determinar los parametros de una fuente dipolar
usando la simplificacion presentada en este
trabajo. Para ello, dada la medicién V sobre el
cuero cabelludo, calcularemos ¢ dada por (12)
siguiendo los pasos descritos en las secciones
anteriores. Estudiaremos ahora el problema (11).

Solucion del PCES

En lo que sigue consideraremos el problema (11),
al que hemos denotado por PCES, pero por
simplicidad utilizaremos u en vez de 4 y € en
vez de 7.

Como primer paso para el estudio del
problema de identificacion se debe estudiar
la solubilidad del PCES. En este trabajo
estamos interesados en el caso en que la

fuente corresponde a un foco epiléptico
y la representacion matematica de este
tipo de fuentes es por medio de las

funciones generalizadas o distribuciones. Mas
precisamente, un foco epiléptico concentrado en
el punto a puede representarse en la forma ([4]):

JP =pio(x—a), (22)
donde p representa al momento dipolar y §(z—a)
es la funcién delta de Dirac concentrada en a.
La idea béasica para hallar la solucién en este
caso es la siguiente: ya que d(x — a) es el limite
de funciones suaves concentradas alrededor de
a, para cada una de dichas funciones suaves,
se busca la solucién clasica en términos de una
funcién de Green y se toma el limite de dichas
soluciones clasicas para hallar la solucién que
corresponde a f = divJP/o; cuando JP estd
dado por (22). Para ello comencemos con la
siguiente

Definicién 3. Diremos que u € C2(Q) N C1(Q)
es solucion cldsica del PCES si satisface la
ecuacion y la condicion de contorno de dicho
problema en sentido usual.

Notemos que una condicién necesaria de
existencia de la solucién clasica del PCES es que:

/QfdQ:o,

la cual se obtiene de las formulas de Green.
Ademaés la solucién clasica del PCE es tnica
salvo constantes y puede expresarse en términos

(23)
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de la funcion de Green que se define a
continuacién.

Definicion 4. Se llama funcion de Green del
PCES a la funcion G(y,z) que satisface el
stguiente problema de contorno

1
AG(y,x):(S(y—x)—m, .T,yGQ, (24)
oG
— = =00 Q 2
an | 0, 2z€S5S=00,yeQ, (25)

donde m(Q2) es el volumen de la region €.

Consideremos los siguientes espacios: Cp(€2)
es el conjunto de funciones continuas que se
anulan en una vecindad de la frontera de € y

C({:{fng(Q):S{fszo}.

Teorema 1. Si f € Cy entonces la solucion
cldsica u del PCES estd dada por:

u@) = [ G.a)fwae.  (20)

donde G es la funcion de Green que satisface el
problema (24)-(25).

Para cada f, € C5(Q), a partir de (22), la
soluciéon del PCES, con f sustituido por f,, esta
dada por:

u(@) = [ Galhie. @)

Si ademds f, € Cg(Q) converge a f =
divJP /o1, con JP dada por (19), se tiene que
nh—%o uy, existe y no depende de la sucesién que
converja a f. A tal limite se le llama solucién del
PCES ([7]).

Pasemos ahora al caso en que la fuente
bioeléctrica estd dada por

_ div [pd(z — a)]

o1

f (28)

La solucién del PCES cuando J? = pd(x — a)
viene dada por:

u(@) = |2 9,6(0.2)]

01

(29)
y=a

49

Este resultado puede consultarse en [7]. De
esta forma el potencial producido por una fuente
dipolar, se expresa en funcién del momento
dipolar y el gradiente de la funcién de Green.

Para la solucién de este problema pueden
usarse otras técnicas como la presentada en
[10], en donde se propone un método libre de
mallas que es computacionalmente eficiente. Sin
embargo, para el caso de fuentes dipolares la
expresion (29) para x € S es muy sencilla,
representa a la solucién del problema directo, es
decir, al potencial tedrico medido en la frontera
de ). Claramente es necesario conocer a la
funcién de Green en (29) para poder calcular el
potencial tedrico. Esto se realiza en la siguiente
seccién para el caso en que la region {2 es una
esfera.

CASO DE UNA REGION ESFERICA

Funcion de Green

En esta seccién consideramos el caso en que {2
corresponde a una esfera de radio uno en la cual
la funcién de Green estd dada por ([11]):

1
G = 30
(y.2) = — +9(y.2), (30)
donde r = |z — y|, g(z,y) = aR? +
g1(y, ), para @ = —goor, B2 = |lyl]?, m(Q)
es el volumen de 2 y g1 una funcién armoénica
que satisface el problema

Ag1(y,$) = 07 T,y € Qa (31)

87_ %[W+QR]7 reS=00yeN.
(32)

La eleccion de v = —1/6m(2) garantiza la

existencia y la unicidad (salvo constantes) de la
funcién ¢; y, por lo tanto, de la funcién de Green

G.

Cuando x estd sobre el eje z, es decir, cuando
x = (0,0, zp) se tiene que

1 11 w R
G(y7w)—m+%m—ﬂ—87+ca (33)
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en donde
1 1
20 = —, leyy_l‘/|7 JI/: <0707)a
20 20
2 1
w=1log, (20 —2+11), C = e Elogezo.

La constante C se elige de la condicién:

/ G(y,x)dy =0, (34)
Q

con la cual garantizamos que la funciéon de Green
es Unica.

Notese que cuando zg = 1 se tiene que el
punto x corresponde al polo norte de la esfera.
Tendremos entonces el potencial en ese punto.
Para el caso en que x no coincida con el polo
norte, se realiza un cambio de coordenadas para
colocar el eje z en la direccién del punto x y
que éste coincida con el polo norte (para lo cual
se usan matrices de rotacién). Asi tendremos el
potencial tedrico en cada punto de la superficie.

Modelos que consideran una geometria real
de la cabeza [10], han sido empleados para
el estudio de este problema cuando se tiene
una fuente dipolar, los cuales podrian dar
informacién sobre la posible ubicacién de la
fuente. Sin embargo, de acuerdo con [12] un
modelo muy detallado de la cabeza humana
podria no ser necesario para el estudio tanto del
problema directo como del inverso.

Planteamiento del problema inverso

A partir de los resultados presentados en
este trabajo, el problema de determinar los
pardametros de una fuente dipolar, a saber, el
momento dipolar p y la posiciébn a, puede
estudiarse a partir del funcional de minimos
cuadrados
. o112

min u(z) - |
donde x pertenece a la superficie de la esfera
interior que representa al cerebro, u estda dada
por (29) y la funcién de Green por (33). Se
debe proponer un algoritmo estable el cual puede
basarse en la técnica de minimos cuadrados
no lineales planteado en este trabajo junto con
algiin método de regularizacién para tratar la
inestabilidad del problema.

CONCLUSIONES

En este trabajo por medio de una simplificacion
se redujo el PIE al andlisis de un problema de
Poisson (definido en una sola regién homogénea
con conductividad constante) con una condicién
de contorno de Neumann nula junto con el
dato que se determina de la medicién sobre el
cuero cabelludo (ver secciéon 3). Este caso ha
sido estudiado como un primer paso para el
andlisis del PIE. En este trabajo se demuestra
que este problema tiene una relacion estrecha con
el problema de varias capas conductoras. Esto se
deriva del hecho que el flujo de corriente es nulo
en la superficie del cuero cabelludo debido a que
el aire se considera un aislante. En aquellos casos
en que esta condicion fisica se cumpla, pueden
aplicarse los resultados presentados aqui.

Se validé, usando la técnica de los arménicos
esféricos, la simplificaciéon en el caso en que la
cabeza se modela por esferas concéntricas y la
fuente es una funciéon armoénica. Para el caso
de fuentes dipolares, se plante6 el problema de
identificar los pardmetros de una fuente dipolar
usando la simplificacién. Para el caso en que las
mediciones tengan errores, se debe proponer un
algoritmo regularizado ya este problema es mal
planteado debido a que pequenos errores en la
medicién, pueden generar grandes cambios en la
localizacion de la fuente.
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