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RESUMEN

En este art́ıculo se propone un enfoque no paramétrico para el

registro elástico de imágenes médicas multimodales, cuya idea

principal radica en el uso de medidas de variabilidad local, basadas

en la entroṕıa, la varianza o una combinación de ambas. La

metodoloǵıa empleada consiste en encontrar el campo vectorial de

los desplazamientos entre los pixeles de las imágenes candidata y

patrón empleando una técnica compuesta por tres pasos: primero,

se obtiene una aproximación del campo vectorial por medio

de un registro paramétrico entre ambas imágenes; segundo, se

mapean las imágenes registradas paramétricamente a un espacio

de intensidades donde pueden ser comparadas; tercero, se obtiene

el flujo óptico entre las imágenes en el espacio al que fueron

mapeadas. El algoritmo propuesto se evaluó usando un conjunto

de imágenes de resonancia magnética y tomograf́ıa computarizada

adquiridas desde diferentes vistas, las cuales fueron deformadas

sintéticamente. Los resultados obtenidos en la estimación del

campo de desplazamientos con las cuatro medidas de variabilidad

local propuestas muestran un error medio menor que 1.4 mm, y

en el caso de la entroṕıa menor a 1 mm. Además, se demuestra

la convergencia del algoritmo con ayuda de la entroṕıa conjunta.

Aśı, la metodoloǵıa descrita representa una nueva alternativa para

el registro elástico multimodal de imágenes médicas.

Palabras clave: imágenes multimodales, imagenoloǵıa, flujo

óptico, optimización, registro elástico.
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ABSTRACT

In this work, we present a novel approach for multimodal elastic

registration of medical images, where the key idea is to use local

variability measures based on entropy, variance or a combination

of these metrics. The proposed methodology relies on finding

the displacements vector field between pixels of a source image

and a target one, using the following three steps: first, an initial

approximation of the vector field is achieved by using a parametric

registration based on particle filtering between the images to align;

second, the images previously registered are mapped to a common

space where their intensities can be compared; and third, we

obtain the optical flow between the images in this new space. To

evaluate the proposed algorithm, a set of computed tomography

and magnetic resonance images obtained in different views, were

modified with synthetic deformation fields. The results obtained

with the four proposed local variability measures show an average

error of less than 1.4 mm, and in the case of the entropy less than

1 mm. In addition, the convergence of the algorithm is highlighted

by the joint entropy. Therefore, the described methodology

could be considered as a new alternative for multimodal elastic

registration of medical images.

Keywords: elastic registration, medical imaging, multimodal

images, optical flow, optimization.

INTRODUCCIÓN

El registro de imágenes se ha convertido en
una tarea muy importante en el área de
procesamiento digital de imágenes médicas,
ya que puede ser empleado en varios procesos
como: caracterización de los cambios anatómicos
del corazón en un ciclo card́ıaco o la atrofia
gradual del cerebro en el envejecimiento;
comparación o modelado de estructuras
anatómicas (morfometŕıa); segmentación de
estructuras o tejidos por medio de átlases
médicos; corrección de los artefactos causados
por el movimiento en imágenes fetales; detección
de las discrepancias entre imágenes de un mismo
paciente que fueron adquiridas durante distintas
etapas de algún tratamiento; entre muchas
otras [1, 2, 3, 4]. De acuerdo a los tipos de
deformaciones que se deseen aproximar con
el registro, éste puede dividirse en dos: en
el registro paramétrico y en el elástico o no

paramétrico [5]. En la literatura, las técnicas
basadas en el descenso (o ascenso) de gradiente
[6], [7] son las más comúnmente utilizadas
para optimizar una medida de similitud (ej.
Información Mutua [8, 9, 10]) y obtener la
transformación espacial (ej. af́ın o perspectiva
[11]) que alinee las imágenes candidata y
patrón [5]. Otras opciones basadas en métodos
de optimización global como los algoritmos
genéticos [12] y filtrado de part́ıculas [13],
han comenzado a ganar terreno dentro de este
campo [14, 15, 16]. Por otro lado, el registro
elástico es un problema más complejo que el
registro paramétrico [3], especialmente cuando
se intentan registrar imágenes provenientes de
distintas fuentes (registro multimodal). El
registro elástico es un área de investigación
relativamente reciente donde la mayoŕıa de
los algoritmos desarrollados se encuentran en
sus primeras etapas de evaluación y validación
[17], y pocas veces buscan resolver el problema
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para imágenes multimodales, y de hacerlo,
generalmente se centran en parametrizar el
espacio de deformaciones para optimizar una
medida de similitud obligando en ocasiones
al usuario a ubicar puntos de interés en las
imágenes, lo que resulta en procesos con muy
alto costo computacional y/o semi-autónomos
[18, 19, 20, 21, 22, 23]; razones por las que se
ha dificultado su uso en tareas de imagenoloǵıa
médica.

Una propuesta reciente para resolver el
registro elástico se enfoca en el uso del
flujo óptico (FO) [24] para encontrar los
desplazamientos faltantes, después de haber
realizado una aproximación inicial del campo
de deformación por medio de un registro
paramétrico basado en el uso del filtro de
part́ıculas (FP), donde se estiman los parámetros
de una matriz de transformación [25]; este
método muestra resultados prometedores en [26]
y [27]. Por otro lado, una limitante de dicho
algoritmo es la restricción para uso solo en
imágenes unimodales o la necesidad de contar
con una función de transferencia inyectiva de
intensidades entre las imágenes a registrar, lo
que no se tiene en los casos médicos de registro
multimodal.

Dentro del contexto descrito en los párrafos
anteriores, en este art́ıculo se propone una
metodoloǵıa para resolver dos problemas
importantes en la imagenoloǵıa médica,
pero poco abordados simultáneamente en la
literatura: el registro elástico de imágenes y
a la vez multimodal. En este estudio lo que se
propone es mapear las imágenes a un espacio
donde sus intensidades puedan ser comparadas,
y entonces sea posible abordar el problema sin
parametrizar el espacio de deformaciones al
aplicar iterativamente una técnica de FO como
en [25], bajo un esquema de espacio de escalas
[28].

El art́ıculo está organizado de la siguiente
manera: en la sección 2 se describe la
teoŕıa necesaria para la comprensión de la

metodoloǵıa propuesta; en las subsecciones 2.1
y 2.2 se revisa el registro paramétrico basado
en el FP y el registro elástico basado en
FP más FO, respectivamente, y los detalles
del algoritmo propuesto se describen en la
subsección 2.3. Después, en la sección 3 se
explican los experimentos realizados para llevar
a cabo la evaluación del algoritmo de registro
elástico multimodal propuesto, empleando datos
generados sintéticamente. A continuación, en la
sección 4 se presentan los resultados obtenidos
de los experimentos realizados para la evaluación
(cuantitativos y cualitativos), y en la sección
5 se realiza el análisis y discusión de dichos
resultados. Finalmente, en la sección 6 se
muestran las conclusiones derivadas de este
trabajo, aśı como el posible trabajo a futuro
sobre la metodoloǵıa presentada.

METODOLOGÍA

El registro elástico puede ser visto como
encontrar el campo vectorial de desplazamientos
V (r) que alinee la imagen candidata IC(r) con
la patrón IP (r),

IP (r) = F [IC(r + V (r))] , (1)

donde r = (x, y)> denota una posición dentro
del dominio rectangular Ω ⊂ R2 de las
imágenes, y F [·] representa una relación entre
las intensidades de ambas imágenes. De acuerdo
con la ecuación (1), si el registro es unimodal,
es decir si F es la identidad, el problema
puede ser visto como obtener el FO entre
las imágenes. Sin embargo, para simplificar
la estimación del FO es mejor restringir la
búsqueda a desplazamientos pequeños entre los
pixeles correspondientes. Por esta razón, antes
de calcular el FO, es conveniente acercar los
pixeles entre ambas imágenes por medio de una
transformación inicial usando algún método de
registro paramétrico, por ejemplo el basado en el
FP [25].
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Registro paramétrico basado en el
filtro de part́ıculas

La idea principal del registro paramétrico
basado en el FP consiste en estimar el
vector de parámetros desconocidos θ de
una transformación, af́ın o perspectiva, por
medio de una búsqueda estocástica sobre
una superficie de optimización (función de
costo) [29]. Este objetivo se logra usando
un conjunto de N puntos de prueba llamados
part́ıculas (θ1, . . . ,θN ), y sus pesos asociados
Wj , calculados por medio de una función de
verosimilitud entre las imágenes,

Wj =
exp

ση
√

2π

{
− (2−NMI {IP (r), IC(T (r|θj))})2

2σ2
η

}
(2)

donde σ2
η es la varianza del ruido en la medición

z, T (r|θ) es una transformación paramétrica
dependiente del vector θ, y NMI(·, ·) representa
la información mutua normalizada [30] entre
dos imágenes; ésta medida de similitud ofrece
el mejor desempeño para este método como se
reporta en [31].

Los pesos Wj son utilizados para aproximar
de forma iterativa la función de distribución
de probabilidad a posteriori P (θ|z) de los
parámetros desconocidos θ con respecto a
una medición z [13, 32]. Ésta distribución
se aproxima considerando una ventana de
k mediciones (z1, . . . , zk), la cual es usada
para estimar el vector de parámetros de la

transformación θ̂
k
, tomando por ejemplo el valor

esperado de la distribución a posteriori:

θ̂
k

= E[θ|z1, . . . , zk] ≈
N∑
j=1

W k
j θ

k
j . (3)

Para ver más detalles teóricos y de
implementación de este algoritmo, el lector
puede dirigirse a [13, 14, 16, 26, 31].

Registro elástico basado en flujo óptico

Una vez logrado el registro paramétrico
empleando el FP, los desplazamientos
existentes entre los pixeles correspondientes
de las imágenes, en teoŕıa debeŕıan ser
pequeños. Además, śı las imágenes son

unimodales, entonces es posible encontrar dichos
desplazamientos sin parametrizar el espacio
de deformaciones empleando una técnica de
estimación de FO. Esto se puede lograr bajo
un enfoque solamente espacial dado que no se
cuenta con una secuencia de imágenes variante
en el tiempo como en los problemas de FO
tradicionales [24].

Sea w = (u, v, 1)> el vector de
desplazamientos a calcular, donde u y v son
los desplazamientos en x y en y respectivamente,
I(x+ u, y + u, t+ 1) = I(x, y, t), con t = 0 para
nuestro problema en particular; la mayoŕıa de
los métodos de FO de la literatura pueden ser
representados por medio de la siguiente función
de enerǵıa [33]:

Υ(w) =

∫
Ω

{
ψ1

(
w>Jρ (∇I) w

)
+ αψ2(w)

}
dx dy,

(4)

donde ψ1(·) es una función que penaliza el
error en el término de datos, ψ2(·) penaliza
el término de regularización pesado por una
constante positiva α, ∇I = (Ix, Iy, It)

> es el
gradiente de la imagen donde los sub́ındices
representan las derivadas parciales, y dado un
kernel Gaussiano Kρ(r) con desviación estándar
ρ; la función Jρ(·) está dada por

Jρ (∇I) = Kρ ∗
(
∇I∇I>

)
, (5)

donde ∗ representa el operador convolución.
Las técnicas de FO pueden clasificarse en
métodos locales que optimizan una expresión
local de enerǵıa (más robustos al ruido), y las
estrategias globales que minimizan una función
global de enerǵıa (más aptos para estimar flujos
densos) [33]. De la ecuación (4), variando los
valores de ρ, α y las funciones ψ1(·) y ψ2(·),
es posible derivar por ejemplo, el método local
propuesto en [34] śı ψ1 es la identidad, ρ > 0 y
α = 0; o la técnica tanto global como local en
[33] si ρ > 0 y α > 0.

Para este trabajo, nuestro interés es observar
el desempeño del algoritmo propuesto en la
estimación del campo denso de desplazamientos,
dado que no se está enfocando a una aplicación
médica en espećıfico, por lo que un método global
resulta lo más viable para probar el desempeño
de la propuesta. Entonces, tomando ψ1 como la



Reducindo y cols. Registro Elástico de Imágenes Médicas Multimodales basado en Medidas de Variabilidad Local 11

identidad, ψ2(w) = |∇u|2+|∇v|2, ρ = 0 y α > 0,
se obtiene la técnica global de FO propuesta
en [35], y de la cual se basa la mayoŕıa de las
propuestas globales existentes [24]. La solución
al problema de optimización en (4) de acuerdo al
planteamiento en [35], se encuentra resolviendo
el sistema de ecuaciones en (6) para cada pixel,
empleando para ello un método iterativo (por
ejemplo Gauss-Seidel [36]):

un+1 = un − Ix[Ixu
n + Iyv

n + It]/[α
2 + I2

x + I2
y ],

vn+1 = vn − Iy[Ixun + Iyv
n + It]/[α

2 + I2
x + I2

y ],

(6)

donde u y v son el promedio de los
desplazamientos en el vecindario en torno al pixel
de interés. Para más detalles teóricos y de
implementación del algoritmo de FO empleado,
el lector interesado puede consultar [35, 37].

Por otro lado, una evaluación del método de
registro propuesto empleando diversas técnicas
de FO debe ser contemplada en un futuro de
acuerdo a la aplicación médica que se pretenda
abordar; ya que dependerá del problema el
tipo de evaluación requerida, aśı como las
caracteŕısticas de las imágenes. A diferencia
de las técnicas que parametrizan el espacio
de deformaciones, abordar el problema de
registro elástico desde esta perspectiva, convierte
a la estimación del campo vectorial denso
en un problema de optimización sobre una
superficie convexa, cuya solución está dada
por un sistema lineal de ecuaciones, lo que
garantiza un cómputo rápido en la estimación
de dicho campo. Además, el hecho de
no parametrizar el espacio de deformaciones
incrementa la gama de deformaciones que pueden
ser logradas (cumpliendo ciertas restricciones de
homogeneidad), debido a que éstas no se ven
limitadas por los dominios de parámetros.

Aśı pues, de acuerdo con [25] es posible
aplicar de forma iterativa un registro
paramétrico y el FO, y acumular los campos
vectoriales obtenidos en cada iteración hasta
satisfacer cierto criterio de paro. Para el caso
del registro multimodal, proponen aproximar la
función de transferencia de intensidades entre
las imágenes usando el histograma conjunto,
pero este enfoque sólo es factible si el mapeo

de intensidades F [·] en (1) es inyectivo. Por
lo tanto, en este trabajo se propone una
extensión de esta metodoloǵıa de registro elástico
con la finalidad de solventar las limitaciones
mencionadas anteriormente, para lo cual después
de un registro paramétrico se aplica un mapeo
de intensidades para las imágenes candidata y
patrón usando medidas de variabilidad local,
y enseguida se realiza un proceso iterativo por
medio del FO en un espacio de escalas.

Algoritmo propuesto para el registro
elástico multimodal

La idea principal del algoritmo propuesto es
el mapear las imágenes a registrar, después de
haber sido alineadas por una transformación
paramétrica, a un espacio donde la intensidad
de cada pixel en una de las imágenes pueda
ser comparada con la de su correspondiente en
la otra imagen, a pesar de sus caracteŕısticas
multimodales, es decir, establecer un mapeo G
tal que

G[IP (r)] = G[IC(r + V (r))]. (7)

Para definir dicho mapeo, sugerimos el uso
de medidas que no dependan del nivel de
gris del pixel, pero si de la variabilidad de
las intensidades en los pixeles vecinos. Dos
medidas que cumplen con lo anterior son la
entroṕıa [38] y la varianza, calculadas sobre
una ventana centrada en el pixel de interés,
y a las cuales nosotros llamamos Medidas de
Variabilidad Local (MVL). Aśı, la metodoloǵıa
propuesta para el registro elástico multimodal
está compuesta por los siguientes pasos:

1. Registro paramétrico. Encontrar el
vector de parámetros θ̂ (usando el FP) de
una transformación de perspectiva T (r|θ̂)
que proporcione la mejor alineación entre
las dos imágenes, IP e IC ; obtener la
imagen registrada IR(r) = IC(T (r|θ̂)),
y el correspondiente campo vectorial de
desplazamientos VR(r) = T (r|θ̂)− r.

2. Mapeo basado en MVL. Aplicar el
mapeo G basado en una MVL (entroṕıa,
varianza o una combinación de ambas)
sobre todos los pixeles en ambas imágenes
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(IP e IR). Esto es, obtener ĨP (r) =
G[IP (r)] e ĨR(r) = G[IR(r)] de acuerdo a
las 4 siguientes propuestas:

MVL1[I(r)] =
∑
s∈Nr

pr(I(s)) log2(I(s)) (8)

MVL2[I(r)] =
∑
s∈Nr

pr(I(s)) [µr − I(s)]2

(9)

MVL3[I(r)] =

√√√√ i=2∑
i=1

(MVLi[I(r)])2 (10)

MVL4[I(r)] = max {MVL1[I(r)],

MVL2[I(r)]} (11)

donde MVL1 representa la medida de
variabilidad local usando la entroṕıa,
MVL2 empleando la varianza, MVL3 una
ponderación Euclideana entre la varianza
y la entroṕıa en cada pixel, y MVL4

considerando el valor máximo entre la
varianza y la entroṕıa nuevamente por
pixel. Además, Nr representa el conjunto
de pixeles de una ventana centrada en r y
tamaño n × n, pr(I(s)) es la distribución
de probabilidad de las intensidades de la
imagen I(s) asociada a la ventana Nr, y µr
es el valor esperado de las intensidades en
la misma ventana, dado por

µr =
∑
s∈Nr

I(s)pr(I(s)). (12)

3. Ecualización. Después de aplicar
el mapeo G, las intensidades de las
imágenes resultantes (ĨP e ĨR) tienen
valores pequeños concentrados en un rango
dinámico muy estrecho. Por esta razón, es
necesario escalar dichas intensidades en un
rango de 0 a 255 (escala de grises), y aplicar
una ecualización de histograma [11].

4. Espacio de escalas. Con la intención
de poder aproximar deformaciones más
complejas encontrando desplazamientos
más grandes, el FO se aplica empleando

una técnica de espacio de escalas [28] (ver
Figura 1):

Dadas las dos imágenes ecualizadas ĨP e
ĨR de tamaño 2K × 2K , y una subescala m
(escala más pequeña sobre la que se desea
calcular el FO):

(a) Tomar como cero el valor inicial de
los desplazamientos para el FO en la
escala m, V m

0 = 0.

(b) Escalar las imágenes a un tamaño
2K−m × 2K−m; aplicando un
suavizado con un kernel Gaussiano,
de tamaño n×n y desviación estándar
σG, a la imagen que se desea escalar
y después realizando un proceso de
submuestreo.

(c) Estimar el FO entre ĨmP e ĨmR , y
establecer t = 0.

i. Obtener una imagen auxiliar,
dada por IA = ĨmR (r + V m

t (r)).

ii. Incrementar t, t = t+ 1.

iii. Calcular el FO V m
t entre ĨmP e IA.

iv. Acumular los desplazamientos
obtenidos en esta escala, V m

t =
V m
t + V m

t−1.

v. Si
∑

r |V m
t (r)− V m

t−1(r)| < ε, ir a
d), si no regresar a (i).

(d) Ir a la siguiente escala m = m− 1.

(e) Si m ≥ 0, propagar los
desplazamientos en la siguiente escala
V m

0 (r) = 2B(V m−1(r)) e ir a b), si
no VE(r) = V 0(r) y continuar con
el paso 5. Aqúı B(·) representa una
función de interpolación (ej. bilineal
[11]).

5. Obtener el registro elástico.
Finalmente, se suman los campos
vectoriales obtenidos en los pasos 1 y 4,
V (r) = VR(r)+VE(r), y después es posible
obtener la imagen candidata registrada
elásticamente IE(r) = IC(r + V (r)), tal
que IP (r) ≈ F [IE(r)].
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2 x2
k k

2 x2
k-1 k-1

2 x2
k-2 k-2

m

m-1

2

1

0

2 x2
k-m k-m

2 x2
k-m-1 k-m-1

Figura 1: Pirámide que muestra las posibles escalas aśı como sus correspondientes tamaños al usar una
técnica de espacio de escalas.

En el algoritmo descrito anteriormente, se
utilizó una escala inicial dem = 5 y para suavizar
las imágenes antes de realizar el submuestro, se
empleó un kernel Gaussiano de tamaño n = 5
con desviación estándar σG = 0.3(n/2− 1) + 0.8.
También se debe tener en cuenta el umbral
de convergencia ε usado en el paso 4.c).(v), y
para el cual se puede establecer un valor con
base a la resolución deseada en el FO y el
tamaño de las imágenes, o puede ser remplazado
por algún otro criterio de parada, por ejemplo
calculando una medida de similitud como la
entroṕıa conjunta entre las imágenes, que sirva
como indicador del estado del registro. Por otro
lado, el tamaño de ventana en pixeles establecido
para el cálculo de la entroṕıa es de 7 × 7 y de
13 × 13 para la varianza, donde éstos valores
fueron obtenidos por medio de una evaluación
numérica del método con respecto al tamaño
de ventana. Sin embargo, el tamaño óptimo
de ventana puede variar dependiendo de las
caracteŕısticas de las texturas y del contraste con
respecto al fondo de las imágenes a registrar.
Adicionalmente, debido a la factibilidad del FP
para ser paralelizado, éste fue implementado en
una arquitectura de procesamiento en paralelo,
lo que incrementa en gran medida la velocidad
de cómputo del algoritmo.

EXPERIMENTOS

Con el propósito de analizar el comportamiento
del algoritmo propuesto con datos reales y para
mostrar su eventual desempeño en el registro de
átlases médicos (donde se registran los datos de
un paciente con una muestra t́ıpica o promedio

de varias imágenes de diferentes pacientes) [39],
comenzamos resolviendo el problema de registro
elástico de dos imágenes de resonancia magnética
T1 en corte transversal de distintos pacientes
tomadas de [40] (ver Figura 2).

Además, con la finalidad de obtener datos
numéricos que nos proporcionen más información
sobre el desempeño del algoritmo, se simularon
20 pares de imágenes alineadas de resonancia
magnética T1 y tomograf́ıa computarizada
(MR/CT), empleando el software de simulación
reportado en [41] y disponible en ĺınea en
http://www.bic.mni.mcgill.ca/brainweb/. Siete
de los pares fueron en corte sagital, siete en axial
y seis en coronal, con un tamaño de pixel de
1×1 mm y con un nivel de inhomogeneidad de
intensidades de entre 0% y 40%. También se
adquirieron una tomograf́ıa computarizada y una
resonancia magnética T1 en corte transversal
(tamaño de pixel de 1×1 mm), Figuras 3.(d)
y 3.(g), tomadas de diferentes pacientes con
un tumor cerebral en el Hospital San Raffaele
y proporcionadas por el Institute of Molecular
Bioimaging and Physiology, ambos en Milan,
Italia. Con éstas muestras se simularon dos pares
de imágenes multimodales alineadas usando dos
polinomios de grado 6 y 9 como mapeo de
intensidades (ver Figura 4). Después, a una
imagen de cada par simulado se le aplicó
un campo vectorial de deformación elástico
generado a partir de Thin Plate Splines [42],
los cuales se tomaron como campo de referencia
(ground truth GT, ver Figura 3) y se utilizaron
para calcular el error del algoritmo de registro
en la estimación del campo vectorial de la
deformación, usando como métrica la norma
Euclideana.
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(a) Candidata (b) Patrón (c) Antes del registro

Figura 2: Registro elástico entre dos pacientes diferentes, el cual presenta un escenario similar al
problema de registrar una imagen con la de un atlas médico. (a) Imagen candidata tomada de [40],
(b) Imagen patrón tomada de [40], (c) Imágenes superpuestas antes del registro en RGB. En la tercera
columna la imagen patrón se encuentra en el canal verde y la candidata en el rojo.

como métrica la norma Euclideana. Dado que
conocemos el mapeo de intensidades en dos pares
de imágenes simulados, también se midió el
error del algoritmo obteniendo las diferencias de
intensidades entre estos pares.

Otro factor importante a tener en cuenta
dentro de los algoritmos computacionales que
emplean técnicas de optimización, es garantizar
la convergencia del método. Por lo tanto,
para establecer un criterio de convergencia para
el algoritmo propuesto, se realizó un análisis

usando la entroṕıa conjunta entre las imágenes
con respecto al número de iteraciones.

Finalmente, cabe mencionar que existen
algoritmos de registro elástico que no
parametrizan el espacio de deformaciones [43],
pero no encontramos en la literatura, técnicas
multimodales que sigan este mismo enfoque
aplicado en imágenes médicas, motivo por el
cual no se compara esta propuesta con otros
algoritmos de registro elástico multimodal.

RESULTADOS

En la Figura 5 se presentan los resultados
visuales de registrar las imágenes de las Figuras
2.(a) y 2.(b), utilizando las cuatro MVL
propuestas para el algoritmo. De igual forma
en la Figura 6 se muestra el resultado del
registro entre las imágenes en las Figuras 3.(g)
y 3.(h), empleando las cuatro MVL. Calculando
el error usando la norma Euclideana entre el
GT y los vectores de desplazamiento obtenidos
para cada pixel al registrar la imagen de la

Figura 3.(a) con 3.(b), se obtuvieron los errores
que se muestran en la Figura 7, usando la
entroṕıa como MVL en la Figura 7.(a), la
varianza en 7.(b), la ponderación Euclideana
entre entroṕıa y varianza en 7.(c), y el máximo
entre ellas mismas en 7.(d). También se calculó
el error en las intensidades para el registro de
las imágenes de las Figuras 3.(d) y 3.(e) (dado
que conocemos su transformación sintética de
intensidades tonales), el cual se puede observar
en la Figura 8.(a) para la MVL1, 8.(b) con la
MVL2, 8.(c) para la MVL3 y 8.(d) con la MVL4.

En la Tabla 1 se presentan la media del
error y su desviación estándar, calculado con la
norma Euclideana, del campo vectorial estimado
por el algoritmo de registro elástico con las
cuatro MVL, donde también se incluye la media
del error obtenida con la versión unimodal
del algoritmo que nos servirá como punto de
referencia, ya que idealmente los resultados de
las MVL tendŕıan que ser muy cercanos a
estos valores y que es factible calcular dado

que se utilizaron transformaciones de intensidad
sintéticas. De la misma forma, en la Tabla 1 se
muestra la media y desviación estándar del error
en las intensidades obtenidas por las cuatro MVL
con los dos pares de imágenes de los cuales se
conoce su mapeo de intensidades que se muestran
en la Figura 4.

Por último, como parte de los resultados
en la Figura 9 se muestran las gráficas de la
entroṕıa conjunta y la media del error en el

Figura 2: Registro elástico entre dos pacientes diferentes, el cual presenta un escenario similar al
problema de registrar una imagen con la de un atlas médico. (a) Imagen candidata tomada de [40],
(b) Imagen patrón tomada de [40], (c) Imágenes superpuestas antes del registro en RGB. En la tercera
columna la imagen patrón se encuentra en el canal verde y la candidata en el rojo.

Dado que conocemos el mapeo de intensidades
en dos pares de imágenes simulados, también
se midió el error del algoritmo obteniendo las
diferencias de intensidades entre estos pares.

Otro factor importante a tener en cuenta
dentro de los algoritmos computacionales que
emplean técnicas de optimización, es garantizar
la convergencia del método. Por lo tanto,
para establecer un criterio de convergencia para
el algoritmo propuesto, se realizó un análisis
usando la entroṕıa conjunta entre las imágenes
con respecto al número de iteraciones.

Finalmente, cabe mencionar que existen
algoritmos de registro elástico que no
parametrizan el espacio de deformaciones [43],
pero no encontramos en la literatura, técnicas
multimodales que sigan este mismo enfoque
aplicado en imágenes médicas, motivo por el
cual no se compara esta propuesta con otros
algoritmos de registro elástico multimodal.

RESULTADOS

En la Figura 5 se presentan los resultados
visuales de registrar las imágenes de las Figuras
2.(a) y 2.(b), utilizando las cuatro MVL
propuestas para el algoritmo. De igual forma
en la Figura 6 se muestra el resultado del
registro entre las imágenes en las Figuras 3.(g)
y 3.(h), empleando las cuatro MVL. Calculando
el error usando la norma Euclideana entre el
GT y los vectores de desplazamiento obtenidos
para cada pixel al registrar la imagen de la
Figura 3.(a) con 3.(b), se obtuvieron los errores
que se muestran en la Figura 7, usando la

entroṕıa como MVL en la Figura 7.(a), la
varianza en 7.(b), la ponderación Euclideana
entre entroṕıa y varianza en 7.(c), y el máximo
entre ellas mismas en 7.(d). También se calculó
el error en las intensidades para el registro de
las imágenes de las Figuras 3.(d) y 3.(e) (dado
que conocemos su transformación sintética de
intensidades tonales), el cual se puede observar
en la Figura 8.(a) para la MVL1, 8.(b) con la
MVL2, 8.(c) para la MVL3 y 8.(d) con la MVL4.

En la Tabla 1 se presentan la media del
error y su desviación estándar, calculado con la
norma Euclideana, del campo vectorial estimado
por el algoritmo de registro elástico con las
cuatro MVL, donde también se incluye la media
del error obtenida con la versión unimodal
del algoritmo que nos servirá como punto de
referencia, ya que idealmente los resultados de
las MVL tendŕıan que ser muy cercanos a
estos valores y que es factible calcular dado
que se utilizaron transformaciones de intensidad
sintéticas. De la misma forma, en la Tabla 1 se
muestra la media y desviación estándar del error
en las intensidades obtenidas por las cuatro MVL
con los dos pares de imágenes de los cuales se
conoce su mapeo de intensidades que se muestran
en la Figura 4.

Por último, como parte de los resultados
en la Figura 9 se muestran las gráficas de la
entroṕıa conjunta y la media del error en el
campo vectorial de las imágenes registradas,
ambas con respecto al número de iteraciones del
algoritmo, con la intensión de mostrar gráfica
y numéricamente la convergencia del método
presentado.
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Figura 2: Tres ejemplos de problemas sintéticos de registro generados para evaluar el algoritmo. (a), (d)
y (g) imagen candidata. (b), (e) y (h) imagen patrón (creada artificialmente a partir de la candidata).
(c), (f) e (i) deformación sintética para generar la imagen patrón.
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Figura 3: Mapeos de intensidades empleados para generar las imágenes sintéticas. Para la imagen
mostrada en la Figura 3.(h) se empleó el mapeo 1, y para la mostrada en la Figura 3.(e) el mapeo 2.

DISCUSIÓN

Observando la Figura 4, se puede apreciar
que las estructuras del cráneo, la tráquea, el
tracto nasal, el bulbo y la médula espinal,
se alinean congruentemente (en tonalidades
amarillo verdosas) en tres de las cuatro MVL
(entroṕıa, varianza y obteniendo el máximo);
con respecto a otras estructuras o tejidos, es
dif́ıcil para alguien sin formación médica y
experiencia en análisis de imágenes de este tipo,

tener la certeza de que se encuentran alineadas
correctamente todas las estructuras y tejidos.
Para realizar un análisis cuantitativo sobre estos
resultados, se requeriŕıa del uso de técnicas de
segmentación aśı como de ı́ndices de evaluación
sobre ciertos estándares médicos, además de
que la evaluación dependeŕıa de los tejidos y/o
estructuras que un médico especialista quisiera
analizar en las imágenes [17], [27], asunto que
no era de interés para este trabajo por el

Figura 3: Tres ejemplos de problemas sintéticos de registro generados para evaluar el algoritmo. (a), (d)
y (g) imagen candidata. (b), (e) y (h) imagen patrón (creada artificialmente a partir de la candidata).
(c), (f) e (i) deformación sintética para generar la imagen patrón.
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y (g) imagen candidata. (b), (e) y (h) imagen patrón (creada artificialmente a partir de la candidata).
(c), (f) e (i) deformación sintética para generar la imagen patrón.
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Figura 3: Mapeos de intensidades empleados para generar las imágenes sintéticas. Para la imagen
mostrada en la Figura 3.(h) se empleó el mapeo 1, y para la mostrada en la Figura 3.(e) el mapeo 2.
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amarillo verdosas) en tres de las cuatro MVL
(entroṕıa, varianza y obteniendo el máximo);
con respecto a otras estructuras o tejidos, es
dif́ıcil para alguien sin formación médica y
experiencia en análisis de imágenes de este tipo,

tener la certeza de que se encuentran alineadas
correctamente todas las estructuras y tejidos.
Para realizar un análisis cuantitativo sobre estos
resultados, se requeriŕıa del uso de técnicas de
segmentación aśı como de ı́ndices de evaluación
sobre ciertos estándares médicos, además de
que la evaluación dependeŕıa de los tejidos y/o
estructuras que un médico especialista quisiera
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no era de interés para este trabajo por el

Figura 4: Mapeos de intensidades empleados para generar las imágenes sintéticas. Para la imagen
mostrada en la Figura 3.(h) se empleó el mapeo 1, y para la mostrada en la Figura 3.(e) el mapeo 2.

DISCUSIÓN

Observando la Figura 5, se puede apreciar
que las estructuras del cráneo, la tráquea, el
tracto nasal, el bulbo y la médula espinal,
se alinean congruentemente (en tonalidades
amarillo verdosas) en tres de las cuatro MVL
(entroṕıa, varianza y obteniendo el máximo);
con respecto a otras estructuras o tejidos, es
dif́ıcil para alguien sin formación médica y
experiencia en análisis de imágenes de este tipo,

tener la certeza de que se encuentran alineadas
correctamente todas las estructuras y tejidos.
Para realizar un análisis cuantitativo sobre estos
resultados, se requeriŕıa del uso de técnicas de
segmentación aśı como de ı́ndices de evaluación
sobre ciertos estándares médicos, además de
que la evaluación dependeŕıa de los tejidos y/o
estructuras que un médico especialista quisiera
analizar en las imágenes [17, 27], asunto que
no era de interés para este trabajo por el
momento, ya que el estudio está orientado a
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(a) MVL1 (b) MVL2 (c) MVL3 (d) MVL4

Figura 4: Resultados obtenidos de aplicar el algoritmo de registro elástico multimodal sobre las imágenes
de la Figura 2, empleando las cuatro MVL propuestas. (a) Entroṕıa o MVL1, (b) varianza o MVL2,
(c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas mismas o
MVL4. Las imágenes se muestran superpuestas en RGB, donde la imagen patrón está en el canal verde
y la registrada en el rojo.
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Figura 5: Resultados obtenidos de aplicar el algoritmo de registro elástico multimodal sobre las imágenes
de la Figura 3.(g) y 3.(h), empleando las cuatro MVL propuestas. (a) Entroṕıa o MVL1, (b) varianza
o MVL2, (c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas
mismas o MVL4. Las imágenes se muestran superpuestas en RGB, donde la imagen patrón está en el
canal verde y la registrada en el rojo.

(a) MVL1 (b) MVL2 (c) MVL3 (d) MVL4

0

0.5

1

1.5

2

2.5

3

Figura 6: Error en la estimación del campo vectorial para el registro elástico multimodal entre las
imágenes de las Figuras 3.(a) y 3.(b), usando las MVL. (a) Entroṕıa o MVL1, (b) varianza o MVL2,
(c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas mismas o
MVL4.

momento, ya que el estudio está orientado a
probar la eficiencia del algoritmo en la estimación
del campo vectorial denso de la deformación.
En este punto cabe señalar que las imágenes
registradas en este experimento a pesar de ser
ambas resonancias magnéticas T1 (ver Figura
2), las intensidades en escala de grises no
representan un mapeo biyectivo entre ambas,
debido a que pertenecen a diferentes pacientes
y fueron adquiridas bajo diferentes condiciones;

además de que la deformación elástica requerida
para lograr alinearlas no es fácil de estimar
y es muy poco probable que se presente en
casos reales de registro dentro de la imagenoloǵıa
médica, sin embargo se optó por probar con
dichas imágenes para tener una idea de la
capacidad del algoritmo presentado para estimar
este tipo de deformaciones, además de ser un
problema similar al que se tiene en el registro
de átlases médicos [39].

Figura 5: Resultados obtenidos de aplicar el algoritmo de registro elástico multimodal sobre las imágenes
de la Figura 2, empleando las cuatro MVL propuestas. (a) Entroṕıa o MVL1, (b) varianza o MVL2,
(c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas mismas o
MVL4. Las imágenes se muestran superpuestas en RGB, donde la imagen patrón está en el canal verde
y la registrada en el rojo.
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Figura 5: Resultados obtenidos de aplicar el algoritmo de registro elástico multimodal sobre las imágenes
de la Figura 3.(g) y 3.(h), empleando las cuatro MVL propuestas. (a) Entroṕıa o MVL1, (b) varianza
o MVL2, (c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas
mismas o MVL4. Las imágenes se muestran superpuestas en RGB, donde la imagen patrón está en el
canal verde y la registrada en el rojo.
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Figura 6: Error en la estimación del campo vectorial para el registro elástico multimodal entre las
imágenes de las Figuras 3.(a) y 3.(b), usando las MVL. (a) Entroṕıa o MVL1, (b) varianza o MVL2,
(c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas mismas o
MVL4.

momento, ya que el estudio está orientado a
probar la eficiencia del algoritmo en la estimación
del campo vectorial denso de la deformación.
En este punto cabe señalar que las imágenes
registradas en este experimento a pesar de ser
ambas resonancias magnéticas T1 (ver Figura
2), las intensidades en escala de grises no
representan un mapeo biyectivo entre ambas,
debido a que pertenecen a diferentes pacientes
y fueron adquiridas bajo diferentes condiciones;

además de que la deformación elástica requerida
para lograr alinearlas no es fácil de estimar
y es muy poco probable que se presente en
casos reales de registro dentro de la imagenoloǵıa
médica, sin embargo se optó por probar con
dichas imágenes para tener una idea de la
capacidad del algoritmo presentado para estimar
este tipo de deformaciones, además de ser un
problema similar al que se tiene en el registro
de átlases médicos [39].

Figura 6: Resultados obtenidos de aplicar el algoritmo de registro elástico multimodal sobre las imágenes
de la Figura 3.(g) y 3.(h), empleando las cuatro MVL propuestas. (a) Entroṕıa o MVL1, (b) varianza
o MVL2, (c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas
mismas o MVL4. Las imágenes se muestran superpuestas en RGB, donde la imagen patrón está en el
canal verde y la registrada en el rojo.
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Figura 6: Error en la estimación del campo vectorial para el registro elástico multimodal entre las
imágenes de las Figuras 3.(a) y 3.(b), usando las MVL. (a) Entroṕıa o MVL1, (b) varianza o MVL2,
(c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas mismas o
MVL4.

momento, ya que el estudio está orientado a
probar la eficiencia del algoritmo en la estimación
del campo vectorial denso de la deformación.
En este punto cabe señalar que las imágenes
registradas en este experimento a pesar de ser
ambas resonancias magnéticas T1 (ver Figura
2), las intensidades en escala de grises no
representan un mapeo biyectivo entre ambas,
debido a que pertenecen a diferentes pacientes
y fueron adquiridas bajo diferentes condiciones;

además de que la deformación elástica requerida
para lograr alinearlas no es fácil de estimar
y es muy poco probable que se presente en
casos reales de registro dentro de la imagenoloǵıa
médica, sin embargo se optó por probar con
dichas imágenes para tener una idea de la
capacidad del algoritmo presentado para estimar
este tipo de deformaciones, además de ser un
problema similar al que se tiene en el registro
de átlases médicos [39].

Figura 7: Error en la estimación del campo vectorial para el registro elástico multimodal entre las
imágenes de las Figuras 3.(a) y 3.(b), usando las MVL. (a) Entroṕıa o MVL1, (b) varianza o MVL2,
(c) ponderación Euclideana entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas mismas o
MVL4.

probar la eficiencia del algoritmo en la estimación
del campo vectorial denso de la deformación.
En este punto cabe señalar que las imágenes
registradas en este experimento a pesar de
ser ambas resonancias magnéticas T1 (ver
Figura 2), las intensidades en escala de grises
no representan un mapeo biyectivo entre
ambas, debido a que pertenecen a diferentes

pacientes y fueron adquiridas bajo diferentes
condiciones; además de que la deformación
elástica requerida para lograr alinearlas no es
fácil de estimar y es muy poco probable que
se presente en casos reales de registro dentro
de la imagenoloǵıa médica, sin embargo se optó
por probar con dichas imágenes para tener una
idea de la capacidad del algoritmo presentado
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Figura 7: Error en las intensidades para el registro elástico multimodal entre las imágenes de las Figuras
3.(d) y 3.(e), usando las MVL. (a) Entroṕıa o MVL1, (b) varianza o MVL2, (c) ponderación Euclideana
entre entroṕıa y varianza o MVL3, y (d) el máximo entre ellas mismas o MVL4.
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Por otra parte, observando más a detalle la
Figura 4.(a) donde se utilizó la entroṕıa como
MVL, se puede apreciar que las zonas donde
existen alineamientos poco congruentes (pixeles
totalmente rojos o verdes), son principalmente en
los bordes del cráneo, y en la Figura 4.(b) donde
la MVL utilizada fue la varianza, dichas zonas
están principalmente en la materia gris. Esto
nos hace suponer que los errores de alineamiento
en los bordes del cráneo son debidos a que el
cálculo de la entroṕıa se ve afectado por el
fondo negro que cubre una gran parte de la

ventana (Nr) cuando se encuentra centrada en
estas zonas; en contra parte, este efecto no se
presenta con la varianza que define mejor los
bordes debido al contraste con el fondo. De
manera similar se tiene un efecto contrario con
la materia gris, donde no existe mucho contraste
entre tejidos, pero si texturas muy marcadas.
Debido a este fenómeno observado en MVL1 y
en MVL2, es que se decidió probar combinando
ambas medidas (MVL3 y MVL4) con la intensión
de complementar la información entre ellas e
intentar reducir los errores en la alineación.
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Por otra parte, observando más a detalle la
Figura 4.(a) donde se utilizó la entroṕıa como
MVL, se puede apreciar que las zonas donde
existen alineamientos poco congruentes (pixeles
totalmente rojos o verdes), son principalmente en
los bordes del cráneo, y en la Figura 4.(b) donde
la MVL utilizada fue la varianza, dichas zonas
están principalmente en la materia gris. Esto
nos hace suponer que los errores de alineamiento
en los bordes del cráneo son debidos a que el
cálculo de la entroṕıa se ve afectado por el
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presenta con la varianza que define mejor los
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manera similar se tiene un efecto contrario con
la materia gris, donde no existe mucho contraste
entre tejidos, pero si texturas muy marcadas.
Debido a este fenómeno observado en MVL1 y
en MVL2, es que se decidió probar combinando
ambas medidas (MVL3 y MVL4) con la intensión
de complementar la información entre ellas e
intentar reducir los errores en la alineación.
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Entroṕıa (MVL1) 0.898 0.472 7.114 15.485
Varianza (MVL2) 1.385 0.857 12.499 24.291
Ponderación Euclidiana Entre Medidas (MVL3) 1.343 0.664 9.166 18.974
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Por otra parte, observando más a detalle la
Figura 4.(a) donde se utilizó la entroṕıa como
MVL, se puede apreciar que las zonas donde
existen alineamientos poco congruentes (pixeles
totalmente rojos o verdes), son principalmente en
los bordes del cráneo, y en la Figura 4.(b) donde
la MVL utilizada fue la varianza, dichas zonas
están principalmente en la materia gris. Esto
nos hace suponer que los errores de alineamiento
en los bordes del cráneo son debidos a que el
cálculo de la entroṕıa se ve afectado por el
fondo negro que cubre una gran parte de la

ventana (Nr) cuando se encuentra centrada en
estas zonas; en contra parte, este efecto no se
presenta con la varianza que define mejor los
bordes debido al contraste con el fondo. De
manera similar se tiene un efecto contrario con
la materia gris, donde no existe mucho contraste
entre tejidos, pero si texturas muy marcadas.
Debido a este fenómeno observado en MVL1 y
en MVL2, es que se decidió probar combinando
ambas medidas (MVL3 y MVL4) con la intensión
de complementar la información entre ellas e
intentar reducir los errores en la alineación.

Figura 9: Ejemplo de gráfica de la entroṕıa conjunta (izquierda) y del error en la estimación del campo
vectorial (derecha) con respecto al número de iteraciones del algoritmo. Gráficas obtenidas de registrar
el par de imágenes de las Figuras 3.(d) y 3.(e).

para estimar este tipo de deformaciones, además
de ser un problema similar al que se tiene en el
registro de átlases médicos [39].

Por otra parte, observando más a detalle la
Figura 5.(a) donde se utilizó la entroṕıa como
MVL, se puede apreciar que las zonas donde
existen alineamientos poco congruentes (pixeles
totalmente rojos o verdes), son principalmente
en los bordes del cráneo, y en la Figura 5.(b)

donde la MVL utilizada fue la varianza, dichas
zonas están principalmente en la materia gris.

Esto nos hace suponer que los errores de
alineamiento en los bordes del cráneo son debidos
a que el cálculo de la entroṕıa se ve afectado por
el fondo negro que cubre una gran parte de la
ventana (Nr) cuando se encuentra centrada en
estas zonas; en contra parte, este efecto no se
presenta con la varianza que define mejor los
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bordes debido al contraste con el fondo. De
manera similar se tiene un efecto contrario con
la materia gris, donde no existe mucho contraste
entre tejidos, pero si texturas muy marcadas.
Debido a este fenómeno observado en MVL1 y
en MVL2, es que se decidió probar combinando
ambas medidas (MVL3 y MVL4) con la intensión
de complementar la información entre ellas e
intentar reducir los errores en la alineación.
En los resultados obtenidos combinando ambas
MVL mostrados en la Figura 5.(c) usando una
ponderación Euclideana, y en la 5.(d) empleando
el máximo valor entre ellas, visualmente no
parecen muy favorables para la MVL3, pero la
MVL4 si presenta un registro muy similar a las
otras dos.

Analizando un caso más cercano a los
problemas reales de registro en imagenoloǵıa,
como lo es el correspondiente a los resultados
mostrados en de la Figura 6, se puede observar
que las regiones que presentan un mayor error,
es decir zonas no traslapadas correctamente
(regiones totalmente rojas o verdes) son mayores
para la MVL2 y la MVL3 (Figuras 6.(b) y
6.(c)); contrario a lo que presentan la MVL1

y la MVL4 (Figuras 6.(a) y 6.(d)), donde se
aprecia que en su mayoŕıa todas las regiones
están correctamente traslapadas (tonos amarillos
verdosos). Por lo que en este escenario, la
información proveniente de la entroṕıa, permitió
tener un correcto alineamiento, es decir con
MVL1 y MVL4.

Con respecto a los resultados numéricos, se
comprueba lo descrito en el párrafo anterior, ya
que analizando las Figuras 7 y 8, aśı como la
Tabla 1, se observa que las MVL que presentan el
menor error para los casos sintéticos analizados,
son la entroṕıa (MVL1 con un error medio
menor a 1 mm) y el máximo entre las medidas
(MVL4 con un error medio de 1 mm), ambas
con desviaciones estándar menores a 0.5 mm;
a diferencia de la varianza y la ponderación
Euclideana que presentan errores mayores a 1
mm con una desviación estándar mayor a 0.5
mm (ver Tabla 1). Además, los errores en las
intensidades son para MVL4 los más cercanos
a los obtenidos por la versión unimodal del
algoritmo (ver Tabla 1). Una diferencia que
se puede observar entre MVL1 y MVL4 es que

los errores son más homogéneos para el máximo
entre la entroṕıa y varianza, que para la entroṕıa
por si sola (ver Figuras 7.(a), 7.(d), 8.(a) y
8.(d)), probablemente debido a la información
adicional que proporciona la varianza y entroṕıa
combinadas en esta MVL.

Por último, debido a que el algoritmo
propuesto es un método iterativo, es necesario
establecer las condiciones que deben cumplirse
para detener el proceso, además de asegurar
su convergencia a una solución. Aśı pues,
observando las gráficas de la Figura 9 se puede
apreciar que la entroṕıa conjunta entre las dos
imágenes tiene su mı́nimo aproximadamente en
la misma iteración en que se alcanza el mı́nimo
error por el algoritmo (más visible para la MVL1

y MVL4), y después tiende a incrementarse al
igual que el error. Por lo tanto, se puede
establecer como criterio de parada para el
método, el fijar un umbral para la magnitud de la
derivada de la entroṕıa conjunta y de esta forma
se asegura la convergencia del algoritmo.

CONCLUSIONES

Después de analizar los resultados obtenidos,
cualitativos y cuantitativos, de los experimentos
realizados para evaluar el algoritmo propuesto, se
puede concluir que este método ofrece un buen
desempeño para el registro elástico multimodal
empleando como medida de variabilidad local
la entroṕıa, obteniendo en la evaluación
cuantitativa un error medio menor a 1 mm.
Además, ofrece como ventajas un cálculo
numérico más rápido y con una mayor libertad en
las deformaciones que se puedan lograr, debido
a que el campo vectorial de las deformaciones
no es parametrizado. Sin embargo, es deseable
buscar mejoras para el método, intentando
igualar los errores obtenidos por la versión
unimodal, con un error medio menor a 0.5 mm.
Dado que los experimentos fueron realizados
empleando imágenes médicas simuladas y reales,
la técnica propuesta puede ser considerada como
una alternativa viable para su aplicación en
la imagenoloǵıa médica, aunque por otro lado
es necesaria una evaluación de acuerdo a los
estándares médicos dependiendo de la aplicación
hacia la que se decida enfocar el método.
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Como trabajo futuro, se propone realizar
modificaciones al algoritmo para reducir el
error en la estimación del campo vectorial
e intentar que sea similar al reportado por
técnicas de registro unimodal. También se
contempla una implementación del algoritmo
para el registro de volúmenes en la herramienta
de análisis de imágenes médicas ITK (Insight
Segmentation and Registration Toolkit [44]),
además de realizar una comparación exhaustiva,
de acuerdo a estándares médicos y a una
aplicación espećıfica, con otros métodos de
registro elástico multimodal reportados en la
literatura. Finalmente, buscamos realizar una
evaluación del método propuesto para una
aplicación médica espećıfica.
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N., Szekely G., y Cattin P. C., “Intensity-
based elastic registration incorporating
and isotropic landmark erros and
rotational information,” International
Journal of Computer Assisted Radiology
and Surgery, vol. 4, pp. 463–468, Junio
2009.

22. Lange T., Papenberg N., Heldmann
S., Modersitzki J., et al., “3d
ultrasound-ct registration of the liver
using combined landmark-intensity
information,” International Journal of
Computer Assisted Radiology and Surgery,
vol. 4, pp. 79–88, 2008.

23. Joshi A., Shattuck D., Thompson P.,
y Leahy R., “Brain image registration
using cortically constrained harmonic
mappings,” in Information Processing
in Medical Imaging, Lecture Notes in
Computer Science, pp. 359–371, Springer–
Verlag, 2007.

24. Baker S., Scharstein D., Lewis J., Roth S.,
Black M., y Szeliski R., “A database and
evaluation methodology for optical flow,”
International Journal of Computer Vision,
vol. 92, pp. 1–31, 2011.

25. Arce-Santana E. R., Campos-Delgado
D. U., y Alba A., “A non-rigid multimodal
image registration method based on
particle filter and optical flow,” in
Advances in Visual Computing, vol. 6453
of Lecture Notes in Computer Science,
pp. 35–44, Springer–Verlag, 2010.

26. Reducindo I., Arce-Santana E. R.,
Campos-Delgado D. U., y Alba A.,
“Evaluation of multimodal medical
image registration based on particle
filter,” Int. Conf. on Electrical
Eng., Computing Science and Automatic
Control, Septiembre 2010.

27. Mejia-Rodriguez A., Arce-Santana E.,
Scalco E., Tresoldi D., Mendez M.,
Bianchi A., Cattaneo G. y Rizzo G.,
“Elastic registration based on particle
filter in radiotherapy images with brain
deformations,” in Engineering in Medicine
and Biology Society,EMBC, 2011 Annual
International Conference of the IEEE,
pp. 8049–8052, Septiembre 2011.

28. ter Haar Romeny B., Florack L.,
Koenderink J. y Viergever M., “Scale
space: Its natural operators and
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