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Duality symmetries behind solutions of the classical simple pendulum
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Describing the motion of the classical simple pendulum is one of the aims in every undergraduate classical mechanics course. Its analytica
solutions are given in terms of elliptic functions, which are doubly periodic functions in the complex plane. The independent variable of the
solutions is time and it can be considered either as a real variable or as a purely imaginary one, which introduces a rich symmetry structure
in the space of solutions. When solutions are written in terms of the Jacobi elliptic functions this symmetry is codified in the functional
form of its modulus, and is described mathematically by the six dimensional coset Bfd{p) whereI is the modular group anb(2)

is its congruence subgroup of second level. A discussion of the physical consequences that this symmetry has on the motions of the simpl
pendulum is presented in this contribution and it is argued they have similar properties to the ones termed as duality symmetries in other
areas of physics, such as field theory and string theory. Thus by studying deeper a very familiar mechanical system, it is possible to get ar
insight to more abstract physical and mathematical concepts. In particular a single solution of pure imaginary time for all allowed values of
the total mechanical energy is given and obtained asStdeal of a single solution of real time, whefestands for theS' generator of the

modular group.
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1. Introduction to the theory itself as one of the jewels of nineteen-century
mathematics.

The simple plane pendulum constitutes an important physical . :

system whose analytical solutions are well known. Histori- Because the solutions to the simple pendulum problem

cally the first systematic study of the pendulum is attributed®'© given in terms of elliptic functions and Fhe founde_r fa-
to Galileo Galilei, around 1602. Thirty years later he discov-thers of the subject taught us all the interesting properties of

ered that the period of small oscillations is approximately in-these fu_nctlons, it can be cgncluded that all the characteristics
f the different type of motions of the pendulum are known.

dependent of the amplitude of the swing, property termed a8

isochronism, and in 1673 Huygens published the mathemati-l-,_h's is strictly true, however most of the references on ellip-

cal formula for this period. However, as soon as 1636, Mari Ic functio_ns (see for insta_mce [2-7] an_d reference_s therein)
Mersenne and RénDescartes had stablished that the perio ocus, as it should be, on its r_nathematlcal properties, apply-
in fact does depend of the amplitude [1]. The mathematical'd JuSt some of them to the simple pendulum as an example.

theory to evaluate this period took longer to be established. In this paper we review part of the analysis made by Klein

The Newton second law for the pendulum leads to a non%zlr’n\gga;:u%id ;h:n%rﬁgggtr']esrjzﬁiéhsugarosjgn}?g;fens of
linear differential equation of second order whose solutions group 9 9

are given in terms of eithelacobi elliptic function®r Weier- IndexT'(') have on thenodular parameter, being the lat-

strass elliptic function§2-7]. There are several textbooks on ter a function of the quarter periods and K. which in turn

classical mechanics [8-10], and recent papers [11-13], thg"® determined by the value of the square mod&fusOur

give account of these solutions. From the mathematical poinrfnaln interest in this paper is to accentuate the physical mean-

of view the subject of interest is the one @lfiptic curves !Sr:rgntr;:t tztneztzIg;”ﬁ?g???;g?ﬁg ::Zsﬁzgglz;:ziealogze
such ag/? = (1 — 22)(1 — k?z?), with k2 #£ 0, 1, the corre- b€ p ’ P P y

spondingelliptic integralsfoz dz/y and theelliptic functions missing in the literature.

which derive from the inversion of them. Generically the do-  For our purposes the relevant mathematical result is that
main of the elliptic functions is the complex pla@ieand they  the congruence subgroup of level 2, denoted'€), is of
depend also on the value of the modulusThe theory be- order six inI" and therefore a fundamental cell f6(2) can

gan to be studied in the mid eighteenth century and involvede formed from six copies of any fundamental regibrof
great mathematicians such as Fagnano, Euler, Gauss and Uaproduced by the action of the six elements on the set of
grange. The cornerstone in its development is due to Abeamhodular parametersthat belong taF. Each of these copies
[14] and Jacobi [15,16], who replaced the elliptic integrals byis distinguished from each other, according to the functional
the elliptic functions as the object of study. Since then theyform of the modulug:? the six transformations leave invari-
both are recognized jointly as the mathematicians that deveknt, being they#?, 1 — k2, 1/k%,1 — 1/k*,1/(1 — k?) and
oped the elliptic functions theory in their current form and k2 /(k? — 1). Interestingly these kind of relations appear in
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other areas of physics under the concepdwdlity transfor-  when one of the two systems so related can be analyzed, per-
mations, nomenclature we will use here. This result can benitting conclusions to be drawn for its dual by acting with the
understood from different mathematical points of view andduality transformations. There is a plethora of examples in
provides a link between concepts such as lattices, compleghysics that obey duality symmetries, which have led to im-
structures on the topological tor@¥, the modular grouf® portant developments in field theory, gravity, statistical me-
and elliptic functions. In the appendices we review brieflychanics, string theory etc. (for an explicit account of exam-
the basics of these concepts in order to keep the paper sqifes see for instance [18] and references therein). As a man-
contained as possible, emphasizing in every moment its roleer of illustration let us mention just two examples of theories
in the solutions of the simple pendulum. From the physicakthat own duality symmetries: i) in string theory appear three
point of view, the pendulum can follow basically two kind types of dualities, and the one that have the properties de-
of motions (with the addition of some limit situations), the scribed above goes by the nasteluality, being thes group
specific type of motion depends entirely on the value of theelement, one of the two generators of the grdif(2, Z)

total mechanical energk, if 0 < k% < 1 the motion is  [19]. Inthis case the modular parametds given by the cou-
oscillatory and ifl < k% < oo the motion is circulatory. pling constant and therefore tifeduality relates the strong
Therefore in the problem of the simple pendulum, there ar&oupling regime of a given string theory to the weak cou-
two relevant parameters, the square modéfusf the ellip-  pling one of either the same string theory or another string
tic functions that parameterize its solutions in terms of thetheory. It is conjectured for instance that the type | super-
time variable, and the total mechanical energy of the motiorstring is.S-dual to theSO(32) heterotic superstring, and that
k%,. As we will discuss throughout the paper, the relation be-the typel I B superstring isS-dual to itself. ii) In 2D systems
tween these two parameters is not one-to-one due to the dudhere is a broad class of dual relationships for which the elec-
ity relations between the different invariant functional formstromagnetic response is governed by particles and vortices
of k2. For instance, for an oscillatory motion whose energywhose properties are similar. In particular for systems having
is0 < k% < 1, itis possible to express the solution in terms fermions as the particles (or those related to fermions by the
of an elliptic Jacobi function whose square modulugis  duality) the vortex-particle duality implies the duality group

1 — k2, 1/k2, etc., in other words, the duality symmetries be-is the level-two subgroup(2) of PSL(2,7Z) [20]. The so
tween the functional forms of the square modutdsnduce  often appearance of these duality symmetries in physics is
different equivalent ways to write the solution for a specificour main motivation to heighten the fact that in classical me-
physical motion of the pendulum. The nature of the timechanics there are systems like the simple pendulum whose
variable also plays an important role in the equivalence of somotions can be described in different equivalent forms re-
lutions, it turns out that whereas some solutions are functionkated by duality symmetries.

of a real time, others are functions of a pure imaginary time.  The structure of the paper is as follows. In Sec. 2 we sum-
In this paper we will discuss all these issues and we will writemarize the real time solutions of the simple pendulum system
down explicitly several equivalent solutions to describe a spein terms of elliptical Jacobi functions. The relations between
cific pendulum motion. These results constitute an examplsolutions with real time and pure imaginary time in terms of
in classical mechanics of a broader concept in physics termetthe S group element of the modular grolipare exemplified
under the name dualities. It is worth mentioning that some ofn Sec. 3 and the whole web of dualities is discussed in Sec. 4.
the results we present here are already scattered throughdive make some final remarks in 5. There are two appendices,
the mathematical literature but our exposition collects themAppendix A is dedicated to define the modular group, its con-
together and is driven by a golden rule in physics that degruence subgroups and its relation to double lattices whereas
mands to explore all the physical consequences from synin Appendix B we give some properties of the elliptic Jacobi
metries. Notwithstanding some formulas have been workeéunctions that are relevant for the analysis of the solutions of
out specifically for building up the arguments given in herethe simple pendulum.

and to the best knowledge of the author they are not present

in the_ available Ilterature. As an example, we obtain a smglezl Real time solutions

solution that describes the motions of the simple pendulum

as function of a pure imaginary time parameter, and we showne Lagrangian for a pendulum of point massand length

it can be obtained through aduality transformation from ;i a constant downwards gravitational field, of magnitude
a single formula that describes the motions of the simple pen- 4 (4 - 0), is given by

dulum for all permissible values of the total energy and which
is function of a real time variable.. L(6,6) = 1ml29'2 —mgl(1 — cos0), (1)

In a general context the duality symmetries we refer to, 2
involve the special linear grouiL (2, Z) and appear oftenin wheref is the polar angle measured counterclockwise respect
physics either as a symmetry of a theory or as a relationshifp the vertical line and stands for the time derivative of this
among two different theories. Typically these discrete sym-angular position. Here the zero of the potential energy is set
metries relate strong coupled degrees of freedom to weaklgt the lowest vertical position of the pendulum, for which
coupled ones and vice versa, and the relationship is usefél = 2nx, withn € Z. The equation of motion for this system
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This equation can be integrated once giving origin to a first
order differential equation, whose physical meaning is the

conservation of energy
L 249 2 (0
E = iml 0 + 2mgl sin 5)= constant  (3)

Physical solutions exist only ifZ > 0. We can rewrite this
equation of conservation, in dimensionless form, in terms o
the dimensionless energy paramete}: = (E/2mgl), and
the dimensionless real time variable: = /(g/0)t € R,

obtaining
() - (3) -2
+ sin =kz.

2

1

4

9

. (4)
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e Oscillatory motiong0 < k% < 1): In these cases the
pendulum swings to and fro, respect to a point of stable equi-
librium. The analytical solutions are given by

0(x) = 2arcsinfkg sn(z — xo, kg)], 5)
% =w(x) =2kgcn(z — xo, kg), (6)

where the square modul&$ of the elliptic functions is given
directly by the energy parametek? = k7. Herez, is a

Eecond constant of integration and appears when Eq. (4) is

integrated out. It means physically that we can choose the
zero of time arbitrarily. Derivatives of the basic Jacobi ellip-
tic functions are given in (B.11).

Without loss of generality, in our discussion we con-
sider that the lowest vertical point of the oscillation corre-

Analyzing the potential, it is concluded that the pendulumsponds to the angular value = 0, and therefore thaf

has four different types of solutions depending of the value o
the constant?%. The analytical solutions in two of the four

takes values in the closed interviatd,,, 6,,], where0 <
0., < = is the angle for whichd,, = 0. This means

cases are given in terms of Jacobi elliptic functions and cathat: sin(6/2) € [—sin(6,,/2), sin(6,,/2)], where accord-

be found for instance in [5,7-13]. The other two cases can b

&g to Eq. (4),sin*(6,,/2) = k% < 1. Now according to

considered just as limit situations of the previous two. The(5) the solution is obtained by mapping [2&in(6/2) —

Jacobi elliptic functions are doubly periodic functions in the

kg sna—xo, kg), wherex —z( € [- K, K], or equivalently:

complexz-plane (see Appendix B for a short summary of thesn(z — ¢, kg) € [—1, 1]. With this map we describe half of
basic properties of these functions), for example, the functiom period of oscillation. To describe the another half, without

sn(z, k) of square modulud < k? < 1, has the real primi-
tive period4 K and the pure imaginary primitive peri@dk.,
where the so called quarter periolsand K. are defined by

loss of generality, we can extend the mapping in such a way
that for a complete period of oscillation— =y € [— K, 3K].
Because the Jacobi function(en— z¢, kg) € [—1,1], the

the Egs. (B.2) and (B.5) respectively. The properties of thalimensionless angular velocity ) is restricted to values in

different solutions are as follows:

e Static equilibrium(d = 0): The trivial behavior occurs
when eitherk? = 0 or k%, = 1. In the first case, necessarily
§ = 0. For the cas&? = 1 we consider also the situation

the interval—2kg, 2kg].

As an example we can choosg = K, so at the
time z = 0, the pendulum is at minimum angular position
0(0) = —6,,, with angular velocityw(0) = 0. The pendu-

whered = 0. In both cases, the pendulum does not moveJum starts moving from left to right, so at= K it reaches

it is in static equilibrium. Wher = 2nx the equilibrium is
stable and whe#fl = (2n + 1) the equilibrium is unstable.

the lowest vertical positiof(K) = 0 at highest velocity
w(K) = 2kg and atr = 2K itis at maximum angular posi-

=2

FIGURE 1. The first set of graphs represents an oscillatory motion of enefgy= 3/4 with zo = K =~ 2.1565. 6(z) is given by the

magenta graph and it oscillates in the intediat) € [—27/3,27/3]. The angular velocity(z) is showed in blue and takes values in the
intervalw(z) € [—v/3,+/3]. Both graphs have periotlk. The second set of graphs represents a couple of circulating motions both of
energyk? = 4/3 with zo = K/kg ~ 1.8676. For the motion in the counterclockwise direction, the monotonic increasing furétigris
plotted in magenta, for the time intervale [0, 2x) it takes values in the intervél(z) € [—x, 7), whereas for the interval € [2z, 420)

it takes values in the intervél(z) € [r,3n). The angular velocity is showed in blue, it has pertdd/kz, is always positive and takes
values in the interval(z) € [2/+/3, 4/+/3]. The other two plots represent a similar motion in the clockwise direction.
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tion 6(2K) = 6, with velocity w(2K) = 0. At this very
moment the pendulum starts moving from right to left, so
atz = 3K itis again atf(3K) = 0 but now with lowest
angular velocityw(3K) = —2kg and it completes an oscil-

lation atx = 4K when the pendulum reaches again the point

0(4K) = —0,, with zero velocity (see Fig. 1). We can repeat

R. LINARES ROMERO

which we define in the form
1

7))

(An — 1)K<kg(z —zo)<(dn + 1)K,
(An+ 1)K<kg(x — zo)<(4n + 3) K,

sgn[cn (kE(x — 1)
_ {+1 if

1 if (11)

this process every time the pendulum swings in the interval

[0, 0.,], In such a way that the argument of the elliptic
function sriz, kg ), becomes defined in the whole real liRe
Itis clear that the period of the movementi&’, or restoring
the dimension of time4 K /g/1.

Of course the value of, can be set arbitrarily and it
is also possible to parameterize the solution in such a wa
that at zero timez = 0, the motion starts in the angl,

and its role is to shorten the period of the functiofsn(x —
x0), 1/kg) by half, as we argue below. This fact is in agree-
ment with the expression for the angular velocityx) be-
cause the period of the elliptic function@n; (x—x¢), 1/kE)
is 2K / kg instead oft K/ kg, which is the period of the ellip-
tic function siike(x — 20), 1/kE).

The square modulug of the elliptic functions is equal to

instead of—0,,. In this case the mapping of a complete pe-the inverse of the energy parameberk?=1/k%<1. With-
riod of oscillation can be defined for instance in the intervalout losing generality we can assume both that(z —
x — xg € [K,5K] and the initial condition can be taken as zy) € [-K,K), where K is defined in (B.2) and
ro = —K. In the discussion of the following section we will evaluated for k? 1/k% and that arcsin[sitg(z —
setzg = 0, so at timer = 0, the pendulum is at the lowest xz¢),1/kg)] € [-n/2,7/2). Because in this interval the
vertical position §(0) = 0) moving from left to right. function sgn[citkg(z — x0),1/kg)] = 1, the angular po-
sition functionf(z) € [Fm, £x) for the global sign ) in
(9). As for the intervalkg(z — z9) € [K,3K), we can
consider that the function arcsin[én;(z — z¢),1/kg)] €

and thereforesin(#/2) € (—1,1). The particle just reach the (~37/2,—7/2], and because the function sgn{¢g(z —

highest point of the circle. The analytical solutions are giveri*0): 1/kz)] = —1, it reflects the angular position interval,
by obtaining finally tha®) € [+, £37) for the global &) sign

in (9) (see Fig. 1). We stress that the consequence of flipping
the sign of the angular interval through the sgn function is to
make the functiord(x) piecewise periodic, whereas the con-
sequence of taking a different angular interval for the image
of the arcsin function every time its argument changes from
an increasing to a decreasing function and vice versa, is to
make the functiord(x) a continuous monotonic increasing
(decreasing) function for the global sign + (-). Explicitly the
angular position function changes as

g
mentum of the particle is large enough to carry it over theIt IS '|nterest|ng to notlpe that .'f we would not havg phanged
he image of the arcsin function, the angular position func-

highest point of the circle, so that it moves round and rounot_ . . . .
the circle, always in the same direction. The solutions that'®" () would have resulted into a piecewise function both

describe these motions are of the form periodic and d|scont|quogs. oo ) ,
The angular velocity is a periodic function whose period

is given byTirculaing = 2(K/kg)+/g/l which means as ex-

e Asymptotical motion(k% 1 andéd # 0): In this
case the anglé takes values in the open intervahn, )

0(x) = £2arcsinftanh(x — xo)], 7

(8)

w(z) = £2secz — zp).

The sign+ corresponds to the movement frdmn — +m).
Notice thattanh(z — z;), takes values in the open interval
(-1,1) if: z —xp € (—o0,00). For instance iff — m,

x — xg — oo andtanh(x — o) goes asymptotically to 1. It
is clear that this movement is not periodic. In the literature it
is common to take;; = 0.

e Circulating motions(k% > 1): In these cases the mo-

2K
T +n— (12)

= ) = 0(z) + 2.

O(x) = +2 sgn[cn (kE(x — x), 1” pected that higher the energy, shorter the period. Because
ke the image of the Jacobi function @n k) € [\/1 — 1/k%, 1],
) 1 the angular velocity takes values in the interjal €
X arcsin [sn (kE(x — o), ke } ’ ©) [2¢/k% — 1,2|kg|]. An interesting property of the periods
that follows from solutions (6) and (10) is th@scilatory =
w(z) = +2kgdn (kE(x — ), 1) , (10)  kETtirculating wherek? is the energy of a circulating motion
ke andk? = 1/k% is the modulus used to compuié in both

cases. This is a clear hint that a relation between circulating
where the global sigfi+) is for the counterclockwise motion and oscillatory solutions exists.
and the(—) sign for the motion in the clockwise direction. These are all the possible motions of the simple pendu-
The symbol sgfi) stands for the piecewise sign function lum. It is straightforward to check that the solutions satisfy
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the equation of conservation of energy (4) by using the folin terms of a real time variable and then flipping the sign of
lowing relations between the Jacobi functions (in these relathe whole equation in order to have positive energies, the re-
tions the modulus satisfiés< k2 < 1) and its analogous re- sulting equation is of the same form as Eq. (4), ii) the second
lation for hyperbolic functions (which is obtained in the limit option consists in solving the equation directly in terms of
casek = 1) the imaginary timey. Because both solutions describe to the
same physical system, we can conclude that both are just dif-

SI¥(w, k) + oz, k) = 1, (13)  ferent representations of the same physics. These two-ways
tanh?(z) + secH (z) = 1, (14) of working provide relations between the elliptic functions
with different argument and different modulus. As we will
k*srf(x, k) + dré (z, k) = 1. (15)  discuss the relations among different time variables and mod-
ulus can be termed as duality relations and because the math-
3. Imaginary time solutions and S-duality ematical group operation beneath these relations iS tjen-

erator of the modular groupSL(2,Z), we can refer to this
The argument of the Jacobi elliptic functions is defined in duality relation asS-duality.
the whole complex plan€ and the functions are doubly pe-
riodic (see Appendix B), however in the analysis above, time3.1. Real time variable
was considered as a real variable, and therefore in the solu-
tions of the simple pendulum only the real quarter pedodd If we write down (17) explicitly in terms of the real time pa-
appeared. In 1878 Paul Appell clarified the physical meaningameterz, we obtain a conservation equation of the form
of the imaginary time and the imaginary period in the oscil- )
latory solutions of the pendulum [7-21], by introducing an 1 (d9) i (9

- 2) — B (18)

ingenious trick, he reversed the direction of the gravitational 4
field: ¢ — —g, i.e. now the gravitational field is upwards. In

order the Newton equations of motion remain invariant un-T he first feature of this equation is that the constahis neg-

der this change in the force, we must replace the real tim@tive (E’ < 0). This happens because as a consequence of
variablet by a purely imaginary onet = +it. Implement-  the imaginary nature of time, the momentum also becomes

ing these changes in the equation of motion (2) leads to th@n imaginary quantity and when it is written in terms of a

equation real time it produces a negative kinetic energy. On the other
d’e g . side the inversion of the force produces a potential modified
gz o 0=0. (16) by a global sign. Flipping the sign of the whole equation and

Writing this equation in dimensionless form requires thedenotingE’ = —k%, leads to the Eq. (4)

introduction of the pure imaginary time variablg = )

+74/9/1 = +ix. Intggrat.ing once the resulting'dimensio.n- 1 <d9> + sin? (9> = k2. (19)

less equation of motion gives origin to the following equation 4 \dz 2

1/doN°? . 5 (0 , We have already discussed the solutions to this equation (see

1 <dy> - sm (> =F, (17 sec. 2.). However because we want to understand the sym-
. . . . . metry between solutions, it is convenient to write down the

\'/:viglcg)looks like Eq. (4) but with an inverted potential (see ones of the circulating motions (9)-(10) relating the modulus

ve th L i b ival of the Jacobi elliptic functions not to the inverse of the en-
We can solve the equation in two different but equivalenty oy, v 6 the energy itself, which can be accomplished by
ways: i) the first option consists in writing down the equation

considering that the Jacobi elliptic functions can be defined
for modulus greater than one. So we can write down both the

104

Y oscillatory and the circulating motions in a single expression
A [13]
X 1=k i 0(x) = +2kg sgridn(z — zo, kp)]
: g -sin?({) x arcsin[sn(z — xg, kg)]. (20)

05

Here the square modulu$ = k% takes values in the inter-
vals0 < k% < 1 for the oscillatory motions antl < k% <

o] oo for the circulating ones. The reason of writing down the
FIGURE 2. In the figure we show the pendulum potential (blue) for Circulating solutions in this way is because introducing an-
the dynamical motion parameterized with a real time variable. TheOther group element dP.SL(2,Z), we can relate them to the
inverted potential (magenta) corresponds to a dynamics parametestandard form of the solution (9) with modulus smaller than
ized by a pure imaginary time variable. one. We shall do this explicitly in the next section.
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3.2. Imaginary time variable The cases whereé/2 < k? < 1 and therefore wheré <
) ) . k% < 1/2 can be obtained from the case we are considering
In order to solve Eq. (17) directly in terms of a pure imagi- py interchanging to each other the modulus and the comple-
nary time variable, it is convenient to rewrite the equation inmentary modulug? « 2.
a form that looks similar to Eq. (19), which we have already . . : :
e Oscillatory motion Let us consider oscillatory solu-

solved, and with this solution at hand go back to the origi-.. :
g 9 4ions for total mechanical energy< k% = k? < 1/2. Solu-

nal equation and obtain its solution. We start by shifting thet'ons for these motions can be expressed in terms of either i)

value of the potential energy one unit such that its minimumé'1 real time variablel and aiven bX[I)E (20)' or ii) in terrrlls ofl

value be zero. Adding a unit of energy to both sides of the : ; . oA Yy Eq. ' )

equation leads to a pure imaginary time variable. In the latter case the suitable
q ) constant igj, = iK — K. and according to the Eq. (24) and

1 /db 5 (0 9 due to the equivalence of solutions we have

—|—] 4+cos| =) =1—-k%. (22)

4 \ dy

The second step is to rewrite the potential energy in such a 6, (x) = 2 arcsin[k sn(z, k)] = 2
form it coincides with the potential energy of (19) and in this

way allowing us to compare solutions. We can accomplish
this by a simple translation of the graph, for instance by trans-
lating it an angle ofr/2 to the right (see Fig. 2). Defining This result is very interesting, it is telling us that any oscilla-

x arcsin[dn(iz — (K + K¢, k)| = 0. (iz). (25)

¢ = 6 — 7, we obtain tory solution can be represented as an elliptic function either
1 /do’\> o of a real time variable or a pure imaginary time variable and
1 (dy) + sin? () =1-k%. (22)  although they have the same energy, they differ in the value

of its modulus. For solutions with real time the square modu-
Solutions to this equation are given formally as lus coincides with the energy?, and for solutions with pure
(Y 5 _ 5 imaginary time, the square modulus is equal te k%. Itis
S <2> =+y/1-kgsn (y — Yo,/ 1= kE) - (23) " clear that the modulus of the two representations of an oscil-
Now it is straightforward to obtain the solution to the original latory solution satisfies the relation
Eq. (17), by going back to the originélangle, obtaining

O(x) = iQSgn{q/l - k%sn(y—go, \/1— k%)}
As discussed in Appendix B, the elliptic function (dnk.)

% arcsin [dn <y —Go,1/1 — k%)] . (24) has an imaginary periodiK, therefore the period of the

imaginary time oscillatory motion isiK\/gTZ, which is in

In this last expression we are assuming that Eq. (15) is validomplete agreement with the periotls \/g/1 for the solu-

for every allowed value of the energy, € (0,1)U(1,00),0r  tions with real time. From Eqgs. (25) it is straightforward to

equivalentlyl — k2 € (—o00,0) U (0, 1) (see Egs. (B.19) and compute the angular velocity in terms of an elliptic function

(B.44)). It is important to stress that whik&, has the inter- whose argument is a pure imaginary time variable (see Table

pretation of being an energly— k% can not be interpreted as 1). A similar result is obtained for an oscillatory motion with

such, as we will discuss below. Notice we have denoted to thenergyk?, = k2.

integration constant in the variabjeasy, to emphasize that Two final comments are necessary, first in the general so-

%o € Cand is not necessarily a pure imaginary number. Thi§tigns (20) and (24) the- signs appeared, however in (25)

happen because in contrast to the case of a real time variablgere js not reference to them. This happen because they are
where the integral along the real lime< R can be performed oy jicitly necessary only in the circulating motions. In the

directly, when the variable is complex it is necessary to chose qe of oscillatory motions the-) sign can be absorbed in

a valid integration contour in order to deal with the poles ofy,o gjution by rescaling the time variable in both cases (real
the Jacobi elliptic _functlons [2]. . For instance, the function 4. pure imaginary time). Regarding the elliptic function in-
dn(y, k) has poles iy = (2n + 1)iK. (mod2K)forn € Z,  gjge the sign function it does not appear because in the case
but dn(iz + (2n + 1)K, k) is oscillatory for everyr € Rand ¢ (20) we have sgn[d, k)] = 1 and also in (24) sgif,

0 < k < 1. The sign function in the solutions is introduced sn(iz — ik, + K, k)] = 1.

again in order to halve the period of the circulating motions
respect to the oscillatory ones.

B+ k2 =1. (26)

e Circulating motion For the circulating motion we must
also separate the energy intervals in two cases. If we are con-
3.3. Equivalent solutions sidering the solutions (20) which have real time variable, the

corresponding energy intervals dre< k2, = 1/k? < 2 and
In the following discussion we will assume without losing 2 < k% = 1/k* < oo. On the other side, if the solution
generality that < k% < 1/2 and therefore that its comple- involves a pure imaginary time variable (Eq. (23)) the rele-
mentary modulus is defined in the intendgl2 < k2 < 1. vant energies take values in the intervals < 1 — k% =
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—k?/k? < 0,and—oco < 1 — k% = —k?/k? < —1. Explic- o Circulating case In the circulating case we have a sim-
itly we have for the first interval ilar story, under ar$ transformation the circulating solutions
(9)-(10) lead to the set

1 . 1 1
01k, () = 2sgn {dn <x, k)] arcsin {k sn (x, k)} 1 1 1
¢ ¢ ¢ sgn|dn|{ kx,— || =—sn{ kx, —
i i k)| k k
2sgn{<z‘) sn(imiK,i)] k k
ke ke =sgn|i— sn| iz —iK, i—
i k k
X arcsin [dn (wc — 1K, Zk)} = O i, (i), (27) k.
c x dn (zm - z’K,ik‘) , (32)
Notice that in a similar way to the oscillatory case, we have
the following relations between the sum of the square modu- cn (k:z 1) — k.cn (w —iK, ch> 7 (33)
lus 2 ’ k
1
2 oz b (28)  which coincide with the solutions (24) for a choice of the

constantj, = ¢ K.
Analogous relations can be found for the solutions with en-
ergyk? = 1/k2 and for motions in the clockwise direction. .
aykp =1/ 4. Web of dualities

3.4. S group element as member oPSL(2,7Z) 41. The set ofS-dual solutions
Itis possible to reach the same conclusions as in the previoyge nave argued that a symmetry of the equation of motion for

subsection but this time following a slightly different path. In {he simple pendulum leads to the possibility that its solutions
Appendix B we have summarized the action of the different.ap pe obtained in two ways: i) considering a real time vari-

group elements aP'S (2, Z) on the Jacobi elliptic functions, - 5pje and ii) considering a pure imaginary time variable. The
in partlcula_r the action of_thS group element. Startlng for  golutions for energies in the intervak, € (0,1) U (1, 00)
instance with a solution involving a real time variable andyre given by Jacobi elliptic functions, the ones for energies
applying the action of thé group element, it is possible t0 2 (4 1) describe oscillatory motions and the ones for en-
obtain the corresponding solution in terms of a pure imagegiesk2, € (1,00) describe circulating ones. On the other
inary time variable. As we will show, the obtained results hang we also know that the Jacobi elliptic functions are dou-
coincide with the ones we have discussed. o bly periodic functions in the complex plariz(see Appendix
o_OSClIIatory motion In thl_s case the starting point is the B), and additionally to the complex argumentthey also
solution (5) and its time derivative (6) which depends on 8depend on the value of the modulus whose sqiédreakes
real time variable and describe an oscillatory pendulum solugges in the real lin® with exception of the points? # 0
tion with energyk. To fix the discussion we choosg =0.  anq 1. In the previous section we have discussed that given
Applying the Jacobi's imaginary transformations Egs. (B.13); type of motion, for instance an oscillatory motion with en-
which are the transformations generated by $hgenerator ergy0 < k2, < 1/2, there are at least two equivalent angular
of the PSL(2,Z) group, we obtain functions describing it, one with modulds= kz and real
time denoted ag (z) in (25) and a second one with modulus

ksn(z, k) = —iksdiz, k.) = —knd(iz + iK, k.) k. = /1 — k% and pure imaginary time denoted@s (iz).

= dn(iz — iK + K., k.), (29)  We can refer to this dual description of the same solution as
_ . ' . S-duality. In Table | we give the solutions for all the sim-
ken(z, k) = kncliz, k) = —ik ke sdiz + iK, k) ple pendulum motions (oscillatory and circulating) in terms
= —ikecn(iz — iK + Ko, ko), (30) of real time and itsS-dual solution given in terms of a pure

imaginary time.
recovering relation (25) with their respective expressions for ~ The fact that the solutions involve either real time or pure
its time derivative. Notice that although the transformedimaginary time only, but not a general complex time leads to
functions have moduluk, they satisfy the conclusion that although the domain of the elliptic Jacobi
functions are all the points in a fundamental cell, or due to its
dn2(ia:—iK+Kc, kc)—kgcﬁ(ix—iKJrKc, ke) = k%, (31) doubly periodicity, in the full complex plang, the pendu-
lum solutions take values only in a subset of this domain. Let
which is telling that the solution is indeed of oscillatory en- us exemplify this fact for a vertical fundamental cell, i.e., for
ergyk? = k? as it should be. An analogous result is obtainedvalues of the square modulus in the intevak k2 < 1/2,
if we start instead with a solution of moduli$ and real time ~ which correspond to a normal lattide’ (see Appendix B).
variable. In this case the generators are givenddy and4i K, with
K. > K. If the time variablex is real, the solutions are
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TABLE |. The third column shows the solutions to the simple pendulum problem in terms of a real time variable when the total mechanic
energy of the motion and the square modulus of the Jacobi elliptic function are the same. The fourth column sholwalisolutions in
terms of a pure imaginary time variable.

Energyk%  |Variable Real time solution Imaginary time solution
k* € (0,1/2] 0/2 arcsin[k sn(z, k)] arcsin[dn(iz — i K + K, kc)]
w/2 kcn(z, k) —tke en(iz —iK + K, ke)
1-k*e[1/2,1)| 6/2 arcsin[k. SNz, k.)] arcsin[dn(iz — iK. + K, k)]
w/2 ke en(z, k)] —ik cn(iz — iK. + K, k)
= € (1,2] 0/2 |+ sgn[dr(z, 1/k.)] arcsin[sn(z, 1/k.)/k.]|£ sgnf(ik/k.) sn(iz — iK.,ik/k.)] arcsin[dn (iz — i K., ik /k:)]
w/2 +(1/ke) en(z, 1/ke) +(k/ke) cn (iz—iK.,ik/ke)
7z € [2,00) 0/2 | +sgn[dr(z,1/k)] arcsin[sn(z, 1/k)/k] + sgnik./k) sn(iz — i K, ik./k)] dn(ic—i K, ik./k)
w/2 +(1/k) en(z, 1/k) +(ke/k) en (ix — iK, ik /k)
given by the function snf, k) which owns a pure imaginary 30y

period2iK.. The oscillatory solutions on the fundamental
cell are given generically either kycsin[k sn@ — xo, k)] or
arcsinlk snc — x¢ + 2iK,, k)], or in general on the com-
plex planeC the domain of these solutions is given by all the
horizontal lines whose imaginary part is constant and given
by 2niK. with n € Z. According to Table I, the oscilla-

25

tory solutions of pure imaginary time on the same fundamen- 20

tal cell, have energies in the intervel2 < k7, = k2 < 1 r

and are given generically byrcsin[dn(iz — ixg + K, k) or T I
arcsin[dn(iz — iz¢ + 3K, k). In general the domain of these

solutions in the complex plan€ are all the vertical lines 13

whose real part is constant and given (. + 1)K with
n € Z, which is in agreement with the fact that the func-
tion dn(z, k) owns a real perio@ K. Any other point in the
domain of the elliptic Jacobi functions, different to the ones
mentioned do not satisfy the initial conditions of the pendu-
lum motions. This discussion can be extended to the horizon- TG ST
tal fundamental cells (normal latticés*) whose modulus is J— os| TS
given byk. and the ones that involve &S transformation
and therefore a Dehn twist (see Appendix B).

We conclude that if we consider only solutions of real
time variable such that the square modulus and the energy % 03 @ 05 2
coincide (the four types of Table I), then the corresponding
domains are horizontal lines on the normal lattiégs i L*, FIGURE 3. Figure shows the whole domain of values that the
kL* andik.L*. If instead we consider the four solutions of modular parameter can take for the Jacobi elliptic functions.

pure imaginary time parameter, the corresponding domaing"is domain is a subset of th€, fundamental region (Fig. 2).
are vertical lines on the normal lattices*, L*, ikL* and ?lac:ngtsl;zprle/s;nt_tge 1’72?65 Zg)thf quarelT,;dt_ﬂuslla/ga
k.L*. However due to the fact that the modular group relateggg/(l€2 B 3 S =2, =

the normal lattices one to each other, we can consider less '
normal lattices and instead consider other Jacobi functions

. . . 9
on the smaller set of normal lattices to obtain the same fou(r:tlon whose square modulus is in the inteat k< < 1/2,

roup of solutions. We shall address this issue below generate vertical lattices represented by a modular parameter
group ) ) of the formr = iK./K. The pointr = i is associated to the

case where the rectangular lattice becomes square and corre-
sponds to the valug? = 1/2. The set of all these lattices

At this point it is convenient to discuss the domain of the lat-(black line in Fig. 3) is represented in the complex plane by
tices that play a role in the elliptic Jacobi functions and therethe left vertical boundary of the regidgf, (Fig. 5) since the

fore in the solutions of the simple pendulum. As discussed iuotientK../K € [1, 0o). Acting on these values of the mod-

the Appendix A, the quarter periods of a Jacobi elliptic fun-ular parameter with the six group elements{# L.(2, Z /27)

4.2. The lattices domain
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TaBLE Il. Approximated numerical values of the periods and the modular parameter for some real values of the modulus of the Jacobi elliptic
functions. The valuet = 0 andk = 1 correspond to limit situations where one of the two periods is lost. The ¥dlue 1/2 is known as

a fixed point, it belongs both to the boundary of the regi®asnd.S of the Fig. 5 and is represented by the black dot whose coordinates are
(0,4) in Fig. 3. The valuek® = 2 is degenerated in the sense it can be represented by two different types of fundamental cells, in one case
the cell belongs to the boundary of the regi§f'S and in the another case it belongs to the boundar§®f!. The fundamental cell for

some values of? in this table are plotted in Fig. 6.

Modulusk? w1 /4 w2 /4 T

0 w/2 i-00 i-00

1/4 1.68575 (2.15652) 4 1.27926 ¢

12 1.85407 (1.85407) i i

3/4 2.15652 (1.68575) % 0.78170¢
1 ) im/2 0

4/3 2.87536 + 12.24767 (2.24767) 4 0.37929 + ¢ 0.48521
2 3.70814(1 £ 1) (3.70814) 4 +0.54+1:0.5
4 6.743 — 1 8.62608 (8.62608) 7 —0.62071 + 7 0.48521

produce the whole set of values of the modular parametetasel < 1/k = kg = k= 1/kr < 1), lead to
(Fig. 3) that are consistent with the elliptic Jacobi functions.

For example, acting with thé group element of” on the kpsn(z,kp) = sn(kpz,1/kp),

vertical liner = iK./K, generates the blue vertical line kgen(z, kg) = dn(kg z,1/kg),
described mathematically by the set of modular parameters
T = iK/K,, with K/K, € (0,1]. Itis clear that the set of dn(z, kg) =cn(kpz,1/kg) . (34)

six lines is a subset of thé; fundamental region and consti-
tutes the whole lattice domain of the elliptic Jacobi func‘uons.reprooluce solutions (9) and (10).

In Table Il we give the numerical values (approximated) *\\+ -+ \ve have done is to use & S-duality between

of the generators of the fundamental cell as well as the moqéttices and transform two of thewl.* andik.L* into L*
C

ular parameter fqr some values of the square modulus. andiL*. Restricted to solutions with real time, two of the

As a conclusion, for every value of the parameiex four type of solutions for whictk? = k2, > 1, are trans-
k? < 1/2 there are six normal lattices related one to eaChformed to solutions for which? — 1/k2 < 1. As we have

; = - .

other by transformations of the modular group. Thereforgyis. ssed the domain of the solutions with real time variable
each solution of the simple pendulum with real time variable » o horizontal lines in the normal latticés andiL*, thus in
showed in Table I, can be written in six different but equiv- 5 ey o keep the four different types of solutions it is neces-
alent ways, where _each one of the_5|x forms is In one to ON8ary to evaluate two different set of Jacobi functions (5) and
correspondence with one of the six normal lattices. Thelr(g) on the domain of each one of the two normal lattiéés
S-dual solutions (see Table I) which are functions of a pure; 4.7+ |t is clear that this is not the only way we can pro-

|m;51g]nary time are just one of the six different ways in which coq i fact we can transform the oscillatory solutions with
solutions can be written. k < 1 into oscillatory solutions with modulus grater than 1.

. A similar analysis follows if we consider only solutions with
4.3. STS—duallty imaginary time.

Inserting this relations in the circulating solutions of Table |

The form of the solutions for the simple pendulum expresseq, 4 A single normal lattice

in Table | does not coincide with the expressions given in

Sec. 2, which by the way, are the standard form in which thet is natural to wonder about the minimum number of normal

solutions are commonly written in the literature. In order tolattices needed to express all the solutions of the simple pen-

reproduce the standard form it is necessary to introduce théulum. Due to the duality symmetries between lattices this

STS transformation (see Appendix B). This transformation number is one. As an example, if we now use fhduality
takes for instance a Jacobi function with modufus<  to relate the normal horizontal lattiéé* to the normal ver-

k < 1into a Jacobi function with modulus greater than onetical lattice L*, the horizontal lines that compose the domain

1 < 1/k < oo. Taking the inverse transformation it is pos- in the horizontal lattice becomes vertical lines in the vertical

sible to take a Jacobi function with modulis< 1/k into lattices, which means to consider solutions with imaginary

one with modulusk < 1. Using the relations of the Ap- time in L*. Thus we can end up with only one normal lattice

pendix B it is straightforward to obtain Egs. (B.35) which and in order to have the four different types of solutions, it is

written in terms ofk g instead ofk (remember than in this necessary to consider the whole domain of the lattiee,
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TABLE IIl. Solutions to the simple pendulum problem written in a unique lattice of square matkdus® < 1/2.

Energy interval Solutiod

k% € (0,1/2] 2 arcsin[k sn(z, k)]

k% € [1/2,1) 2 arcsin[dn(iz — iK. + K, k)]
k% € (1,2] + 2 sgnf—ik/k.) cn(iz/ke — iK./ke, k)] arcsin[(1/k.) dn(iz/ke — i K. /ke, k)]
k% € [2,00) =+ 2 sgn[cr{z/k, k)] arcsin[sn(z/k, k)]

both vertical lines (imaginary time) and horizontal lines (real Appendix

time) and on each set of lines to consider two different so-

lutions one oscillatory and one circulating. For completenes®. The modular group and its congruence sub-
in Table Il we give the four type of solutions in terms of only groups

one value of the modulus

. . A.1 The modular grou
Itis clear that we can express all the solutions also for the group

other five different functional forms of the square modulus. The modular groufi” is the group defined by the linear frac-
tional transformations on thmodular parameter € C (see
for instance [3-7,22,23] and references therein)
at +b

T T(1) = et (A1)

wherea, b, ¢, d € Z satisfyingad — bec = 1, and the group

In this paper we have addressed the meaning of the faQpPeration is function composition. These maps all transform

that the complex domain of the solutions of the simple peniN€ réal axis of the- plane (including the point at infinity)

dulum is not unique and in fact they are related by theinto itself, and rational \(alues into rational valugs. The group
PSL(2,7,/2Z) group, finding that the important issue for has two generators defined by the transformations

express the solutions is the relation between the values of S(ty=-1/r, and T(r)=1+T7. (A.2)

the square modulus? of the Jacobi elliptic functions, and

the value of the total mechanical enerigy of the motion of ~ The modular group is isomorphic to the projective spe-
the pendulum. Due to the symmetry we conclude that theréial linear groupPSL(2,Z), which is the quotient of the
are six different expressions of the square modulus that aré-dimensional special linear groupL(2,Z) by its center
related one to each other trough the six group elements dfl, —I}. In other words,PSL(2,Z) = SL(2,Z)/Z, con-
PSL(2,7,/2Z). These six group actions can be termed asSists of all matrices of the form
duality-transformations and therefore we have six dual rep- a b
resentations ok?. As a consequence there are six different A= (C d> )
but equivalent ways in which we can write a specific pen-

dulum solution, and abusing a little bit of the language WeWIth unit determinant, and pair of matricel; —4, are con-

could say there are duality relations between solutions. Thigidered to be identical. The group operation is multiplication

analysis teach us the lesson that we can restrict the domaﬂ{ matrices and the generators accordingly with (A.2) are

of lattices to the ones whose modular parameter is in the pure 0 -1 11

imaginary intervalr € i(1, c0), or equivalently that we can 5= <1 0> ’ = (0 1> ' (A4)
express every solution of the simple pendulum either oscilla- , 3
tory or circulating with Jacobi elliptic functions whose value These group elements satisff = (ST)? = —T ~ Tand
of the square modulus is in the intenéak< k2 < 1/2 (see T" = L

0 1)
Table Ii1). One important property of the modular group is that the

It is well known that there are several physical systems irupper half plane ofC, usually denoted a%/ and defined as
different areas of physics whose solutions are also given b§{ = {z € C : Im(z) > 0}, can be generated by the
elliptic functions, for instance in classical mechanics someelements ofPSL(2,Z) from afundamental domain or re-
examples are the spherical pendulum, the Duffing oscillatorgion 7. Mathematically this region is the quotient space
etc., in Field Theory the Korteweg de Vries equation, theF = H/PSL(2,Z) and satisfies two properties: (§ is a
Ising model, etc., [12,18]. It would be very interesting to connected open subset&fsuch that no two points ift are
investigate on similar grounds to the ones followed here, theelated by d" transformation (A.1) and (ii) for every point in
physical meaning of the symmetries of the elliptic functions there is a group elemegte T' such thatyr € F. There
in these systems. are many ways of constructing, and the most common one

5. Final remarks

(A.3)
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In this nomenclature the modular grolipis called the
modular group of level 1 and denoted B§l1) [6,23]. A
relevant mathematical structure is the coset of the modular
group with the congruence subgroups which are isomorphic
to PSL(2,7Z/NZ)[23]

SL(2,7)

() — PSL(2,Z/NZ). (A.6)

For the solutions of the simple pendulum the relevant
congruence subgroup is the one of level'22). It turns out
that all the groupsLSL(2,7Z/NZ) are of finite order and in
- c particularPSL(2,Z/27) is of order six. In Table IV we give

::efgnig ;5;?265"5232 doz_rtéaTgﬁdﬂiE:ahn;Zr\:;aL;?Igf-trllse rsgl;n Olarexplicitly the six elements of the coset and their correspond-
mg form as group elements d?SL(2,Z). Analogously to

This region is mapped to the whole upper pl@hby the modular
groupI'. The region can be viewed as a complete list of the inequiv- the case of the modular group, a fundamental cell for a sub-

alent complex structures on the topological torus since conformaldOUPT (V) is a regionFy in the upper half plane that meets
equivalence of tori is determined by the modular equivalence ofeaCh_Or_blt of'(V) in a single point. Becausg(2) is of or-
their period ratios. In the figure we show some copies of the funda-der six inT", a fundamental cell for'(2) can be formed from
mental region obtained by application of some group elements ofthe six copies of any fundamental céll of I produced by
PSL(2,Z). the action of the six elements. In Fig. 5 we show the funda-
found in the literature is to take the set of all pointin the ~ Mental regionf of I'(2). This cell can be obtained from the
open region(z : —1/2 < Re(z) < 1/21 |z| > 1}, union region denoted ag; which is a different fundamental region
“half” of its boundary, for instance, the one that includes thefor I' @s compared to the usual regignof the Fig. 4.7,
points: z = —1/2 + 4y with y > sin(27/3), and|z| = 1

is obtained ifF is replaced by its right half, plus inversion

with —1/2 < Re(z) < 0 (see Fig. 4). It is assumed that the of its left half_by theS transformation. Thust; consists of

imaginary infinite is also included. the open region(> : 0 < Re(z) < 1/2N (2z/2+2) >
Geometrically.T represents a shift of to the right by 1} and part of its boundary must bg mclqded. .Geometrl—

1, while S represents the inversion df about the unit cir-  C@lly (22/2 + 2) = 1 represents a unitary circle with center

cle followed by reflection about the imaginary axis. As an@t? = 1. A possible choice of the boundaryincludes the set

example, the Fig. 4 represents the transformations of the fun-

damental regiot¥ by the elements of the groupt, 7', 71, 30

S, TS, T-1S,S8T, ST, ST-1S,TST1,STS, T~1ST} //

[22]. Notice that these 12 elements are all the independent

ones that we can construct as iterative productS,df and

T—1 without powers of any of them involved (! is simply

—S ~ S and therefore is not a different modular transfor-

mation). The other two transformations we can construct are
not independer’'ST = —ST-!1S andT-1ST~! = STS. Al |

25

Further products of the generators with these transformations

give us the whole tessellation of the upper complex plane. In i S /E/ TS
particular the orbit of the points Ifa) — oo are the rational 5

numbersQ and are calledusps

A.2 Congruence subgroups

Relevant for our discussion are tbengruence subgroups of
level N denoted a¥'(N) (or I'y). They are defined as sub-
groups of the modular group, which are obtained by impos-
ing that the set of all modular transformations be congruent
to the identity modV

T(N) :{ (‘Cl Z) C SL(2,7) :

10
5

FIGURE 5. Fundamental cel”; for I'(2). The heavy part of the

(a b) = (1 0> (modN)}. (A.5) figure is retained, the rest is not. In particular the cusfis0, 1
c d 0 1 andioco are excluded.
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of all points{z : z = 4y with y > 1} union {z :  whatis called either anit cell, afundamental celbr afun-
(22/z+z) = 1 with 0 < Re(z) < 1/2}. The full funda- damental parallelogramvhich is defined by all the points of
mental regionF, so produced is the part of the half-plane the sides; andw?, including the vertex), but excluding the
above the two circles of radius'2 centered at-1/2. rest of the boundary and of course the whole interior points
As a complementary comment we mention that someeof the parallelogram. Mathematically the cell is given by the
times in the literatur@'(2) appears under the namerabdu-  coset spac€/L(w,w2), Where abusing of the notation, in
lar group A. It turns out that the group is isomorphic to the this expressiorl. is considered as a residue class. Since the
symmetric groupSs, which is the group of all permutations opposite sides of the fundamental cell must be identified, the
of a three-element set and also to the dihedral group of ordesoset spac€/L(w;,w,) is homeomorphic to the torug?.
six (degree threeps, which represents, the group of symme- In other words, the paifw;, w-2) defines a complex structure
tries (rotations and reflections) of the equilateral triangle.  of T? [24].
The shape of the lattice is determined by thedular pa-
A.3 Lattices rameterr = w, /w;. Itis important to note that, while a pair
i i ) of primitive periodswy, ws, generates a lattice, a lattice does
A lattice L is an aggregate of complex numbers with tWo .+ have any unique pair of primitive periods, that is, many
properties [3]: (i) is a group with respect to addition andg,,qamental pairs (in fact, an infinite number) correspond to

(ii) the absolute magnitudes of the non-zero eIemgnts arge same lattice. Specifically a change of generatorsus
bounded below. Because the Jacobi elliptic functions arg, o anduw, of the form

meromorphic functions oft, that are periodic in two direc- )
tions: f(z) = f(z +w1) = f(z + w2), we are interested in (le> _ (a b> (W2> 7 (A.8)
the so-calledlouble latticesconsisting of all linear combina- w1 ¢ d) \w

tions with integer coefficients of twgenerating coefficients induces a mapping on the modular parametdrelonging to

or primitive periodswy,ws € C, whose ratio is imaginary the modular group. These maps are the link between the con-
cepts of lattices, torus and modular group. As an example we
discuss the mapping oninduced by the generators (A.2).
f(z)=f(z4+nw +mw2), VzeC. (A7) The generatols interchanges the roles of the generators of
the latticew; < w, or equivalently it changes the longitude

L(wy,ws) = {nwy + mws|n, m € Z} such that

The lattice points are the vertices of a pattern of parallelo for th idi fthe t dvi The t
grams filling the whole plane, whose sides can be taken t or the mendianm of Ine torus and vice versa. The trans-

be any pair of generators. The shapes of the lattices deﬁngrmatlonT generates Behn twistalong the meridian which
equivalence classes. f{ws, ws) is any lattice, and the num- can be understood as follows [24]. As a first step cut the torus

berk # 0 € C, thenkL(wy,ws) denotes the aggregate of along the meridiamn, then take one of the lips of the cut and

complex numberg:= for all = € L(wi,w,) and it is also a rotate it by27 with the other lip kept fix and finally glue the

lattice, which is said to be in the same equivalence class algos together again.
If the stationary values;, e; andes are the roots of the

L(wy,ws). If L denotes the aggregate of complex numbers_ . 3 a . .
z,V z € L; L is also a lattice. IfL. = L, the lattice is called cubic equationtz” — gz — g3 = 0, for any latticeL, with

real. If the primitive periods can be chosen so thatis real Zsbs igned genfe:s toazal, ;‘_’2 ;ﬁv;/eican define tz(?[hscalegolnstant
andws pure imaginary/ is calledrectangular y means ot the refationi = ¢1 — ez, and the moaul as

Rectangular lattices are real, and they are called horizon- 2= 8¢ 2o (A.9)
tal or vertical, according as the longer sides of the rectangles h% ¢ h?
are horizontal or vertical. The particular case in which bothA lattice for which h2 = 1 is called normal and using
sides are equal is called tegquare lattice Every lattice satis- the notation of [3], we write it with a staf.*. Every lat-
fiesL = —L, and the only square lattice for which,= oL, tice L with assigned generators is similar to a unique nor-
with o # =+1, is the latticeiL. If L is a vertical rectangular mal lattice L* = hL with corresponding generators, since
lattice,iL is a horizontal rectangular lattice and vice versa. e;(hL) = h~2¢;(L). For a given lattice shape with no as-
Associated to the lattice is the conceptedidue classes signments of generators, there abenormal lattices, as any
If = is any complex variable; + L denotes the aggregate of the six differenceg; — e; can be taken as?. If one of
of valuesz + w for all w in the latticeL. This aggregate is these isL*, with modulusk, the others areL*, kL*, ikL*,
called a residue class (mdg. The residue classes (mdd k.L* andik.L*, with modulik,, 1/k, ik./k, ik/k. andl/k.
form a continuous group under addition, defined in the wayrespectively, wheré? + k2 = 1. These fall into three pairs
(z+4 L)+ (w+ L) = (z+w)+ L. Litselfis a residue which are of the same size, interchanged by a rotation of a
class (modL), the zero element of the group. These residueaight angle.
classes allow to introduce the concepfuidamental region For the rectangular lattice shape, the six normal lattices
of L, consisting in a simply connected region of the complexare all real. Ordinarilyw, is taken real and», pure imagi-
plane which contains exactly one member of each residusary, so that; > ez > e, and0 < k% < 1,0 < k2 < 1,
class (modL) [28]. A fundamental region can be chosen in with k2 < 1/2 < k2 if L is vertical. We summarize the
many ways, the simplest and usually the most convenient, iproperties of the normal lattices in table
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FIGURE 6. Figure shows the fundamental cell for six different normal lattices. In the first plot the vertical cell corresponds to a value of the
square modulus® = 1/4 and belongs to a normal lattice of the typ&. Under anS transformation, the cell transforms to the horizontal

one whose value of the square modulugis= 3/4 and belongs to a normal lattia&*. Analogously in the second and third plots, the
fundamental cells in black belong to the lattides* andik.L* respectively, with values of the square modutis= 4 andk? = 4/3. The

blue cells are obtained as thedrdual fundamental cells and have the valéds= —3 andk?* = —1/3 and belong to normal lattices of the

kind :kL* andk.L" respectively. In every case, the continuous lines are included in the fundamental cell, whereas the dashed lines are not.
The numerical values of the two generatersandw- are given in table .

TABLE IV. Main characteristics of the six ordétSL(2,Z/2Z) group and its relation to the six normal lattices.

r PSL(2,Z) PSL(2,Z/27) Modulus Quarter periods Action o Normal lattice
1 0 . 2 *
T +1 + - k K,iK. k2 € (0,1/2] L
1 0 -1 . 9 .
-1 +5 ={ . ke K., iK 1—k*e[1/2,1) iL
T 1 O 1 . . 1 *
= +STS i G 1 k(K —iK.), ikK. & €2,00) kL
T—1 1 -1 - ke - - 1 - *
— +TS + Lo i%e kK., ik(K —iK.) 1— 45 € (=00, 1] ikL
1 -1 0 1 1 . . 1 . *
i iST F 1 1 E kc(Kc +ZK),Z:’€CK 1_k2 S (1,2] 'Lk‘cL
-1 I -1 -k . . k2 *
T—1 +T + 0 1 ZFC kCK, 'ch(Kc+74K> Py S [7170) k)cL
B. Jacobi elliptic functions and it can be divided in six intervals

k? € (—oo, —1] U[—1,0)U(0, 1/2]U[1/2, 1)U(1, 2]U[2, c0).
In the previous appendix we reviewed the act_|on of the ,mOdThese six intervals are in one to one relation to the column
ular group on the module_lr parameter. In this appendix WEction onk? in Table 1V, if we consider that the modulus in
want to specialize that discussion to the case of the ellipg 4 f,ndamental regioff, of PSL(2,Z) takes values in the
tic Jacobi functions. In particular we are interested in th%ntervalo < k2 < 1/2. In the following we summarize some

relation between the six dimensional grofi§'L(2,2/2Z) ot he properties of the Jacobi elliptic functions that are useful
and what is called transformations of the elliptic Jacobi func'throughout the paper.

tions. There are three transformations that are exposed often
in the literature, theJacobi's imaginary transformatiqrthe g 1 jacobi elliptic functions with modulus0 < &2 < 1

Jacobi's imaginary modulus transformatiamd theJacobi’s

real transformation These are transformations that relate theThe Jacobi elliptic functions are meromorphic functions in
Jacobi elliptic functions with different value of the square C, that have a fundamental real period and a fundamental
modulusk2. Behind these transformations is the propertycomplex periodj.e., they are doubly periodic. The periods
that the modulus of the Jacobi functions can be defined in thare determined by the value of the square modulus and in the
real linek? € R with exception of the points = —1,0,1,  following we assume thalt < k? < 1.
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The primitive real period of the three basic functions canin summary, the primitive periods of the three basic Jacobi
be inferred from the following relations which are dictated by functions are
the addition formulas for the Jacobi functions [2-7]

sn(z, k) =sn(z + 4K, k) = sn(z + 2i K., k), (B.7)
cn(z, k) sn(z, k)
sn(z + K, k) e, k)’ cn(z + K, k) = —ke G k)’ cn(z, k)=cn(z + 4K, k)=cn(z + 2K + 2iK,, k), (B.8)
dn(z, k) = dn(z + 2K, k) = dn(z + 4iK., k). (B.9)
dn(z + K, k) = ke (B.1)
dn(z, k) Because these periods do not coincide one looks for two com-

mon periods in order to define a common fundamental cell
for the three functions. Thedandamental periodare 4K
and4iK ., they are not primitive because linear combinations

where the quarter-period is defined as function of the
square modulus? as

I du of them does not give origin for instance to the primitive pe-
K= / . (B.2) riod 2K + 2iK. of cn(z, k). The fundamental cell for the
A V(1= u?)(1 - k?u?) Jacobi elliptic functions is, therefore, the parallelogram with
vertices(0,4K,4iK.,4K + 4iK.), and the modular param-
In particular we obtain the values@, k) = 1, cn(K, k) =  eterr turns out to be
0 and di{K, k) = k., from the ones g0, k) = 0, cn(0, k) = K
1 and dr{0, k) = 1. Iteration of relations (B.1) leads to T= KC' (B.10)

sn(z + 2K, k)=—snz, k), cn(z+2K,k)=—cn(z,k),  Given this definition of the modular parameter we see that
not every point ofF; corresponds to a modulug of the

dn(z + 2K, k) = dn(z, k). (B.3) Jacobi functions but only the values on the vertical boundary
T € [i,i00), being the point = i the one that corresponds to
k? = 1/2, since in this cas& = K. and therefore the cor-
responding normal lattice is squared. The rest of points on
the vertical boundary corresponds to vertical normal lattices
becausel < K. and all of them have a value of the square
modulus0 < k? < 1/2. By acting the five group elements

The last relation is telling that the function dng) has real
period 2K. A further 2K iteration will tell us that the
other two Jacobi elliptic functions (sn(k) and cng, k)) have
primitive real periodt K. Regarding the complex period, we
have the relations

, _ 11 of PSL(2,7/27) different from the identity to the modular
sn(z + iK., k) = , .
ksn(z, k) parameter values on the vertical boundaryef we can gen-
1dn(z, k) erate the whole set of possible valuesraind therefore the
cn(z + iKe, k) = —i— =, whole set of possible values of the square modéfusf the
ksn(z, k) . . i
Jacobi functions (see Fig. 3).
dn(z + ik, k) = _icn(z, )7 (B.4) D_erlvatlves of the ba§|.c functions, which are necessary to
sn(z, k) obtain the angular velocities are
wherekK is defined as function of the so-called complemen- isr‘(z k) = cn(z, k) dn(z, k)
tary modulusk? = 1 — &2 in the form dz= 7 ’ T

icn(z, k) = —sn(z, k) dn(z, k),

1
du dz
K.= . (B.5)
0/ V(= )1 - k) %dn(z, k) = —k?sn(z, k) cn(z, k). (B.11)

Iterating these relations once leads to - . .
B.2 Jacobi’s imaginary transformation

SN(z + 2ike, k) = SNz, k), en(z + 2ike, k) = —cn(z, k), The transformation induced by the generafi) of the

dn(z + 2iK., k) = —dn(z, k). (B.6)  modular group on the Jacobi functions with modulysis
known as the Jacobi’'s imaginary transformation. In this case

The first relation is telling us that the elliptic function snk) the modulus and the complementary modulus exchange with

has a pure imaginary primitive peri@dK .. A further2i K. each other

iteration leads to the conclusion that the elliptic function

dn(z, k) has a pure imaginary primitive periddk, whereas k—k. and ke—k = KoK

the elliptic function cn_(, k) has a fun_dgmental pericd K. _ and K.— K. (B.12)

In the latter case notice that combining the second relation

of (B.3) and the second relation of (B.6) leads to the resulApplying this transformation on the vertical boundary7f,

cn(z + 2K + 2iK., k) = cn(z, k) concluding that this el- generates both the transformed pure imaginary modular pa-

liptic function has a primitive complex peric2X + 2iK..  rameter and the transformed modulus which belong to the
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intervalsr € (0,i] and1/2 < k? = 1—k? < 1, respectively. From a geometrical point of view the fundamental verti-

The Jacobi functions itself transform as cal cell with vertices(0,4K,4iK., 4K + 4iK.) changes
o ) to the fundamental cell with vertice®), 4k K, 4k. K +
sn(z, k) = —isdiz, k),  cn(z, k) = ncliz, k), 4ik.K,8k.K + 4ik.K.) and the corresponding torus is
dn(z, k) = dc(iz, k). (8.13)  changed by a Dehn twist. Notice that by applying further

the transformatior$ to these expressions, we obtain a funda-
This is the mathematical property behind the analysis madgental cell where the quarter periods (B.16) are interchange
by Appell to deal with solutions of imaginary time. These among them an the value of the square modulus is defined in
transformations are used very often to change a pure imagihe interval,1 < (1/1 — k2) < 2, since the modulus (B.15)
nary argumentz to one realr, obtaining also interchanges one to the another.
. . , The elliptic Jacobi functions with negative square mod-
sn(iz, k) = isdz, ko), enliz, k) = no(z, k), ulus satisfy analogous relations to the Jacobi functions with
dn(iz, k) = dc(z, k). (B.14) modulus0 < k? < 1, these are obtained from Eqgs. (B.17)
and the corresponding relation of the Jacobi functions with

From a geometrical point of view the normal vertical efl - 2 ~ 1. For instance, the equations analogous to (13)
with vertices(0, 4K, 41K, 4K + 4iK.) changes to the nor- g (15) are

mal horizontal celliL* with vertices(0,4K ., 4iK, 4K, +

4iK) and the corresponding torus is obtained from the orig- st(z,ik/ke) + o (z,ik/k.) = 1, and
inal one by an interchange of their respective meridians and 2
longitudes. The rest of properties of the functions are ob- - ﬁsr?(z,ik/kc) +drP(z,ik/k.) = 1. (B.19)
tained from the ones in (section ) by setting= iz and im- ¢
plementing in the expressions the interchanges k. and  Proceeding in a similar way it is possible to obtain the equa-
K <« K.. tions analogous to (B.1), these are
I : . ) cn(z, ik /k.)
B.3 Jacobi’s imaginary modulus transformation K,ik/k.) = ————"
ginary SNz + Ksik/ke) = Gothoz, ik k)’
The transformation induceo_l by the ge_neraﬂdh-) of thg . 1 sn(z,ik/ke)
modular group on the Jacobi functions, is known as the imag- cn(z + K ik/ke) = ——————"—,
. . ; ke dn(k.z,ik/k.)
inary modulus transformation, because under this transfor- . )
mation the modulus change as dn K.ik/k) = — B.20
k 1 (Z+ ’Z / C) kc dn(Z,Zk/kc)’ ( N )
ko iki,’ and k. — B (B-15)  which iterating once lead to the relations
which induces a change in the quarter periods of the form sn(z + 2K, ik/k.) = —sn(z,ik/k.),
K kK, and K, k.(K.—iK). (B.16) cn(z + 2K, ik/k.) = —cn(z, ik /k.),
Applying this transformation to the vertical boundaryf, dn(z + 2K, ik/k.) = dn(z,ik/k.). (B.21)

generates the transformed modular parameter which lies
the vertical liner € [1 + 4,1 + io0) and the transformed
square modulus which takes values in the interval <
(k?/k? —1) < 0. The transformation rule for the Jacobi
functions itself are

QPhe third relation is telling us that the function dn{x/k.)

has a fundamental perid¥<. A further2K iteration leads

to the conclusion that the other two Jacobi functions have a
fundamental period of K. Regarding the imaginary period,
the equations analogous to (B.4) are

sn(z,ik/k.) = ke sd(z/ke, k), :
SNz + ik, ik k) —ite AN /R g o)
cn(z,ik/k.) = cd(z/ke, k), k cn(k.z,ik/k.)
. 1 1
dn(z,ik/k.) = nd(z/k., k). B.17 i ; = - .
(z,ik/ke) (2/ke, k) (B.17) on(z + iKe, ik/ke) =7 eIk (B.23)
It is clear that this transformation allows us to define the Ja- 1 sz, ik/k.)
cobi functions with an imaginary modulus in terms of the an(z +iK,.,ik/k.) =i—— (B.24)
Jacobi functions with real modulus. Replacing- k.z, we ke en(kez, ik/ke)
can express these transformations in its more usual form  which after an iteration lead to
sn(k.z,ik/k.) = k. sd(z, k), sn(z + 2iK.,ik/k.) = —sn(z, ik /k.),
cn(kez,ik/k.) = cd(z, k), cn(z + 2i K., ik/k.) = cn(z, ik/k.),
dn(k.z,ik/k.) = nd(z, k). (B.18) dn(z + 2iK.,ik/k.) = —dn(z,ik/k.). (B.25)
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These relations indicate that the function(erik/k.) has  This transformations allows us to define the Jacobi elliptic
fundamental imaginary perio2i K., whereas the other two functions with square modulus greater than two in terms of
Jacobi functions havéi K. In summary, the primitive peri- Jacobi functions with modulug < k% < 1/2. Replacing

ods of the three basic Jacobi functions are z — kz, allows to express these transformations in its more
) ) usual form
sn(z,ik/k.) = sn(z + 4K, ik /k.)
= sn(z + 2K + 2iK,ik/k.),  (B.26) sn(kz, 1/k) = ksn(z, k),  on(kz, 1/k) = dn(z, k),
on(z, ik/ke) = en(z + 4K, ik/kc) dn(kz,1/k) = cn(z, k). (B.36)
=cn(z + 2K, ik/k.), (B.27)
dn(z,ik/k.) = dn(z + 2K, ik /k.) A further application of the group transformatiéito these
expressions leads to the interchange of the modulus (B.33)
= dn(z + 4iK., ik/kc). (B.28)  and to the interchange of the quarter periods (B.34). In this

case the square modulus of the Jacobi functions is defined in

the interval-oco < 1 — 1/k? < —1.

d As in the previous cases it is possible to obtain the fun-

d—sn(z,z’k:/kc) = cn(z,ik/k.) dn(z, ik/k.), damental periods of the three different basic Jacobi elliptic
o functions, since the arguments as before, we just list the equa-

dicn(z,ik/kc) — —sn(z,ik/k.) dn(z, ik/k.), (B.29) tions. For the real period we have
¥4

It is straightforward to verify that in this case the derivatives
of the fundamental relations that follows from (B.11) are

and
] 2 sr‘(z+K,1/k):k(m7
An(z, ik/ke) = T3S0z ik/ke) enlz, ik/ke).  (B.30) =

1
cen(z+ K, 1/k) = ke —————,
B.4 Jacobi's real transformation cn(z, 1/k)
ke sn(z,1/k
In the literature of the elliptic functions, the transformation dn(z + K,1/k) = % W7 (B.37)
generated by the eleme§f’S of the modular group ’
=1 i m (B.31)  and iterating we get
which can be obtained as a composition of the following three
transformations sn(z + 2K, 1/k) = —sn(z, 1/k),
7'I:—l7 7'2:1—|—7'17 Cn(2+2K,1/k):Cn(Z71/k)7
E X dn(z + 2K, 1/k) = —dn(z, 1/k). (B.38)
and T =——, (B.32)
T
generates the so-called Jacobi's real transformation. UndétS for the imaginary period
it, the modulus of the elliptic functions change as
k
1 ke K., 1/k) = ———
ke ,and koot (B.33) sn(z +iKe, 1/k) sn(z,1/k)’
whereas the quarter periods transform as en(z + Ko, 1/k) = —ik (:?((a i;’;))’
Z?
K — k(K —iK.), and K,— kK,. (B.34) o 1/k)
. .cn(z,
Applying this transformation to the vertical boundary.&, dn(z +iKe,1/k) = sz, 1/k) (B.39)
generates the transformed modular parameter which lies on
the lineT = —(y?/1 +y?) +i(y/1 + y?), with y in the in- L
tervaly € [1, c0) and the transformed square modulus Whichand after an iteration
takes values in the interval< 1/k? < co. The transforma-
tion rules for the Jacobi functions itself are sn(z + 2iK,.,1/k) = sn(z,1/k),
sn(z,1/k) = ksn(z/k,k), cn(z,1/k) =dn(z/k, k), cn(z + 2iK.,1/k) = —cn(z, 1/k),
dn(z,1/k) = cn(z/k, k). (B.35) dn(z + 2iK.,1/k) = —dn(z, 1/k). (B.40)
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In summary, the primitive periods of the three basic Jacobivhereas the derivatives of the basic functions are
functions are d

—sn(z,1/k) =cn(z,1/k)dn(z, 1/k),
sn(z,1/k) = sn(z + 4K, 1/k) dz

=sn(z + 2iK., 1/k), (B.41) dizcn(z, 1/k) = —sn(z,1/k)dn(z,1/k), (B.45)
cn(z, 1/k) = cn(z + 2K, 1/k) and

= o e LK), (®42) (=, 1/k) = —Lsn(z, 1/k) en(=,1/k).  (B.46)
dn(z, 1/k) = dn(z + 4K, 1/k) dz =7 k270 ’

=dn(z + 2K + 2iK.,1/k). (B.43) Acknowledgments
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