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Duality symmetries behind solutions of the classical simple pendulum
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Describing the motion of the classical simple pendulum is one of the aims in every undergraduate classical mechanics course. Its analytical
solutions are given in terms of elliptic functions, which are doubly periodic functions in the complex plane. The independent variable of the
solutions is time and it can be considered either as a real variable or as a purely imaginary one, which introduces a rich symmetry structure
in the space of solutions. When solutions are written in terms of the Jacobi elliptic functions this symmetry is codified in the functional
form of its modulus, and is described mathematically by the six dimensional coset groupΓ/Γ(2) whereΓ is the modular group andΓ(2)

is its congruence subgroup of second level. A discussion of the physical consequences that this symmetry has on the motions of the simple
pendulum is presented in this contribution and it is argued they have similar properties to the ones termed as duality symmetries in other
areas of physics, such as field theory and string theory. Thus by studying deeper a very familiar mechanical system, it is possible to get an
insight to more abstract physical and mathematical concepts. In particular a single solution of pure imaginary time for all allowed values of
the total mechanical energy is given and obtained as theS-dual of a single solution of real time, whereS stands for theS generator of the
modular group.

Keywords:Pendulum solutions; dualities; modular group.

PACS: 45.20.D-; 45.20.Jj; 05.45.-a

1. Introduction

The simple plane pendulum constitutes an important physical
system whose analytical solutions are well known. Histori-
cally the first systematic study of the pendulum is attributed
to Galileo Galilei, around 1602. Thirty years later he discov-
ered that the period of small oscillations is approximately in-
dependent of the amplitude of the swing, property termed as
isochronism, and in 1673 Huygens published the mathemati-
cal formula for this period. However, as soon as 1636, Marin
Mersenne and René Descartes had stablished that the period
in fact does depend of the amplitude [1]. The mathematical
theory to evaluate this period took longer to be established.

The Newton second law for the pendulum leads to a non-
linear differential equation of second order whose solutions
are given in terms of eitherJacobi elliptic functionsor Weier-
strass elliptic functions[2-7]. There are several textbooks on
classical mechanics [8-10], and recent papers [11-13], that
give account of these solutions. From the mathematical point
of view the subject of interest is the one ofelliptic curves
such asy2 = (1− x2)(1− k2x2), with k2 6= 0, 1, the corre-
spondingelliptic integrals

∫ x

0
dx/y and theelliptic functions

which derive from the inversion of them. Generically the do-
main of the elliptic functions is the complex planeC and they
depend also on the value of the modulusk. The theory be-
gan to be studied in the mid eighteenth century and involved
great mathematicians such as Fagnano, Euler, Gauss and La-
grange. The cornerstone in its development is due to Abel
[14] and Jacobi [15,16], who replaced the elliptic integrals by
the elliptic functions as the object of study. Since then they
both are recognized jointly as the mathematicians that devel-
oped the elliptic functions theory in their current form and

to the theory itself as one of the jewels of nineteen-century
mathematics.

Because the solutions to the simple pendulum problem
are given in terms of elliptic functions and the founder fa-
thers of the subject taught us all the interesting properties of
these functions, it can be concluded that all the characteristics
of the different type of motions of the pendulum are known.
This is strictly true, however most of the references on ellip-
tic functions (see for instance [2-7] and references therein)
focus, as it should be, on its mathematical properties, apply-
ing just some of them to the simple pendulum as an example.
In this paper we review part of the analysis made by Klein
[17], who studied the properties that the transformations of
themodular groupΓ and itscongruence subgroupsof finite
indexΓ(N) have on themodular parameterτ , being the lat-
ter a function of the quarter periodsK andKc which in turn
are determined by the value of the square modulusk2. Our
main interest in this paper is to accentuate the physical mean-
ing that these transformations have in the specific case of the
simple pendulum, in our opinion this is a piece of analysis
missing in the literature.

For our purposes the relevant mathematical result is that
the congruence subgroup of level 2, denoted asΓ(2), is of
order six inΓ and therefore a fundamental cell forΓ(2) can
be formed from six copies of any fundamental regionF of
Γ produced by the action of the six elements on the set of
modular parametersτ that belong toF . Each of these copies
is distinguished from each other, according to the functional
form of the modulusk2 the six transformations leave invari-
ant, being they:k2, 1− k2, 1/k2, 1− 1/k2, 1/(1− k2) and
k2/(k2 − 1). Interestingly these kind of relations appear in
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other areas of physics under the concept ofduality transfor-
mations, nomenclature we will use here. This result can be
understood from different mathematical points of view and
provides a link between concepts such as lattices, complex
structures on the topological torusT2, the modular groupΓ
and elliptic functions. In the appendices we review briefly
the basics of these concepts in order to keep the paper self
contained as possible, emphasizing in every moment its role
in the solutions of the simple pendulum. From the physical
point of view, the pendulum can follow basically two kind
of motions (with the addition of some limit situations), the
specific type of motion depends entirely on the value of the
total mechanical energyk2

E , if 0 < k2
E < 1 the motion is

oscillatory and if1 < k2
E < ∞ the motion is circulatory.

Therefore in the problem of the simple pendulum, there are
two relevant parameters, the square modulusk2 of the ellip-
tic functions that parameterize its solutions in terms of the
time variable, and the total mechanical energy of the motion
k2

E . As we will discuss throughout the paper, the relation be-
tween these two parameters is not one-to-one due to the dual-
ity relations between the different invariant functional forms
of k2. For instance, for an oscillatory motion whose energy
is 0 < k2

E < 1, it is possible to express the solution in terms
of an elliptic Jacobi function whose square modulus isk2,
1− k2, 1/k2, etc., in other words, the duality symmetries be-
tween the functional forms of the square modulusk2 induce
different equivalent ways to write the solution for a specific
physical motion of the pendulum. The nature of the time
variable also plays an important role in the equivalence of so-
lutions, it turns out that whereas some solutions are functions
of a real time, others are functions of a pure imaginary time.
In this paper we will discuss all these issues and we will write
down explicitly several equivalent solutions to describe a spe-
cific pendulum motion. These results constitute an example
in classical mechanics of a broader concept in physics termed
under the name dualities. It is worth mentioning that some of
the results we present here are already scattered throughout
the mathematical literature but our exposition collects them
together and is driven by a golden rule in physics that de-
mands to explore all the physical consequences from sym-
metries. Notwithstanding some formulas have been worked
out specifically for building up the arguments given in here
and to the best knowledge of the author they are not present
in the available literature. As an example, we obtain a single
solution that describes the motions of the simple pendulum
as function of a pure imaginary time parameter, and we show
it can be obtained through anS-duality transformation from
a single formula that describes the motions of the simple pen-
dulum for all permissible values of the total energy and which
is function of a real time variable..

In a general context the duality symmetries we refer to,
involve the special linear groupSL(2,Z) and appear often in
physics either as a symmetry of a theory or as a relationship
among two different theories. Typically these discrete sym-
metries relate strong coupled degrees of freedom to weakly
coupled ones and vice versa, and the relationship is useful

when one of the two systems so related can be analyzed, per-
mitting conclusions to be drawn for its dual by acting with the
duality transformations. There is a plethora of examples in
physics that obey duality symmetries, which have led to im-
portant developments in field theory, gravity, statistical me-
chanics, string theory etc. (for an explicit account of exam-
ples see for instance [18] and references therein). As a man-
ner of illustration let us mention just two examples of theories
that own duality symmetries: i) in string theory appear three
types of dualities, and the one that have the properties de-
scribed above goes by the nameS-duality, being theS group
element, one of the two generators of the groupSL(2,Z)
[19]. In this case the modular parameterτ is given by the cou-
pling constant and therefore theS-duality relates the strong
coupling regime of a given string theory to the weak cou-
pling one of either the same string theory or another string
theory. It is conjectured for instance that the type I super-
string isS-dual to theSO(32) heterotic superstring, and that
the typeIIB superstring isS-dual to itself. ii) In 2D systems
there is a broad class of dual relationships for which the elec-
tromagnetic response is governed by particles and vortices
whose properties are similar. In particular for systems having
fermions as the particles (or those related to fermions by the
duality) the vortex-particle duality implies the duality group
is the level-two subgroupΓ0(2) of PSL(2,Z) [20]. The so
often appearance of these duality symmetries in physics is
our main motivation to heighten the fact that in classical me-
chanics there are systems like the simple pendulum whose
motions can be described in different equivalent forms re-
lated by duality symmetries.

The structure of the paper is as follows. In Sec. 2 we sum-
marize the real time solutions of the simple pendulum system
in terms of elliptical Jacobi functions. The relations between
solutions with real time and pure imaginary time in terms of
theS group element of the modular groupΓ are exemplified
in Sec. 3 and the whole web of dualities is discussed in Sec. 4.
We make some final remarks in 5. There are two appendices,
Appendix A is dedicated to define the modular group, its con-
gruence subgroups and its relation to double lattices whereas
in Appendix B we give some properties of the elliptic Jacobi
functions that are relevant for the analysis of the solutions of
the simple pendulum.

2. Real time solutions

The Lagrangian for a pendulum of point massm and length
l, in a constant downwards gravitational field, of magnitude
−g (g > 0), is given by

L(θ, θ̇) =
1
2
ml2θ̇2 −mgl(1− cos θ), (1)

whereθ is the polar angle measured counterclockwise respect
to the vertical line anḋθ stands for the time derivative of this
angular position. Here the zero of the potential energy is set
at the lowest vertical position of the pendulum, for which
θ = 2nπ, with n ∈ Z. The equation of motion for this system
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is
θ̈ +

g

l
sin θ = 0. (2)

This equation can be integrated once giving origin to a first
order differential equation, whose physical meaning is the
conservation of energy

E =
1
2
ml2θ̇2 + 2mgl sin2

(
θ

2

)
= constant. (3)

Physical solutions exist only ifE ≥ 0. We can rewrite this
equation of conservation, in dimensionless form, in terms of
the dimensionless energy parameter:k2

E ≡ (E/2mgl), and
the dimensionless real time variable:x ≡

√
(g/l)t ∈ R,

obtaining
1
4

(
dθ

dx

)2

+ sin2

(
θ

2

)
= k2

E . (4)

Analyzing the potential, it is concluded that the pendulum
has four different types of solutions depending of the value of
the constantk2

E . The analytical solutions in two of the four
cases are given in terms of Jacobi elliptic functions and can
be found for instance in [5,7-13]. The other two cases can be
considered just as limit situations of the previous two. The
Jacobi elliptic functions are doubly periodic functions in the
complexz-plane (see Appendix B for a short summary of the
basic properties of these functions), for example, the function
sn(z, k) of square modulus0 < k2 < 1, has the real primi-
tive period4K and the pure imaginary primitive period2iKc,
where the so called quarter periodsK andKc are defined by
the Eqs. (B.2) and (B.5) respectively. The properties of the
different solutions are as follows:

• Static equilibrium(θ̇ = 0): The trivial behavior occurs
when eitherk2

E = 0 or k2
E = 1. In the first case, necessarily

θ̇ = 0. For the casek2
E = 1 we consider also the situation

whereθ̇ = 0. In both cases, the pendulum does not move,
it is in static equilibrium. Whenθ = 2nπ the equilibrium is
stable and whenθ = (2n + 1)π the equilibrium is unstable.

• Oscillatory motions(0 < k2
E < 1): In these cases the

pendulum swings to and fro, respect to a point of stable equi-
librium. The analytical solutions are given by

θ(x) = 2 arcsin[kE sn(x− x0, kE)], (5)

dθ

dx
≡ ω(x) = 2 kE cn(x− x0, kE), (6)

where the square modulusk2 of the elliptic functions is given
directly by the energy parameter:k2 ≡ k2

E . Herex0 is a
second constant of integration and appears when Eq. (4) is
integrated out. It means physically that we can choose the
zero of time arbitrarily. Derivatives of the basic Jacobi ellip-
tic functions are given in (B.11).

Without loss of generality, in our discussion we con-
sider that the lowest vertical point of the oscillation corre-
sponds to the angular valueθ = 0, and therefore thatθ
takes values in the closed interval[−θm, θm], where0 <
θm < π is the angle for whichθ̇m = 0. This means
that: sin(θ/2) ∈ [− sin(θm/2), sin(θm/2)], where accord-
ing to Eq. (4),sin2(θm/2) = k2

E < 1. Now according to
(5) the solution is obtained by mapping [27]:sin(θ/2) →
kE sn(x−x0, kE), wherex−x0 ∈ [−K,K], or equivalently:
sn(x− x0, kE) ∈ [−1, 1]. With this map we describe half of
a period of oscillation. To describe the another half, without
loss of generality, we can extend the mapping in such a way
that for a complete period of oscillation,x−x0 ∈ [−K, 3K].
Because the Jacobi function cn(x − x0, kE) ∈ [−1, 1], the
dimensionless angular velocityω(x) is restricted to values in
the interval[−2kE , 2kE ].

As an example we can choosex0 = K, so at the
time x = 0, the pendulum is at minimum angular position
θ(0) = −θm, with angular velocityω(0) = 0. The pendu-
lum starts moving from left to right, so atx = K it reaches
the lowest vertical positionθ(K) = 0 at highest velocity
ω(K) = 2kE and atx = 2K it is at maximum angular posi-

FIGURE 1. The first set of graphs represents an oscillatory motion of energyk2
E = 3/4 with x0 = K ≈ 2.1565. θ(x) is given by the

magenta graph and it oscillates in the intervalθ(x) ∈ [−2π/3, 2π/3]. The angular velocityω(x) is showed in blue and takes values in the
interval ω(x) ∈ [−√3,

√
3]. Both graphs have period4K. The second set of graphs represents a couple of circulating motions both of

energyk2
E = 4/3 with x0 = K/kE ≈ 1.8676. For the motion in the counterclockwise direction, the monotonic increasing functionθ(x) is

plotted in magenta, for the time intervalx ∈ [0, 2x0) it takes values in the intervalθ(x) ∈ [−π, π), whereas for the intervalx ∈ [2x0, 4x0)
it takes values in the intervalθ(x) ∈ [π, 3π). The angular velocity is showed in blue, it has period2K/kE , is always positive and takes
values in the intervalω(x) ∈ [2/

√
3, 4/

√
3]. The other two plots represent a similar motion in the clockwise direction.
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tion θ(2K) = θm with velocity ω(2K) = 0. At this very
moment the pendulum starts moving from right to left, so
at x = 3K it is again atθ(3K) = 0 but now with lowest
angular velocityω(3K) = −2kE and it completes an oscil-
lation atx = 4K when the pendulum reaches again the point
θ(4K) = −θm with zero velocity (see Fig. 1). We can repeat
this process every time the pendulum swings in the interval
[−θm, θm], in such a way that the argument of the elliptic
function sn(x, kE), becomes defined in the whole real lineR.
It is clear that the period of the movement is4K, or restoring
the dimension of time,4K

√
g/l.

Of course the value ofx0 can be set arbitrarily and it
is also possible to parameterize the solution in such a way
that at zero timex = 0, the motion starts in the angleθm

instead of−θm. In this case the mapping of a complete pe-
riod of oscillation can be defined for instance in the interval
x − x0 ∈ [K, 5K] and the initial condition can be taken as
x0 = −K. In the discussion of the following section we will
setx0 = 0, so at timex = 0, the pendulum is at the lowest
vertical position (θ(0) = 0) moving from left to right.

• Asymptotical motion(k2
E = 1 and θ̇ 6= 0): In this

case the angleθ takes values in the open interval(−π, π)
and therefore,sin(θ/2) ∈ (−1, 1). The particle just reach the
highest point of the circle. The analytical solutions are given
by

θ(x) = ±2 arcsin[tanh(x− x0)], (7)

ω(x) = ±2 sech(x− x0). (8)

The sign± corresponds to the movement from(∓π → ±π).
Notice thattanh(x − x0), takes values in the open interval
(−1, 1) if: x − x0 ∈ (−∞,∞). For instance ifθ → π,
x− x0 → ∞ andtanh(x− x0) goes asymptotically to 1. It
is clear that this movement is not periodic. In the literature it
is common to takex0 = 0.

• Circulating motions(k2
E > 1): In these cases the mo-

mentum of the particle is large enough to carry it over the
highest point of the circle, so that it moves round and round
the circle, always in the same direction. The solutions that
describe these motions are of the form

θ(x) = ±2 sgn

[
cn

(
kE(x− x0),

1
kE

)]

× arcsin
[
sn

(
kE(x− x0),

1
kE

)]
, (9)

ω(x) = ±2 kE dn

(
kE(x− x0),

1
kE

)
, (10)

where the global sign(+) is for the counterclockwise motion
and the(−) sign for the motion in the clockwise direction.
The symbol sgn(x) stands for the piecewise sign function

which we define in the form

sgn

[
cn

(
kE(x− x0),

1
kE

)]

=
{

+1 if (4n− 1)K≤kE(x− x0)<(4n + 1)K,
−1 if (4n + 1)K≤kE(x− x0)<(4n + 3)K,

(11)

and its role is to shorten the period of the function sn(kE(x−
x0), 1/kE) by half, as we argue below. This fact is in agree-
ment with the expression for the angular velocityω(x) be-
cause the period of the elliptic function dn(kE(x−x0), 1/kE)
is 2K/kE instead of4K/kE , which is the period of the ellip-
tic function sn(kE(x− x0), 1/kE).

The square modulusk2 of the elliptic functions is equal to
the inverse of the energy parameter0<k2=1/k2

E<1. With-
out losing generality we can assume both thatkE(x −
x0) ∈ [−K, K), where K is defined in (B.2) and
evaluated fork2 = 1/k2

E and that arcsin[sn(kE(x −
x0), 1/kE)] ∈ [−π/2, π/2). Because in this interval the
function sgn[cn(kE(x − x0), 1/kE)] = 1, the angular po-
sition functionθ(x) ∈ [∓π,±π) for the global sign (±) in
(9). As for the intervalkE(x − x0) ∈ [K, 3K), we can
consider that the function arcsin[sn(kE(x − x0), 1/kE)] ∈
(−3π/2,−π/2], and because the function sgn[cn(kE(x −
x0), 1/kE)] = −1, it reflects the angular position interval,
obtaining finally thatθ ∈ [±π,±3π) for the global (±) sign
in (9) (see Fig. 1). We stress that the consequence of flipping
the sign of the angular interval through the sgn function is to
make the functionθ(x) piecewise periodic, whereas the con-
sequence of taking a different angular interval for the image
of the arcsin function every time its argument changes from
an increasing to a decreasing function and vice versa, is to
make the functionθ(x) a continuous monotonic increasing
(decreasing) function for the global sign + (-). Explicitly the
angular position function changes as

θ

(
x + n

2K

kE

)
= θ(x)± 2πn. (12)

It is interesting to notice that if we would not have changed
the image of the arcsin function, the angular position func-
tion θ(x) would have resulted into a piecewise function both
periodic and discontinuous.

The angular velocity is a periodic function whose period
is given byTcirculating = 2(K/kE)

√
g/l which means as ex-

pected that higher the energy, shorter the period. Because
the image of the Jacobi function dn(x, k) ∈ [

√
1− 1/k2

E , 1],
the angular velocity takes values in the interval|ω| ∈
[2

√
k2

E − 1, 2|kE |]. An interesting property of the periods
that follows from solutions (6) and (10) is thatToscillatory =
kETcirculating wherek2

E is the energy of a circulating motion
andk2 = 1/k2

E is the modulus used to computeK in both
cases. This is a clear hint that a relation between circulating
and oscillatory solutions exists.

These are all the possible motions of the simple pendu-
lum. It is straightforward to check that the solutions satisfy
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the equation of conservation of energy (4) by using the fol-
lowing relations between the Jacobi functions (in these rela-
tions the modulus satisfies0 < k2 < 1) and its analogous re-
lation for hyperbolic functions (which is obtained in the limit
casek = 1)

sn2(x, k) + cn2(x, k) = 1, (13)

tanh2(x) + sech2(x) = 1, (14)

k2sn2(x, k) + dn2(x, k) = 1. (15)

3. Imaginary time solutions andS-duality

The argumentz of the Jacobi elliptic functions is defined in
the whole complex planeC and the functions are doubly pe-
riodic (see Appendix B), however in the analysis above, time
was considered as a real variable, and therefore in the solu-
tions of the simple pendulum only the real quarter periodK
appeared. In 1878 Paul Appell clarified the physical meaning
of the imaginary time and the imaginary period in the oscil-
latory solutions of the pendulum [7-21], by introducing an
ingenious trick, he reversed the direction of the gravitational
field: g → −g, i.e. now the gravitational field is upwards. In
order the Newton equations of motion remain invariant un-
der this change in the force, we must replace the real time
variablet by a purely imaginary one:τ ≡ ±it. Implement-
ing these changes in the equation of motion (2) leads to the
equation

d2θ

dτ2
− g

l
sin θ = 0. (16)

Writing this equation in dimensionless form requires the
introduction of the pure imaginary time variabley ≡
±τ

√
g/l = ±ix. Integrating once the resulting dimension-

less equation of motion gives origin to the following equation

1
4

(
dθ

dy

)2

− sin2

(
θ

2

)
= E′, (17)

which looks like Eq. (4) but with an inverted potential (see
Fig. 2).

We can solve the equation in two different but equivalent
ways: i) the first option consists in writing down the equation

FIGURE 2. In the figure we show the pendulum potential (blue) for
the dynamical motion parameterized with a real time variable. The
inverted potential (magenta) corresponds to a dynamics parameter-
ized by a pure imaginary time variable.

in terms of a real time variable and then flipping the sign of
the whole equation in order to have positive energies, the re-
sulting equation is of the same form as Eq. (4), ii) the second
option consists in solving the equation directly in terms of
the imaginary timey. Because both solutions describe to the
same physical system, we can conclude that both are just dif-
ferent representations of the same physics. These two-ways
of working provide relations between the elliptic functions
with different argument and different modulus. As we will
discuss the relations among different time variables and mod-
ulus can be termed as duality relations and because the math-
ematical group operation beneath these relations is theS gen-
erator of the modular groupPSL(2,Z), we can refer to this
duality relation asS-duality.

3.1. Real time variable

If we write down (17) explicitly in terms of the real time pa-
rameterx, we obtain a conservation equation of the form

−1
4

(
dθ

dx

)2

− sin2

(
θ

2

)
= E′. (18)

The first feature of this equation is that the constantE′ is neg-
ative (E′ < 0). This happens because as a consequence of
the imaginary nature of time, the momentum also becomes
an imaginary quantity and when it is written in terms of a
real time it produces a negative kinetic energy. On the other
side the inversion of the force produces a potential modified
by a global sign. Flipping the sign of the whole equation and
denotingE′ = −k2

E , leads to the Eq. (4)

1
4

(
dθ

dx

)2

+ sin2

(
θ

2

)
= k2

E . (19)

We have already discussed the solutions to this equation (see
Sec. 2.). However because we want to understand the sym-
metry between solutions, it is convenient to write down the
ones of the circulating motions (9)-(10) relating the modulus
of the Jacobi elliptic functions not to the inverse of the en-
ergy but to the energy itself, which can be accomplished by
considering that the Jacobi elliptic functions can be defined
for modulus greater than one. So we can write down both the
oscillatory and the circulating motions in a single expression
[13]

θ(x) = ±2kE sgn[dn(x− x0, kE)]

× arcsin[sn(x− x0, kE)]. (20)

Here the square modulusk2 = k2
E takes values in the inter-

vals0 < k2
E < 1 for the oscillatory motions and1 < k2

E <
∞ for the circulating ones. The reason of writing down the
circulating solutions in this way is because introducing an-
other group element ofPSL(2,Z), we can relate them to the
standard form of the solution (9) with modulus smaller than
one. We shall do this explicitly in the next section.
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3.2. Imaginary time variable

In order to solve Eq. (17) directly in terms of a pure imagi-
nary time variable, it is convenient to rewrite the equation in
a form that looks similar to Eq. (19), which we have already
solved, and with this solution at hand go back to the origi-
nal equation and obtain its solution. We start by shifting the
value of the potential energy one unit such that its minimum
value be zero. Adding a unit of energy to both sides of the
equation leads to

1
4

(
dθ

dy

)2

+ cos2
(

θ

2

)
= 1− k2

E . (21)

The second step is to rewrite the potential energy in such a
form it coincides with the potential energy of (19) and in this
way allowing us to compare solutions. We can accomplish
this by a simple translation of the graph, for instance by trans-
lating it an angle ofπ/2 to the right (see Fig. 2). Defining
θ′ = θ − π, we obtain

1
4

(
dθ′

dy

)2

+ sin2

(
θ′

2

)
= 1− k2

E . (22)

Solutions to this equation are given formally as

sin
(

θ′

2

)
= ±

√
1− k2

E sn

(
y − ỹ0,

√
1− k2

E

)
. (23)

Now it is straightforward to obtain the solution to the original
Eq. (17), by going back to the originalθ angle, obtaining

θ(x) = ± 2 sgn

[√
1− k2

E sn

(
y − ỹ0,

√
1− k2

E

)]

× arcsin
[
dn

(
y − ỹ0,

√
1− k2

E

)]
. (24)

In this last expression we are assuming that Eq. (15) is valid
for every allowed value of the energyk2

E ∈ (0, 1)∪(1,∞), or
equivalently1− k2

E ∈ (−∞, 0)∪ (0, 1) (see Eqs. (B.19) and
(B.44)). It is important to stress that whilek2

E has the inter-
pretation of being an energy,1−k2

E can not be interpreted as
such, as we will discuss below. Notice we have denoted to the
integration constant in the variabley asỹ0 to emphasize that
ỹ0 ∈ C and is not necessarily a pure imaginary number. This
happen because in contrast to the case of a real time variable
where the integral along the real linex ∈ R can be performed
directly, when the variable is complex it is necessary to chose
a valid integration contour in order to deal with the poles of
the Jacobi elliptic functions [2]. For instance, the function
dn(y, k) has poles iny = (2n + 1)iKc (mod2K) for n ∈ Z,
but dn(ix + (2n + 1)K, k) is oscillatory for everyx ∈ R and
0 < k < 1. The sign function in the solutions is introduced
again in order to halve the period of the circulating motions
respect to the oscillatory ones.

3.3. Equivalent solutions

In the following discussion we will assume without losing
generality that0 < k2 ≤ 1/2 and therefore that its comple-
mentary modulus is defined in the interval1/2 ≤ k2

c < 1.

The cases where1/2 ≤ k2 < 1 and therefore where0 <
k2

c ≤ 1/2 can be obtained from the case we are considering
by interchanging to each other the modulus and the comple-
mentary modulusk2 ↔ k2

c .

• Oscillatory motion: Let us consider oscillatory solu-
tions for total mechanical energy0 < k2

E = k2 ≤ 1/2. Solu-
tions for these motions can be expressed in terms of either i)
a real time variable and given by Eq. (20), or ii) in terms of
a pure imaginary time variable. In the latter case the suitable
constant is̃y0 = iK −Kc and according to the Eq. (24) and
due to the equivalence of solutions we have

θk(x) ≡ 2 arcsin[k sn(x, k)] = 2

× arcsin[dn(ix− iK + Kc, kc)] ≡ θkc
(ix). (25)

This result is very interesting, it is telling us that any oscilla-
tory solution can be represented as an elliptic function either
of a real time variable or a pure imaginary time variable and
although they have the same energy, they differ in the value
of its modulus. For solutions with real time the square modu-
lus coincides with the energyk2

E and for solutions with pure
imaginary time, the square modulus is equal to1 − k2

E . It is
clear that the modulus of the two representations of an oscil-
latory solution satisfies the relation

k2 + k2
c = 1. (26)

As discussed in Appendix B, the elliptic function dn(z, kc)
has an imaginary period4iK, therefore the period of the
imaginary time oscillatory motion is4iK

√
g/l, which is in

complete agreement with the periods4K
√

g/l for the solu-
tions with real time. From Eqs. (25) it is straightforward to
compute the angular velocity in terms of an elliptic function
whose argument is a pure imaginary time variable (see Table
I). A similar result is obtained for an oscillatory motion with
energyk2

E = k2
c .

Two final comments are necessary, first in the general so-
lutions (20) and (24) the± signs appeared, however in (25)
there is not reference to them. This happen because they are
explicitly necessary only in the circulating motions. In the
case of oscillatory motions the(−) sign can be absorbed in
the solution by rescaling the time variable in both cases (real
and pure imaginary time). Regarding the elliptic function in-
side the sign function it does not appear because in the case
of (20) we have sgn[dn(x, k)] = 1 and also in (24) sgn[kc

sn(ix− iKc + K, k)] = 1.

• Circulating motion: For the circulating motion we must
also separate the energy intervals in two cases. If we are con-
sidering the solutions (20) which have real time variable, the
corresponding energy intervals are1 < k2

E = 1/k2
c ≤ 2 and

2 ≤ k2
E = 1/k2 < ∞. On the other side, if the solution

involves a pure imaginary time variable (Eq. (23)) the rele-
vant energies take values in the intervals−1 ≤ 1 − k2

E =
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−k2/k2
c < 0, and−∞ < 1− k2

E = −k2
c/k2 ≤ −1. Explic-

itly we have for the first interval

θ1/kc
(x) ≡ 2 sgn

[
dn

(
x,

1
kc

)]
arcsin

[
1
kc

sn

(
x,

1
kc

)]

= 2 sgn

[(
i
k

kc

)
sn

(
ix− iK, i

k

kc

)]

× arcsin
[
dn

(
ix− iK, i

k

kc

)]
≡ θik/kc

(ix). (27)

Notice that in a similar way to the oscillatory case, we have
the following relations between the sum of the square modu-
lus

1
k2

c

− k2

k2
c

= 1. (28)

Analogous relations can be found for the solutions with en-
ergyk2

E = 1/k2 and for motions in the clockwise direction.

3.4. S group element as member ofPSL(2,Z)

It is possible to reach the same conclusions as in the previous
subsection but this time following a slightly different path. In
Appendix B we have summarized the action of the different
group elements ofPSL(2,Z) on the Jacobi elliptic functions,
in particular the action of theS group element. Starting for
instance with a solution involving a real time variable and
applying the action of theS group element, it is possible to
obtain the corresponding solution in terms of a pure imag-
inary time variable. As we will show, the obtained results
coincide with the ones we have discussed.

• Oscillatory motion: In this case the starting point is the
solution (5) and its time derivative (6) which depends on a
real time variable and describe an oscillatory pendulum solu-
tion with energyk2

E . To fix the discussion we choosex0 = 0.
Applying the Jacobi’s imaginary transformations Eqs. (B.13)
which are the transformations generated by theS generator
of thePSL(2,Z) group, we obtain

k sn(x, k) = −ik sc(ix, kc) = −k nd(ix + iK, kc)

= dn(ix− iK + Kc, kc), (29)

k cn(x, k) = k nc(ix, kc) = −ik kc sd(ix + iK, kc)

= −ikc cn(ix− iK + Kc, kc), (30)

recovering relation (25) with their respective expressions for
its time derivative. Notice that although the transformed
functions have moduluskc they satisfy

dn2(ix−iK+Kc, kc)−k2
ccn2(ix−iK+Kc, kc) = k2, (31)

which is telling that the solution is indeed of oscillatory en-
ergyk2

E = k2 as it should be. An analogous result is obtained
if we start instead with a solution of modulusk2

c and real time
variable.

• Circulating case: In the circulating case we have a sim-
ilar story, under anS transformation the circulating solutions
(9)-(10) lead to the set

sgn

[
dn

(
kx,

1
k

)]
1
k

sn

(
kx,

1
k

)

= sgn

[
i
kc

k
sn

(
ix− iK, i

kc

k

)]

× dn

(
ix− iK, i

kc

k

)
, (32)

cn

(
kx,

1
k

)
= kccn

(
ix− iK, i

kc

k

)
, (33)

which coincide with the solutions (24) for a choice of the
constant̃y0 = iK.

4. Web of dualities

4.1. The set ofS-dual solutions

We have argued that a symmetry of the equation of motion for
the simple pendulum leads to the possibility that its solutions
can be obtained in two ways: i) considering a real time vari-
able and ii) considering a pure imaginary time variable. The
solutions for energies in the intervalk2

E ∈ (0, 1) ∪ (1,∞)
are given by Jacobi elliptic functions, the ones for energies
k2

E ∈ (0, 1) describe oscillatory motions and the ones for en-
ergiesk2

E ∈ (1,∞) describe circulating ones. On the other
hand we also know that the Jacobi elliptic functions are dou-
bly periodic functions in the complex planeC (see Appendix
B), and additionally to the complex argumentz, they also
depend on the value of the modulus whose squarek2 takes
values in the real lineR with exception of the pointsk2 6= 0
and 1. In the previous section we have discussed that given
a type of motion, for instance an oscillatory motion with en-
ergy0 < k2

E ≤ 1/2, there are at least two equivalent angular
functions describing it, one with modulusk = kE and real
time denoted asθk(x) in (25) and a second one with modulus
kc =

√
1− k2

E and pure imaginary time denoted asθkc(ix).
We can refer to this dual description of the same solution as
S-duality. In Table I we give the solutions for all the sim-
ple pendulum motions (oscillatory and circulating) in terms
of real time and itsS-dual solution given in terms of a pure
imaginary time.

The fact that the solutions involve either real time or pure
imaginary time only, but not a general complex time leads to
the conclusion that although the domain of the elliptic Jacobi
functions are all the points in a fundamental cell, or due to its
doubly periodicity, in the full complex planeC, the pendu-
lum solutions take values only in a subset of this domain. Let
us exemplify this fact for a vertical fundamental cell, i.e., for
values of the square modulus in the interval0 < k2 < 1/2,
which correspond to a normal latticeL∗ (see Appendix B).
In this case the generators are given by4K and4iKc with
Kc > K. If the time variablex is real, the solutions are

Rev. Mex. Fis.E 64 (2018) 205–221



212 R. LINARES ROMERO

TABLE I. The third column shows the solutions to the simple pendulum problem in terms of a real time variable when the total mechanic
energy of the motion and the square modulus of the Jacobi elliptic function are the same. The fourth column shows itsS-dual solutions in
terms of a pure imaginary time variable.

Energyk2
E Variable Real time solution Imaginary time solution

k2 ∈ (0, 1/2] θ/2 arcsin[k sn(x, k)] arcsin[dn(ix− iK + Kc, kc)]

ω/2 k cn(x, k) −ikc cn(ix− iK + Kc, kc)

1− k2 ∈ [1/2, 1) θ/2 arcsin[kc sn(x, kc)] arcsin[dn(ix− iKc + K, k)]

ω/2 kc cn(x, kc)] −ik cn(ix− iKc + K, k)
1

1−k2 ∈ (1, 2] θ/2 ± sgn[dn(x, 1/kc)] arcsin[sn(x, 1/kc)/kc]± sgn[(ik/kc) sn(ix− iKc, ik/kc)] arcsin[dn (ix− iKc, ik/kc)]

ω/2 ±(1/kc) cn(x, 1/kc) ±(k/kc) cn (ix−iKc, ik/kc)
1

k2 ∈ [2,∞) θ/2 ± sgn[dn(x, 1/k)] arcsin[sn(x, 1/k)/k] ± sgn[(ikc/k) sn(ix− iK, ikc/k)] dn(ix−iK, ikc/k)

ω/2 ±(1/k) cn(x, 1/k) ±(kc/k) cn (ix− iK, ikc/k)

given by the function sn(x, k) which owns a pure imaginary
period2iKc. The oscillatory solutions on the fundamental
cell are given generically either byarcsin[k sn(x− x0, k)] or
arcsin[k sn(x − x0 + 2iKc, k)], or in general on the com-
plex planeC the domain of these solutions is given by all the
horizontal lines whose imaginary part is constant and given
by 2niKc with n ∈ Z. According to Table I, the oscilla-
tory solutions of pure imaginary time on the same fundamen-
tal cell, have energies in the interval1/2 ≤ k2

E = k2
c < 1

and are given generically byarcsin[dn(ix − ix0 + K, k) or
arcsin[dn(ix− ix0 + 3K, k). In general the domain of these
solutions in the complex planeC are all the vertical lines
whose real part is constant and given by(2n + 1)K with
n ∈ Z, which is in agreement with the fact that the func-
tion dn(z, k) owns a real period2K. Any other point in the
domain of the elliptic Jacobi functions, different to the ones
mentioned do not satisfy the initial conditions of the pendu-
lum motions. This discussion can be extended to the horizon-
tal fundamental cells (normal latticesiL∗) whose modulus is
given bykc and the ones that involve anSTS transformation
and therefore a Dehn twist (see Appendix B).

We conclude that if we consider only solutions of real
time variable such that the square modulus and the energy
coincide (the four types of Table I), then the corresponding
domains are horizontal lines on the normal latticesL∗, iL∗,
kL∗ andikcL

∗. If instead we consider the four solutions of
pure imaginary time parameter, the corresponding domains
are vertical lines on the normal latticesiL∗, L∗, ikL∗ and
kcL

∗. However due to the fact that the modular group relates
the normal lattices one to each other, we can consider less
normal lattices and instead consider other Jacobi functions
on the smaller set of normal lattices to obtain the same four
group of solutions. We shall address this issue below.

4.2. The lattices domain

At this point it is convenient to discuss the domain of the lat-
tices that play a role in the elliptic Jacobi functions and there-
fore in the solutions of the simple pendulum. As discussed in
the Appendix A, the quarter periods of a Jacobi elliptic fun-

FIGURE 3. Figure shows the whole domain of values that the
modular parameterτ can take for the Jacobi elliptic functions.
This domain is a subset of theF2 fundamental region (Fig. 2).
Black dots represent the values of the square modulusk2 = 1/2,
1 − k2 = 1/2, 1/k2 = 2, 1/(1 − k2) = 2, 1 − 1/k2 = −1 and
k2/(k2 − 1) = −1.

ction whose square modulus is in the interval0 < k2 ≤ 1/2,
generate vertical lattices represented by a modular parameter
of the formτ = iKc/K. The pointτ = i is associated to the
case where the rectangular lattice becomes square and corre-
sponds to the valuek2 = 1/2. The set of all these lattices
(black line in Fig. 3) is represented in the complex plane by
the left vertical boundary of the regionF1 (Fig. 5) since the
quotientKc/K ∈ [1,∞). Acting on these values of the mod-
ular parameter with the six group elements ofPSL(2,Z/2Z)

Rev. Mex. Fis.E 64 (2018) 205–221



DUALITY SYMMETRIES BEHIND SOLUTIONS OF THE CLASSICAL SIMPLE PENDULUM 213

TABLE II. Approximated numerical values of the periods and the modular parameter for some real values of the modulus of the Jacobi elliptic
functions. The valuesk = 0 andk = 1 correspond to limit situations where one of the two periods is lost. The valuek2 = 1/2 is known as
a fixed point, it belongs both to the boundary of the regionsF1 andS of the Fig. 5 and is represented by the black dot whose coordinates are
(0, i) in Fig. 3. The valuek2 = 2 is degenerated in the sense it can be represented by two different types of fundamental cells, in one case
the cell belongs to the boundary of the regionSTS and in the another case it belongs to the boundary ofST−1. The fundamental cell for
some values ofk2 in this table are plotted in Fig. 6.

Modulusk2 ω1/4 ω2/4 τ

0 π/2 i · ∞ i · ∞
1/4 1.68575 (2.15652) i 1.27926 i

1/2 1.85407 (1.85407) i i

3/4 2.15652 (1.68575) i 0.78170 i

1 ∞ i π/2 0

4/3 2.87536 + i 2.24767 (2.24767) i 0.37929 + i 0.48521

2 3.70814(1± i) (3.70814) i ±0.5 + i 0.5

4 6.743− i 8.62608 (8.62608) i −0.62071 + i 0.48521

produce the whole set of values of the modular parameter
(Fig. 3) that are consistent with the elliptic Jacobi functions.
For example, acting with theS group element ofΓ on the
vertical line τ = iKc/K, generates the blue vertical line
described mathematically by the set of modular parameters
τ = iK/Kc, with K/Kc ∈ (0, 1]. It is clear that the set of
six lines is a subset of theF2 fundamental region and consti-
tutes the whole lattice domain of the elliptic Jacobi functions.

In Table II we give the numerical values (approximated)
of the generators of the fundamental cell as well as the mod-
ular parameter for some values of the square modulus.

As a conclusion, for every value of the parameter0 <
k2 ≤ 1/2 there are six normal lattices related one to each
other by transformations of the modular group. Therefore
each solution of the simple pendulum with real time variable,
showed in Table I, can be written in six different but equiv-
alent ways, where each one of the six forms is in one to one
correspondence with one of the six normal lattices. Their
S-dual solutions (see Table I) which are functions of a pure
imaginary time are just one of the six different ways in which
solutions can be written.

4.3. STS-duality

The form of the solutions for the simple pendulum expressed
in Table I does not coincide with the expressions given in
Sec. 2, which by the way, are the standard form in which the
solutions are commonly written in the literature. In order to
reproduce the standard form it is necessary to introduce the
STS transformation (see Appendix B). This transformation

takes for instance a Jacobi function with modulus0 <
k < 1 into a Jacobi function with modulus greater than one
1 < 1/k < ∞. Taking the inverse transformation it is pos-
sible to take a Jacobi function with modulus1 < 1/k into
one with modulusk < 1. Using the relations of the Ap-
pendix B it is straightforward to obtain Eqs. (B.35) which
written in terms ofkE instead ofk (remember than in this

case1 < 1/k = kE ⇒ k = 1/kE < 1), lead to

kE sn(x, kE) = sn(kE x, 1/kE) ,

kE cn(x, kE) = dn(kE x, 1/kE) ,

dn(x, kE) = cn(kE x, 1/kE) . (34)

Inserting this relations in the circulating solutions of Table I
reproduce solutions (9) and (10).

What we have done is to use theSTS-duality between
lattices and transform two of themkL∗ and ikcL

∗ into L∗

and iL∗. Restricted to solutions with real time, two of the
four type of solutions for whichk2 = k2

E > 1, are trans-
formed to solutions for whichk2 = 1/k2

E < 1. As we have
discussed the domain of the solutions with real time variable
are horizontal lines in the normal latticesL∗ andiL∗, thus in
order to keep the four different types of solutions it is neces-
sary to evaluate two different set of Jacobi functions (5) and
(9) on the domain of each one of the two normal latticesL∗

andiL∗. It is clear that this is not the only way we can pro-
ceed, in fact we can transform the oscillatory solutions with
k < 1 into oscillatory solutions with modulus grater than 1.
A similar analysis follows if we consider only solutions with
imaginary time.

4.4. A single normal lattice

It is natural to wonder about the minimum number of normal
lattices needed to express all the solutions of the simple pen-
dulum. Due to the duality symmetries between lattices this
number is one. As an example, if we now use theS-duality
to relate the normal horizontal latticeiL∗ to the normal ver-
tical latticeL∗, the horizontal lines that compose the domain
in the horizontal lattice becomes vertical lines in the vertical
lattices, which means to consider solutions with imaginary
time inL∗. Thus we can end up with only one normal lattice
and in order to have the four different types of solutions, it is
necessary to consider the whole domain of the lattice,i.e.
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TABLE III. Solutions to the simple pendulum problem written in a unique lattice of square modulus0 < k2 ≤ 1/2.

Energy interval Solutionθ

k2
E ∈ (0, 1/2] 2 arcsin[k sn(x, k)]

k2
E ∈ [1/2, 1) 2 arcsin[dn(ix− iKc + K, k)]

k2
E ∈ (1, 2] ± 2 sgn[(−ik/kc) cn(ix/kc − iKc/kc, k)] arcsin[(1/kc) dn(ix/kc − iKc/kc, k)]

k2
E ∈ [2,∞) ± 2 sgn[cn(x/k, k)] arcsin[sn(x/k, k)]

both vertical lines (imaginary time) and horizontal lines (real
time) and on each set of lines to consider two different so-
lutions one oscillatory and one circulating. For completeness
in Table III we give the four type of solutions in terms of only
one value of the modulus

It is clear that we can express all the solutions also for the
other five different functional forms of the square modulus.

5. Final remarks

In this paper we have addressed the meaning of the fact
that the complex domain of the solutions of the simple pen-
dulum is not unique and in fact they are related by the
PSL(2,Z/2Z) group, finding that the important issue for
express the solutions is the relation between the values of
the square modulusk2 of the Jacobi elliptic functions, and
the value of the total mechanical energyk2

E of the motion of
the pendulum. Due to the symmetry we conclude that there
are six different expressions of the square modulus that are
related one to each other trough the six group elements of
PSL(2,Z/2Z). These six group actions can be termed as
duality-transformations and therefore we have six dual rep-
resentations ofk2. As a consequence there are six different
but equivalent ways in which we can write a specific pen-
dulum solution, and abusing a little bit of the language we
could say there are duality relations between solutions. This
analysis teach us the lesson that we can restrict the domain
of lattices to the ones whose modular parameter is in the pure
imaginary intervalτ ∈ i(1,∞), or equivalently that we can
express every solution of the simple pendulum either oscilla-
tory or circulating with Jacobi elliptic functions whose value
of the square modulus is in the interval0 < k2 ≤ 1/2 (see
Table III).

It is well known that there are several physical systems in
different areas of physics whose solutions are also given by
elliptic functions, for instance in classical mechanics some
examples are the spherical pendulum, the Duffing oscillator,
etc., in Field Theory the Korteweg de Vries equation, the
Ising model, etc., [12,18]. It would be very interesting to
investigate on similar grounds to the ones followed here, the
physical meaning of the symmetries of the elliptic functions
in these systems.

Appendix

A. The modular group and its congruence sub-
groups

A.1 The modular group

The modular groupΓ is the group defined by the linear frac-
tional transformations on themodular parameterτ ∈ C (see
for instance [3-7,22,23] and references therein)

τ 7→ Γ(τ) =
aτ + b

cτ + d
, (A.1)

wherea, b, c, d ∈ Z satisfyingad − bc = 1, and the group
operation is function composition. These maps all transform
the real axis of theτ plane (including the point at infinity)
into itself, and rational values into rational values. The group
has two generators defined by the transformations

S(τ) ≡ −1/τ, and T (τ) ≡ 1 + τ. (A.2)

The modular group is isomorphic to the projective spe-
cial linear groupPSL(2,Z), which is the quotient of the
2-dimensional special linear groupSL(2,Z) by its center
{I,−I}. In other words,PSL(2,Z) = SL(2,Z)/Z2 con-
sists of all matrices of the form

A =
(

a b
c d

)
, (A.3)

with unit determinant, and pair of matricesA, −A, are con-
sidered to be identical. The group operation is multiplication
of matrices and the generators accordingly with (A.2) are

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
. (A.4)

These group elements satisfyS2 = (ST )3 = −I ∼ I and

Tn =
(

1 n
0 1

)
.

One important property of the modular group is that the
upper half plane ofC, usually denoted asH and defined as
H ≡ {z ∈ C : Im(z) > 0}, can be generated by the
elements ofPSL(2,Z) from a fundamental domain or re-
gion F . Mathematically this region is the quotient space
F = H/PSL(2,Z) and satisfies two properties: (i)F is a
connected open subset ofH such that no two points inF are
related by aΓ transformation (A.1) and (ii) for every point in
H there is a group elementg ∈ Γ such thatgτ ∈ F . There
are many ways of constructingF , and the most common one

Rev. Mex. Fis.E 64 (2018) 205–221



DUALITY SYMMETRIES BEHIND SOLUTIONS OF THE CLASSICAL SIMPLE PENDULUM 215

FIGURE 4. Tessellation ofH. The fundamental regionF is rep-
resented by the shaded area and the heavy part of the boundary.
This region is mapped to the whole upper planeC by the modular
groupΓ. The region can be viewed as a complete list of the inequiv-
alent complex structures on the topological torus since conformal
equivalence of tori is determined by the modular equivalence of
their period ratios. In the figure we show some copies of the funda-
mental region obtained by application of some group elements of
PSL(2,Z).

found in the literature is to take the set of all pointsz in the
open region{z : −1/2 < Re(z) < 1/2 ∩ |z| > 1}, union
“half” of its boundary, for instance, the one that includes the
points: z = −1/2 + iy with y ≥ sin(2π/3), and |z| = 1
with −1/2 ≤ Re(z) ≤ 0 (see Fig. 4). It is assumed that the
imaginary infinite is also included.

Geometrically,T represents a shift ofF to the right by
1, while S represents the inversion ofF about the unit cir-
cle followed by reflection about the imaginary axis. As an
example, the Fig. 4 represents the transformations of the fun-
damental regionF by the elements of the group:{I, T , T−1,
S, TS, T−1S, ST , ST−1, ST−1S, TST−1, STS, T−1ST}
[22]. Notice that these 12 elements are all the independent
ones that we can construct as iterative products ofS, T and
T−1 without powers of any of them involved (S−1 is simply
−S ∼ S and therefore is not a different modular transfor-
mation). The other two transformations we can construct are
not independentTST = −ST−1S andT−1ST−1 = STS.
Further products of the generators with these transformations
give us the whole tessellation of the upper complex plane. In
particular the orbit of the points Im(z) →∞ are the rational
numbersQ and are calledcusps.

A.2 Congruence subgroups

Relevant for our discussion are thecongruence subgroups of
levelN denoted asΓ(N) (or ΓN ). They are defined as sub-
groups of the modular groupΓ, which are obtained by impos-
ing that the set of all modular transformations be congruent
to the identity modN

Γ(N) =
{(

a b
c d

)
⊂ SL(2,Z) :

(
a b
c d

)
=

(
1 0
0 1

)
(modN)

}
. (A.5)

In this nomenclature the modular groupΓ is called the
modular group of level 1 and denoted asΓ(1) [6,23]. A
relevant mathematical structure is the coset of the modular
group with the congruence subgroups which are isomorphic
to PSL(2,Z/NZ) [23]

SL(2,Z)
Γ(N)

→ PSL(2,Z/NZ). (A.6)

For the solutions of the simple pendulum the relevant
congruence subgroup is the one of level 2:Γ(2). It turns out
that all the groupsPSL(2,Z/NZ) are of finite order and in
particularPSL(2,Z/2Z) is of order six. In Table IV we give
explicitly the six elements of the coset and their correspond-
ing form as group elements ofPSL(2,Z). Analogously to
the case of the modular group, a fundamental cell for a sub-
groupΓ(N) is a regionFN in the upper half plane that meets
each orbit ofΓ(N) in a single point. BecauseΓ(2) is of or-
der six inΓ, a fundamental cell forΓ(2) can be formed from
the six copies of any fundamental cellF of Γ produced by
the action of the six elements. In Fig. 5 we show the funda-
mental regionF2 of Γ(2). This cell can be obtained from the
region denoted asF1 which is a different fundamental region
for Γ as compared to the usual regionF of the Fig. 4.F1

is obtained ifF is replaced by its right half, plus inversion
of its left half by theS transformation. ThusF1 consists of
the open region{z : 0 < Re(z) < 1/2 ∩ (zz̄/z + z̄) >
1} and part of its boundary must be included. Geometri-
cally (zz̄/z + z̄) = 1 represents a unitary circle with center
atz = 1. A possible choice of the boundary includes the set

FIGURE 5. Fundamental cellF2 for Γ(2). The heavy part of the
figure is retained, the rest is not. In particular the cusps−1, 0, 1
andi∞ are excluded.
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of all points {z : z = iy with y ≥ 1} union {z :
(zz̄/z + z̄) = 1 with 0 < Re(z) ≤ 1/2}. The full funda-
mental regionF2 so produced is the part of the half-plane
above the two circles of radius1/2 centered at±1/2.

As a complementary comment we mention that some-
times in the literatureΓ(2) appears under the name ofmodu-
lar group Λ. It turns out that the group is isomorphic to the
symmetric groupS3, which is the group of all permutations
of a three-element set and also to the dihedral group of order
six (degree three)D6, which represents, the group of symme-
tries (rotations and reflections) of the equilateral triangle.

A.3 Lattices

A lattice L is an aggregate of complex numbers with two
properties [3]: (i) is a group with respect to addition and
(ii) the absolute magnitudes of the non-zero elements are
bounded below. Because the Jacobi elliptic functions are
meromorphic functions onC, that are periodic in two direc-
tions: f(z) = f(z + ω1) = f(z + ω2), we are interested in
the so-calleddouble lattices, consisting of all linear combina-
tions with integer coefficients of twogenerating coefficients
or primitive periodsω1, ω2 ∈ C, whose ratio is imaginary

L(ω1, ω2) = {nω1 + mω2|n, m ∈ Z} such that

f(z) = f(z + nω1 + mω2), ∀ z ∈ C. (A.7)

The lattice points are the vertices of a pattern of parallelo-
grams filling the whole plane, whose sides can be taken to
be any pair of generators. The shapes of the lattices define
equivalence classes. IfL(ω1, ω2) is any lattice, and the num-
ber k 6= 0 ∈ C, thenkL(ω1, ω2) denotes the aggregate of
complex numberskz for all z ∈ L(ω1, ω2) and it is also a
lattice, which is said to be in the same equivalence class as
L(ω1, ω2). If L̄ denotes the aggregate of complex numbers
z̄, ∀ z ∈ L; L̄ is also a lattice. If̄L = L, the lattice is called
real. If the primitive periods can be chosen so thatω1 is real
andω2 pure imaginary,L is calledrectangular.

Rectangular lattices are real, and they are called horizon-
tal or vertical, according as the longer sides of the rectangles
are horizontal or vertical. The particular case in which both
sides are equal is called thesquare lattice. Every lattice satis-
fiesL = −L, and the only square lattice for which,L = αL,
with α 6= ±1, is the latticeiL. If L is a vertical rectangular
lattice,iL is a horizontal rectangular lattice and vice versa.

Associated to the lattice is the concept ofresidue classes.
If z is any complex variable,z + L denotes the aggregate
of valuesz + ω for all ω in the latticeL. This aggregate is
called a residue class (modL). The residue classes (modL)
form a continuous group under addition, defined in the way
(z + L) + (w + L) = (z + w) + L. L itself is a residue
class (modL), the zero element of the group. These residue
classes allow to introduce the concept offundamental region
of L, consisting in a simply connected region of the complex
plane which contains exactly one member of each residue
class (modL) [28]. A fundamental region can be chosen in
many ways, the simplest and usually the most convenient, is

what is called either aunit cell, a fundamental cellor a fun-
damental parallelogramwhich is defined by all the points of
the sides~ω1 and ~ω2, including the vertex~0, but excluding the
rest of the boundary and of course the whole interior points
of the parallelogram. Mathematically the cell is given by the
coset spaceC/L(ω1, ω2), where abusing of the notation, in
this expressionL is considered as a residue class. Since the
opposite sides of the fundamental cell must be identified, the
coset spaceC/L(ω1, ω2) is homeomorphic to the torusT2.
In other words, the pair(ω1, ω2) defines a complex structure
of T2 [24].

The shape of the lattice is determined by themodular pa-
rameterτ ≡ ω2/ω1. It is important to note that, while a pair
of primitive periodsω1, ω2, generates a lattice, a lattice does
not have any unique pair of primitive periods, that is, many
fundamental pairs (in fact, an infinite number) correspond to
the same lattice. Specifically a change of generatorsω1, ω2

to ω′1 andω′2 of the form
(

ω′2
ω′1

)
=

(
a b
c d

) (
ω2

ω1

)
, (A.8)

induces a mapping on the modular parameterτ , belonging to
the modular group. These maps are the link between the con-
cepts of lattices, torus and modular group. As an example we
discuss the mapping onτ induced by the generators (A.2).
The generatorS interchanges the roles of the generators of
the latticeω1 ↔ ω2 or equivalently it changes the longitude
l for the meridianm of the torus and vice versa. The trans-
formationT generates aDehn twistalong the meridian which
can be understood as follows [24]. As a first step cut the torus
along the meridianm, then take one of the lips of the cut and
rotate it by2π with the other lip kept fix and finally glue the
lips together again.

If the stationary valuese1, e2 ande3 are the roots of the
cubic equation4x3 − g2x − g3 = 0, for any latticeL, with
assigned generatorsω1, ω2, we can define the scale constant
h by means of the relation:h2 = e1 − e2, and the moduli as

k2 =
e3 − e2

h2
, k2

c =
e1 − e3

h2
. (A.9)

A lattice for which h2 = 1 is called normal, and using
the notation of [3], we write it with a starL∗. Every lat-
tice L with assigned generators is similar to a unique nor-
mal latticeL∗ = hL with corresponding generators, since
ei(hL) = h−2ei(L). For a given lattice shape with no as-
signments of generators, there aresix normal lattices, as any
of the six differencesei − ej can be taken ash2. If one of
these isL∗, with modulusk, the others areiL∗, kL∗, ikL∗,
kcL

∗ andikcL
∗, with modulikc, 1/k, ikc/k, ik/kc and1/kc

respectively, wherek2 + k2
c = 1. These fall into three pairs

which are of the same size, interchanged by a rotation of a
right angle.

For the rectangular lattice shape, the six normal lattices
are all real. Ordinarilyω1 is taken real andω2 pure imagi-
nary, so thate1 > e3 > e2, and0 < k2 < 1, 0 < k2

c < 1,
with k2 < 1/2 < k2

c if L is vertical. We summarize the
properties of the normal lattices in table
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FIGURE 6. Figure shows the fundamental cell for six different normal lattices. In the first plot the vertical cell corresponds to a value of the
square modulusk2 = 1/4 and belongs to a normal lattice of the typeL∗. Under anS transformation, the cell transforms to the horizontal
one whose value of the square modulus isk2 = 3/4 and belongs to a normal latticeiL∗. Analogously in the second and third plots, the
fundamental cells in black belong to the latticeskL∗ andikcL

∗ respectively, with values of the square modulusk2 = 4 andk2 = 4/3. The
blue cells are obtained as theirS-dual fundamental cells and have the valuesk2 = −3 andk2 = −1/3 and belong to normal lattices of the
kind ikL∗ andkcL

∗ respectively. In every case, the continuous lines are included in the fundamental cell, whereas the dashed lines are not.
The numerical values of the two generatorsω1 andω2 are given in table .

TABLE IV. Main characteristics of the six orderPSL(2,Z/2Z) group and its relation to the six normal lattices.

Γ PSL(2,Z) PSL(2,Z/2Z) Modulus Quarter periods Action onk2 Normal lattice

τ ±I ±
(

1 0

0 1

)
k K, iKc k2 ∈ (0, 1/2] L∗

− 1
τ

±S ±
(

0 −1

1 0

)
kc Kc, iK 1− k2 ∈ [1/2, 1) iL∗

τ
1−τ

±STS ∓
(

1 0

−1 1

)
1
k

k(K − iKc), ikKc
1

k2 ∈ [2,∞) kL∗

τ−1
τ

±TS ±
(

1 −1

1 0

)
i kc

k
kKc, ik(K − iKc) 1− 1

k2 ∈ (−∞,−1] ikL∗

1
1−τ

±ST−1 ∓
(

0 1

−1 1

)
1

kc
kc(Kc + iK), ikcK

1
1−k2 ∈ (1, 2] ikcL

∗

τ − 1 ±T−1 ±
(

1 −1

0 1

)
i k

kc
kcK, ikc(Kc + iK) k2

k2−1
∈ [−1, 0) kcL

∗

B. Jacobi elliptic functions

In the previous appendix we reviewed the action of the mod-
ular group on the modular parameter. In this appendix we
want to specialize that discussion to the case of the ellip-
tic Jacobi functions. In particular we are interested in the
relation between the six dimensional groupPSL(2,Z/2Z)
and what is called transformations of the elliptic Jacobi func-
tions. There are three transformations that are exposed often
in the literature, theJacobi’s imaginary transformation, the
Jacobi’s imaginary modulus transformationand theJacobi’s
real transformation. These are transformations that relate the
Jacobi elliptic functions with different value of the square
modulusk2. Behind these transformations is the property
that the modulus of the Jacobi functions can be defined in the
real linek2 ∈ R with exception of the pointsz = −1, 0, 1,

and it can be divided in six intervals

k2 ∈ (−∞,−1]∪[−1, 0)∪(0, 1/2]∪[1/2, 1)∪(1, 2]∪[2,∞).

These six intervals are in one to one relation to the column
Action onk2 in Table IV, if we consider that the modulus in
the fundamental regionF1 of PSL(2,Z) takes values in the
interval0 ≤ k2 ≤ 1/2. In the following we summarize some
of the properties of the Jacobi elliptic functions that are useful
throughout the paper.

B.1 Jacobi elliptic functions with modulus0 < k2 < 1

The Jacobi elliptic functions are meromorphic functions in
C, that have a fundamental real period and a fundamental
complex period,i.e., they are doubly periodic. The periods
are determined by the value of the square modulus and in the
following we assume that0 < k2 < 1.
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The primitive real period of the three basic functions can
be inferred from the following relations which are dictated by
the addition formulas for the Jacobi functions [2-7]

sn(z + K, k) =
cn(z, k)
dn(z, k)

, cn(z + K, k) = −kc
sn(z, k)
dn(z, k)

,

dn(z + K, k) = kc
1

dn(z, k)
, (B.1)

where the quarter-periodK is defined as function of the
square modulusk2 as

K ≡
1∫

0

du√
(1− u2)(1− k2u2)

. (B.2)

In particular we obtain the values sn(K, k) = 1, cn(K, k) =
0 and dn(K, k) = kc, from the ones sn(0, k) = 0, cn(0, k) =
1 and dn(0, k) = 1. Iteration of relations (B.1) leads to

sn(z + 2K, k)=− sn(z, k), cn(z + 2K, k)=− cn(z, k),

dn(z + 2K, k) = dn(z, k). (B.3)

The last relation is telling that the function dn(z, k) has real
period 2K. A further 2K iteration will tell us that the
other two Jacobi elliptic functions (sn(z, k) and cn(z, k)) have
primitive real period4K. Regarding the complex period, we
have the relations

sn(z + iKc, k) =
1
k

1
sn(z, k)

,

cn(z + iKc, k) = −i
1
k

dn(z, k)
sn(z, k)

,

dn(z + iKc, k) = −i
cn(z, k)
sn(z, k)

, (B.4)

whereKc is defined as function of the so-called complemen-
tary modulusk2

c ≡ 1− k2 in the form

Kc ≡
1∫

0

du√
(1− u2)(1− k2

cu2)
. (B.5)

Iterating these relations once leads to

sn(z + 2iKc, k) = sn(z, k), cn(z + 2iKc, k) = −cn(z, k),

dn(z + 2iKc, k) = −dn(z, k). (B.6)

The first relation is telling us that the elliptic function sn(z, k)
has a pure imaginary primitive period2iKc. A further2iKc

iteration leads to the conclusion that the elliptic function
dn(z, k) has a pure imaginary primitive period4iKc whereas
the elliptic function cn(z, k) has a fundamental period4iKc.
In the latter case notice that combining the second relation
of (B.3) and the second relation of (B.6) leads to the result
cn(z + 2K + 2iKc, k) = cn(z, k) concluding that this el-
liptic function has a primitive complex period2K + 2iKc.

In summary, the primitive periods of the three basic Jacobi
functions are

sn(z, k) = sn(z + 4K, k) = sn(z + 2iKc, k), (B.7)

cn(z, k)=cn(z + 4K, k)=cn(z + 2K + 2iKc, k), (B.8)

dn(z, k) = dn(z + 2K, k) = dn(z + 4iKc, k). (B.9)

Because these periods do not coincide one looks for two com-
mon periods in order to define a common fundamental cell
for the three functions. Thesefundamental periodsare4K
and4iKc, they are not primitive because linear combinations
of them does not give origin for instance to the primitive pe-
riod 2K + 2iKc of cn(z, k). The fundamental cell for the
Jacobi elliptic functions is, therefore, the parallelogram with
vertices(0, 4K, 4iKc, 4K + 4iKc), and the modular param-
eterτ turns out to be

τ ≡ iKc

K
. (B.10)

Given this definition of the modular parameter we see that
not every point ofF1 corresponds to a modulusk2 of the
Jacobi functions but only the values on the vertical boundary
τ ∈ [i, i∞), being the pointτ = i the one that corresponds to
k2 = 1/2, since in this caseK = Kc and therefore the cor-
responding normal lattice is squared. The rest of points on
the vertical boundary corresponds to vertical normal lattices
becauseK < Kc and all of them have a value of the square
modulus0 < k2 < 1/2. By acting the five group elements
of PSL(2,Z/2Z) different from the identity to the modular
parameter values on the vertical boundary ofF1, we can gen-
erate the whole set of possible values ofτ and therefore the
whole set of possible values of the square modulusk2 of the
Jacobi functions (see Fig. 3).

Derivatives of the basic functions, which are necessary to
obtain the angular velocities are

d

dz
sn(z, k) = cn(z, k) dn(z, k),

d

dz
cn(z, k) = −sn(z, k) dn(z, k),

d

dz
dn(z, k) = −k2sn(z, k) cn(z, k). (B.11)

B.2 Jacobi’s imaginary transformation

The transformation induced by the generatorS(τ) of the
modular group on the Jacobi functions with modulusk, is
known as the Jacobi’s imaginary transformation. In this case
the modulus and the complementary modulus exchange with
each other

k 7→ kc and kc 7→ k ⇒ K 7→ Kc

and Kc 7→ K. (B.12)

Applying this transformation on the vertical boundary ofF1,
generates both the transformed pure imaginary modular pa-
rameter and the transformed modulus which belong to the
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intervalsτ ∈ (0, i] and1/2 ≤ k2
c = 1−k2 < 1, respectively.

The Jacobi functions itself transform as

sn(z, kc) = −i sc(iz, k), cn(z, kc) = nc(iz, k),

dn(z, kc) = dc(iz, k). (B.13)

This is the mathematical property behind the analysis made
by Appell to deal with solutions of imaginary time. These
transformations are used very often to change a pure imagi-
nary argumentix to one realx, obtaining

sn(ix, k) = i sc(x, kc), cn(ix, k) = nc(x, kc),

dn(ix, k) = dc(x, kc). (B.14)

From a geometrical point of view the normal vertical cellL∗

with vertices(0, 4K, 4iKc, 4K + 4iKc) changes to the nor-
mal horizontal celliL∗ with vertices(0, 4Kc, 4iK, 4Kc +
4iK) and the corresponding torus is obtained from the orig-
inal one by an interchange of their respective meridians and
longitudes. The rest of properties of the functions are ob-
tained from the ones in (section ) by settingz = ix and im-
plementing in the expressions the interchangesk ↔ kc and
K ↔ Kc.

B.3 Jacobi’s imaginary modulus transformation

The transformation induced by the generatorT (τ) of the
modular group on the Jacobi functions, is known as the imag-
inary modulus transformation, because under this transfor-
mation the modulus change as

k 7→ i
k

kc
, and kc 7→ 1

kc
, (B.15)

which induces a change in the quarter periods of the form

K 7→ kcK, and Kc 7→ kc(Kc − iK). (B.16)

Applying this transformation to the vertical boundary ofF1,
generates the transformed modular parameter which lies on
the vertical lineτ ∈ [1 + i, 1 + i∞) and the transformed
square modulus which takes values in the interval−1 ≤
(k2/k2 − 1) < 0. The transformation rule for the Jacobi
functions itself are

sn(z, ik/kc) = kc sd(z/kc, k),

cn(z, ik/kc) = cd(z/kc, k),

dn(z, ik/kc) = nd(z/kc, k). (B.17)

It is clear that this transformation allows us to define the Ja-
cobi functions with an imaginary modulus in terms of the
Jacobi functions with real modulus. Replacingz 7→ kcz, we
can express these transformations in its more usual form

sn(kcz, ik/kc) = kc sd(z, k),

cn(kcz, ik/kc) = cd(z, k),

dn(kcz, ik/kc) = nd(z, k). (B.18)

From a geometrical point of view the fundamental verti-
cal cell with vertices(0, 4K, 4iKc, 4K + 4iKc) changes
to the fundamental cell with vertices(0, 4kcK, 4kcK +
4ikcK, 8kcK + 4ikcKc) and the corresponding torus is
changed by a Dehn twist. Notice that by applying further
the transformationS to these expressions, we obtain a funda-
mental cell where the quarter periods (B.16) are interchange
among them an the value of the square modulus is defined in
the interval,1 < (1/1− k2) ≤ 2, since the modulus (B.15)
also interchanges one to the another.

The elliptic Jacobi functions with negative square mod-
ulus satisfy analogous relations to the Jacobi functions with
modulus0 < k2 < 1, these are obtained from Eqs. (B.17)
and the corresponding relation of the Jacobi functions with
0 < k2 < 1. For instance, the equations analogous to (13)
and (15) are

sn2(z, ik/kc) + cn2(z, ik/kc) = 1, and

− k2

k2
c

sn2(z, ik/kc) + dn2(z, ik/kc) = 1. (B.19)

Proceeding in a similar way it is possible to obtain the equa-
tions analogous to (B.1), these are

sn(z + K, ik/kc) =
cn(z, ik/kc)

dn(kcz, ik/kc)
,

cn(z + K, ik/kc) = − 1
kc

sn(z, ik/kc)
dn(kcz, ik/kc)

,

dn(z + K, ik/kc) =
1
kc

1
dn(z, ik/kc)

, (B.20)

which iterating once lead to the relations

sn(z + 2K, ik/kc) = −sn(z, ik/kc),

cn(z + 2K, ik/kc) = −cn(z, ik/kc),

dn(z + 2K, ik/kc) = dn(z, ik/kc). (B.21)

The third relation is telling us that the function dn(z, ik/kc)
has a fundamental period2K. A further 2K iteration leads
to the conclusion that the other two Jacobi functions have a
fundamental period of4K. Regarding the imaginary period,
the equations analogous to (B.4) are

sn(z + iKc, ik/kc) =i
kc

k

dn(z, ik/kc)
cn(kcz, ik/kc)

, (B.22)

cn(z + iKc, ik/kc) =
1
k

1
cn(z, ik/kc)

, (B.23)

dn(z + iKc, ik/kc) =i
1
kc

sn(z, ik/kc)
cn(kcz, ik/kc)

, (B.24)

which after an iteration lead to

sn(z + 2iKc, ik/kc) = −sn(z, ik/kc),

cn(z + 2iKc, ik/kc) = cn(z, ik/kc),

dn(z + 2iKc, ik/kc) = −dn(z, ik/kc). (B.25)
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These relations indicate that the function cn(z, ik/kc) has
fundamental imaginary period2iKc, whereas the other two
Jacobi functions have4iKc. In summary, the primitive peri-
ods of the three basic Jacobi functions are

sn(z, ik/kc) = sn(z + 4K, ik/kc)

= sn(z + 2K + 2iKc, ik/kc), (B.26)

cn(z, ik/kc) = cn(z + 4K, ik/kc)

= cn(z + 2iKc, ik/kc), (B.27)

dn(z, ik/kc) = dn(z + 2K, ik/kc)

= dn(z + 4iKc, ik/kc). (B.28)

It is straightforward to verify that in this case the derivatives
of the fundamental relations that follows from (B.11) are

d

dz
sn(z, ik/kc) = cn(z, ik/kc) dn(z, ik/kc),

d

dz
cn(z, ik/kc) = −sn(z, ik/kc) dn(z, ik/kc), (B.29)

and

d

dz
dn(z, ik/kc) =

k2

k2
c

sn(z, ik/kc) cn(z, ik/kc). (B.30)

B.4 Jacobi’s real transformation

In the literature of the elliptic functions, the transformation
generated by the elementSTS of the modular group

τI =
τ

1− τ
, (B.31)

which can be obtained as a composition of the following three
transformations

τI = − 1
τ2

, τ2 = 1 + τ1,

and τ1 = −1
τ

, (B.32)

generates the so-called Jacobi’s real transformation. Under
it, the modulus of the elliptic functions change as

k 7→ 1
k

, and kc 7→ i
kc

k
, (B.33)

whereas the quarter periods transform as

K 7→ k(K − iKc), and Kc 7→ kKc. (B.34)

Applying this transformation to the vertical boundary ofF1,
generates the transformed modular parameter which lies on
the lineτ = −(y2/1 + y2) + i(y/1 + y2), with y in the in-
tervaly ∈ [1,∞) and the transformed square modulus which
takes values in the interval2 ≤ 1/k2 < ∞. The transforma-
tion rules for the Jacobi functions itself are

sn(z, 1/k) = k sn(z/k, k), cn(z, 1/k) = dn(z/k, k),

dn(z, 1/k) = cn(z/k, k). (B.35)

This transformations allows us to define the Jacobi elliptic
functions with square modulus greater than two in terms of
Jacobi functions with modulus0 < k2 ≤ 1/2. Replacing
z 7→ kz, allows to express these transformations in its more
usual form

sn(kz, 1/k) = k sn(z, k), cn(kz, 1/k) = dn(z, k),

dn(kz, 1/k) = cn(z, k). (B.36)

A further application of the group transformationS to these
expressions leads to the interchange of the modulus (B.33)
and to the interchange of the quarter periods (B.34). In this
case the square modulus of the Jacobi functions is defined in
the interval−∞ < 1− 1/k2 ≤ −1.

As in the previous cases it is possible to obtain the fun-
damental periods of the three different basic Jacobi elliptic
functions, since the arguments as before, we just list the equa-
tions. For the real period we have

sn(z + K, 1/k) = k
dn(z, 1/k)
cn(z, 1/k)

,

cn(z + K, 1/k) = kc
1

cn(z, 1/k)
,

dn(z + K, 1/k) = −kc

k

sn(z, 1/k)
cn(z, 1/k)

, (B.37)

and iterating we get

sn(z + 2K, 1/k) = −sn(z, 1/k),

cn(z + 2K, 1/k) = cn(z, 1/k),

dn(z + 2K, 1/k) = −dn(z, 1/k). (B.38)

As for the imaginary period

sn(z + iKc, 1/k) =
k

sn(z, 1/k)
,

cn(z + iKc, 1/k) = −ik
dn(z, 1/k)
sn(z, 1/k)

,

dn(z + iKc, 1/k) = −i
cn(z, 1/k)
sn(z, 1/k)

, (B.39)

and after an iteration

sn(z + 2iKc, 1/k) = sn(z, 1/k),

cn(z + 2iKc, 1/k) = −cn(z, 1/k),

dn(z + 2iKc, 1/k) = −dn(z, 1/k). (B.40)
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In summary, the primitive periods of the three basic Jacobi
functions are

sn(z, 1/k) = sn(z + 4K, 1/k)

= sn(z + 2iKc, 1/k), (B.41)

cn(z, 1/k) = cn(z + 2K, 1/k)

= cn(z + 4iKc, 1/k), (B.42)

dn(z, 1/k) = dn(z + 4K, 1/k)

= dn(z + 2K + 2iKc, 1/k). (B.43)

Finally, the equations analogous to (13) and (15) are

sn2(z, 1/k) + cn2(z, 1/k) = 1,

and
1
k2

sn2(z, 1/k) + dn2(z, 1/k) = 1. (B.44)

whereas the derivatives of the basic functions are

d

dz
sn(z, 1/k) = cn(z, 1/k) dn(z, 1/k),

d

dz
cn(z, 1/k) = −sn(z, 1/k) dn(z, 1/k), (B.45)

and

d

dz
dn(z, 1/k) = − 1

k2
sn(z, 1/k) cn(z, 1/k). (B.46)
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