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Exact solutions of the Maxwell equations for the electromagnetic fields inside and outside a spherical surface, with time alternating magnetic
or electric dipole source distributions, are constructed as alternatives to the respective familiar point-dipole solutions in undergraduate and
graduate books. These solutions are valid for all positions, inside and outside the sphere, including the quasi-static, induction and radiatior
zones; the solutions inside make the difference from the point-dipole solutions; the definitions of the dynamic dipole moments must be based
on the ordinary spherical Bessel functions for the solutions outside, and on the outgoing spherical Hankel functions for the solutions inside,
instead of the powers of the radial coordinate as solutions of the Laplace equation valid for the static case. The solutions for the resonating
cavities are associated with the nodes of the spherical Bessel function T thedes of the magnetic dipole source, and with the extremes

of the product of the radial coordinate times the same spherical function féiMraodes of the electric dipole source; both conditions also
guarantee the vanishing of the fields outside.

Keywords: Time alternating electric and magnetic dipole sources; potentials and force fields; inner and outer exact solutions; Helmholtz
equation; boundary condition forms of Maxwell equations; outgoing-wave Green function multipole expansion.
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1. Introduction tational of the vector potential, with radial components con-
tinuous at the boundary surface, and polar angle tangential
The introductory examples of electromagnetic radiation, incomponents with a discontinuity connected with the source
the advanced undergraduate and graduate levels, are cogurrent by Ampere’s law.
monly those of the Hertz electric and magnetic point-dipole  On the other hand, in Sec. 3 the electric dipole source
sources with a harmonic time variation; in addition the StUdyCOHSiStS of a surface Charge with a cosine of the po|ar an-
of the electromagnetic radiation in resonant cavities is pregle distribution, and a surface current with a sine of the po-
sented separately [1-11]. Our experience with the multipolear angle distribution along the meridian half-circles on the
expansions of the electrostatic and magnetostatic fields [12houndary spherical surface; both distributions are connected
and of the electromagnetic fields [13] and of their respechy the continuity equation. In this case the solutions are con-
tive sources distributed on a spherical surface, shows the extructed first for the magnetic induction from the Helmholtz
istence of complete and exact solutions inside and outsidgquation with its rotational of the current source. The latter
such a boundary surface, for each multipole component. 18hares the same dipolarity as the original current and its field
this contribution, we construct the electromagnetic radiationines are parallel circles. The solutions are evaluated as the
solutions for the finite electric and magnetic dipole sourcesintegrals of this source with the outgoing-wave Green func-
applicable for both antennas and resonant cavity modes.  tion in its multipole expansion form: only the dipole term
In Sec. 2, the magnetic dipole case is analyzed first beeontributes, the parallel circle field lines and the radial inner
cause it is didactically simpler. In fact, it involves a surfaceand outer spherical Bessel functions are also inherited, with
current with a sine of the polar angle distribution along par-coefficients involving the derivative of the radial coordinate
allel circles. Then, the vector potential and the electric intentimes the other Bessel function at the radius of the spherical
sity inherit the alternating time variation, the dipolarity and boundary surface. The magnetic induction field is discontin-
parallel-circle field lines of their source; additionally, they uous at the spherical boundary, and their discontinuity leads
share the same radial dependence in terms of spherical Besselthe meridian current as demanded by Ampere’s law. Next,
functions of order 1 : ordinary ones inside and of Hankel typethe electric intensity is evaluated via the Maxwell connec-
outside, and with coefficients involving the other function attion as the rotational of the magnetic induction, exhibiting
the radius of the boundary surface guaranteeing their contindield lines in meridian planes with discontinuous radial com-
ity there. The magnetic induction field is evaluated as the roponents at the spherical boundary surface, connected with the
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charge distribution by Gauss’s law, and continuous tangentiaConsequently, both Egs.(2) and (3) can be written as a single
components at the same boundary. one
In both sections, the exact solutions lead to analytical ‘
forms for the field lines in the meridian planes of the mag- A (r,0,¢,t) = ¢A0j1(kr<)h§1)(kr>) sinfe” !t (6)
netic induction and the electric intensity, respectively, inside
and outside; they turn out to share the same shape. Insid¢herer< andr- are the smaller and larger ofanda, re-
they have opposite directions, reflecting the nature of theigPectively. Notice that the vector potential also shares the
respective sources; and for the same reason, their contingolenoidal character of its source, and its companion scalar
ities and discontinuities at the boundary surface are differenpotential also vanishes.
and complementary. The outer solutions can be analyzed in The electric intensity field is evaluated from the partial
the very near quasi-static and in the very far radiation lim-time derivative of the potential:
its, connecting with the standard analysis in the books. An .
important difference in our solutions is the identification of (r,0,p,t) = 104
the dynamical dipole moments, involving the coefficients in c ot
the other spherical Bessel function, for the fields inside and w ., 1 i
outside. Tﬂe characterization of the transverse ele@tEc = ?‘PAO]l(kR)hg (krs)sinfe !, (7)
and magnetid@M modes, of the respective resonant cavities, . -
depends on the boundary conditions on the inner solutiongf”th the explicit forms:
which at the same time guarantee the vanishing of the fields _ iw o 1) ) »
outside. E(r<a,0,¢,t) = —pAoji(kr)hy " (ka)sinbe w“(8)
Section 4 includes a discussion of the results for the mag- .
netic dipole and the electric dipole fields, a comparison of E (r > a,6, ¢, t) = E@Aojl(ka)h(ll)(kﬂ”) sinfe"" (9)
their similarities and differences, as well as their complemen- ¢
tarities; and the formulation of some didactic comments. sharing the same space and time dependence, including the
multipolarity, direction and solenoidal nature of their com-
2. Magnetic Dipole Sources, Potential and monsource. o _
Fields The magnetic induction field is evaluated as the rotational
of the potential taking the explicit forms:

The linear current density distribution on parallel circles on

the spherical surface has the form: B(r<a,b,p,t) = AghtV (ka) (fQCosejl(kr)
K = ¢pKgsin e~ i
‘ ésmﬂ d . . i it 10
= (—isinp + jcos ) Kqsin fe™ ™" | ) e adr [ria(kr)] Je (10)
which in its cartesian representation exhibits its harmonic , 2cosf (1)
dipole components. Since its divergence vanishes, the con- B (" > a,0,¢,1) = Aoji(ka) (TT hy” (kr)
tinuity equation indicates that there is not a companion dis- )
tribution of charge. ' . _éSHI@i {rhg)(kr)} )e—iwt_ (11)
The vector electromagnetic potential shares the same T dr

time and multipolarity dependences of its source, as well as

the radial spherical Bessel functions inside and outside of the thtlclebthe gontmwty_o{ 'tf n_?r:rgal co[nlpongntsthat t'?he
sphere as solutions of the Helmholtz equation [14]: Spherical boundary, consistent wi auss ‘aw. On the other

hand, notice the discontinuity of its tangential polar compo-

A(r < a,0,0,t) = AL gy (kr) sin et (2)  nents at the same boundary, which by Ampere’s law [11]
A(r>a,0,0,t) = A" (kr)sinfe=™* (3 L .
(r > a,0,0.1) = AGH" (kr) sin fo © i (B B)| —tR 12)
The choices of the ordinary and outgoing spherical wave r=a ¢

radial functions guarantee tha_lt the boundary condlt!ons folrs connected with the linear density current:
r — 0 andr — oo, respectively, are properly satisfied.

The condition of continuity of the potential at the spherical _sinf (. d "
boundary becomes: *SDAOT (jl(ka)dr {rhl (kr)}
Ajji(ka) = AGhY (ka) (4) 0
. —twt
making each coefficient proportional to the radial function on —hy Um)% [rg1. (k)] > ¢
the other side r=a
7 (1) e . _ A i iné —twt __ A47TK in 6 —iwt 13
Ay = Aohy ' (ka) Ag = Aoji(ka) (5) = -9 0702 smoe = @? osimnve . (13)
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FIGURE 1. Plot of the real and imaginary parts of the spherical Hankel functiofka) andni (ka), respectively, singularazing their lowest
roots: z1,, andy s, identifying the nodal lines, including the resonant cavity modes, and the positions of their extreme wgfiesmd

yi™, optimizing the radiation by antennas.

The quantity inside the parenthesis in the first line is identi-

Figure 1 displays the coefficients in Egs. (17)-(18) as the

fied aska times the Wronskian of the spherical Bessel func-real and imaginary parts of the Hankel functigh(ka) and
tions: i/k%a®. The result of the next line yields the relation- n,(ka), respectively. The roots of the first function; , =
ship between the amplitudes of the vector potential and thd.49,7.72,10.9 ... determine the nodal circle lines inside the

current distribution:

Ay = 4Amika® Ky . (14)

The current Eq. (1), the vector potential Eq. (6) and the
electric intensity field Eq. (7) all share parallel circle fiel
lines. The field linesil = #dr + Ordd for the magnetic in-

boundary surface, and thoserof: y; , = 2.79,6.11,9.31 ...
determine the nodal circle lines outside. The extremeg of
determine the optimal amplitude for the external fields.
Figures 2a,b,cillustrate magnetic induction field lines

d ©f Egs.(10) and (11) in their forms of Egs.(17) and (18), in-

side and outside the spherical surface in black, on any merid-

duction field inside and outside Egs. (10) and (11), can alsdgn plane at a given instant of time. The alternating lines in

be evaluated from the tangentiality conditions:

dr rdf
- , 15
2j1(kr)cos®  —sin@-L [rjy(kr)] (13)
dr rdf (16)

2h§1)(k;r)cost9 a —sinf4 {rhgl)(kr)} .

red and blue are closed, exhibiting their solenoidal character,
and have opposite circulation directions; their separatrices in
green dashed circles indicate the vanishing of the field there.
Notice also the discontinuities of the field lines at the spheri-
cal surface where the current is distributed, Eq.(12).

On the other hand, the conditions for the transverse elec-
tric TE modes of the cavity with vanishing radial and polar
components of the electric intensity can be appreciated in

Both equations are separable and integrable, leading to tb@q. (8), and the vanishing of the normal component of the

equations for the lines passing by a poing, 6,),
meridian plane:

hgl)(ka)krjl(kr) sin 6 = hgl)(ka)krojl(kro)

x sin?@y 1 < a, a7)
g1 (ka)krh{V (kr) sin2 0 = j1 (ka)kroh\® (kro)
X sin? g 19>a. (18)

magnetic induction at the source boundajy(ka) = 0 in
Eq.(10) leads to the choices of the nodes from Fig. 1. The
appearance of this common coefficient in the external elec-
tric intensity field, Eq. (9), and in the external magnetic in-
duction field, Eq. (11), leads to the vanishing of the elec-
tromagnetic fields everywhere outside. Figurea,B,cil-
lustrate the magnetic induction field lines in the lowieE
modes of the resonant cavity for the respective frequencies:
w = (4.48724, 7.71886, 10.9005), in units of (c/a). The

Here the inclusion of the coefficient of the other sphericalfields along the axis of the cavity also vanish.

Bessel function in each of these equations, coming from

It is relevant to emphasize that the field lines in Figs. 2

Eq. (6), allows also the direct comparison of the field linesand 3 in the vicinity of the source spherical surface, both in-
inside and outside the spherical surface: continuous in theide and outside, are dominated by the Faraday magnetoelec-
contributions from the real parts, and discontinuous in thdric and Maxwell electromagnetic inductions. Additionally,
contributions from the imaginary parts associated with thefor the cavities the source distribution guarantees the vanish-

Wronskian in Eq. (13).

ing of the fields outside.
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FIGURE 2. Magnetic induction field lines inside and outside the source spherical surface on black, in any meridian plane and at a given time,
for the choices ofa) ka = 1, (b) ka = 2.0710 and(c) ka = 5.9280.
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FIGURE 3. Magnetic induction field lines inside the spherical surface, in any meridian plane and at a given time, for the fEScaaity
modes for(a) ka = 4.48724, (b) ka = 7.71886 and(c) ka = 10.9005.

It is very important to recognize that the results obtained  The field outside, Eq. (11), takes the following form:
so far are exact. Then, we analyze successively the quasi- .
static limit and the radiation limit. In fact, for the first one = ta '\ 72cosf + 0sinf
whenkr < 1, the ordinary spherical Bessel function be- B(r>a.0,0) =4 (3k> 3
comes linear and the spherical Hankel function is inversely 3
proportional to the square of the radial coordindte/3 and - dnKo a”
—i/k?r?, respectively. Then, the magnetic induction field in- 3

side, Eq. (10), becomes in which the angular distribution of an axial dipole moment
and its inverse cube radial dependence are identified. The

(3f(f.1;) —/2) . (20)

. i 2%k /. L respective static magnetic dipole moments determining the
B(r<a,b,¢) = —Aomg (7“ cos§ — Bsin 9) fields inside and outside ater K /3 and4r Kya®/3, consis-
AnKy - tent with the amplitudes in Eqgs. (19)-(20).
= 2k, (19) It is convenient to point out the different radial depen-

dences of the coefficients in Egs. (19) and (20): independent
. . of the radius: and with the cube of, respectively, reflecting
where the connection between the amplitudg@nd Ko has  {he ratio between the inner and outer dipolar radial depen-
been used from Eq. (14), and identifying the unit axial vectoryances in the solutions for the Laplace equatiws 1/72.

.k'; in concllusion, the-_ magnef[ic ir_1duction fielt_j ins_ideT is ax- On the other hand, in the far away zone wheres 1,
ial and uniform. Notice that in Fig. 2a) the field inside the
sphere is no longer uniform, even fbt = 1, and outside is . cikr d ikr

contained by the first node in Fig. 1b). W (kr) — T 3 [hgl)(/ﬂ“)} — —th——, (21)

T T
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then, the radial contribution to the field in Eq. (11) and the (V2 + k2) B(7,t) = _4lv > j(F’ t), (28)
term in the derivative of in the polar angle direction vanish ¢

sooner than the surviving term in the radiation zone: - 4 10J(7,t
g (V2 + k) E(7,t) = ?” <Vp(F, DR g; )> » (29)
B(r>a,0,¢,t) = —Ayji(ka)d sin Qdi [hgl)(kr)} o
T(k : whereJ = Ko(r — a) andp = oé(r — a). We construct the
" i(kr—wt . L. A . )
e~ _y _4rKofsin 9ka2j1(ka)e . @2 so!utlon for thg magnetic |n_duct|on field flrs_t, Eq. (28), by
r using the multipole expansion of the outgoing-wave Green

Its companion electric intensity field from Eq.(9) be- function [13]

comes: eik|7—7"] Z
. Gr(FA 7)) = ——=-=ik» (2l+1)
E(r> a,0,¢,t) = ikpsin Ao, (ka)hiD (kr) 7= | l
4 i(kr—wt) x B ) ju(kr )R (krs) (30)
—iwt | grKo@sinOka2jy (ka)— . (23 : JOET<)T U
X e — 4t Ko sin 0ka® j1 (ka) " (23)

D= _ 1 / T =1 + (= =2\ 33,./
These are the exact results for the radiation fields from the B(r:t) = E/v X J, G (T d (31)
sources distributed on the spherical surface, with a common ) ) )
amplitude determined by the value af(ka) there, the same wherg its transvers_e_source is the rotational of the current
phase, perpendiculdt and B fields, with a vector product density, whose explicit form follows from Eq. (25):
in the radial directionp x (—f) = # with a sin?# angu- Ko sing d
lar distribution, and a polarization in thg direction, per- VxJ= % 0SmY &
pendicular to the meridian plane. Now, we can take again
the point source limit, arriving at the common amplitude  For the dipole source of Eq. (32), only the tefrs 1 in
ArKoa’k? /3 = pk?, using the respective value of the point the sum of Eq. (30) is needed, thus
static dipole moment and connecting with the familiar re-
sults in the books [1-11], including the square dependenceq 3K o0 d
on the wave number. At the same time the dynamic magneticB (7, t) = ik>—2 ¢~ /7"—/ [r'6(r" — a)]
dipole moment can be identified ds Koa?j; (ka)/k, con- ¢ dr
sistent with its own dimensions, with the exact amplitudes in
Egs. (22)-(23), and with the point-dipole source limit.

[ré(r —a)] . (32)

r dr

0

T 27
><j1(k:r<)h§1)(k:r>)dr’//¢’ sin? 0’
00

3. Electric Dipole Sources and Fields

X [sin @ sin 6’ cos ¢ cos ¢’ + sin §sin ' sin p sin ¢’
This section involves electric dipole distributions of surface s
charge density and linear current density along meridian half- + cos f cos §']df dg’ (33)

circles on the spherical surface: . L .
P The unit vector in its cartesian componenfg =

o = 0 cos fe Wt (24) _—isincp’ + jcos¢' projects the firsfc anql second terms
in the square brackets, representirig- 7/, when the
K = Kyfsin e ™t . (25) integration over ¢’ is performed with explicit result

msin@sin @’ [jcos ¢ — isin ] = wsindsin ', This shows
Both densities are connected by the continuity equation that the magnetic induction field is in the direction of parallel
circles inherited from its source in Eq. (32). Correspond-
V. K+ 3£ =0, (26) ingly, the integration over the third term in the square brack-
ot ets vanishes. Next the integration owér
which allows to obtain the relationship between their respec-
tive amplitudes:

K

/ sin? ¢’ sin 6 sin 6’ d6’

2cos 6 ]
0SB wogcosf =0 o Ko = 2200 (27) 0
a 2 1
and to convince the reader about their respective polar angle =sinf /(1 —n?)dn = ésine (34)
dependences. i 3

Instead of constructing the scalar and vector potentials,
we choose to construct the force fields from their inhomogeprojects into thesinf dependence also shared with the
neous Helmholtz equation [11]: source, Eq. (32). The remaining integration over the radial
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coordinate is performed by parts: to obtain the electric intensity field as the rotational of the
- other one using Egs.(36)-(37), with the results:
oo A47mk it yd o,
B(F,t) = ¢ K sin fe /TW[T §(r' —a)] Blr<afet) = 47Tf0(ka)<f20050j1(kr)
0
Amik ) ~sinf d
i (kr )Y (krs)dr' = Ky sin fe ™" - T /
x j1(kr<)hy (krs)dr’ = ¢ o sin fe 0 b [(kr)jl(kr)])
x (760" — a)r'jy (kr )RV (kr (1) —iwt
( (1" = )’ (hr )b (k)| X Jka [(ka)hl (ka)} emiwt(41)
- 4Ky .2cos0 (1)
/% ' j1(kr<)h 1)(kr>)} r'o(r — a)dr’) . (35) E(r>a0,0t)= (ka) (T hy” (kr)
,
0 .
~sinf d (1)
—0 kr)hy (k
The first term vanishes because the Dirac delta function r d(kr) [( )b ( T)})
vanishes in both limits. Then the results inside and outside d _
the source spherical surface become, respectively: X ) [(ka)ji(ka)] e~ **. (42)
— LAm . . . Lo . . _—
B(r <a,0,p,t) = —p— Kqsin0(ka)j, (kr) Notice the continuity of its tangential meridian compo-
¢ nents at the spherical boundary, as required by Faraday'’s law.
d [(k:a)h(l)(ka)} it On the other hand, notice the discontinuity of its radial com-
d(ka) ponents at the same boundary in agreement with Gauss’ law:
(36)
. ’ 4m Ky 2 cosf
B} ami (Be-B)| = T2 )
B(r>a,0,p,t) =— @TKO sin 0(ka) r=a w r

(i (e 187 )

w (=2 (ka)jn (k)] WY (krye=iet (37)
<d<ka> ’ ) ] N
T [(/m)h1 (ka)})

— ]1(kT)

The magnetic induction field shows a discontinuity in its par-
allel circle components at the source spherical surface

r=a

2K0ka —ika
=47 cos
Lo _dm wa k2a?
x (Be - B‘) —K, (38) _9;
r=a =4 (KO) cos = 4dmogcosl, (43)
wa
according to Ampere’s law [11], measuring the magnitude of
the meridian current distribution: leading to the same relationship of Eq. (27) for the ampli-
ik tudesKy andoy.
§m aKO Smg( [(ka)j1 (ka)] B (r) The electric field lines inside and outside the spherical
d(ka) boundary are defined by
. d (1) dr rdf
k) Fiha) [(ka)hl (ko) e T = o4 4 : (44)
drmik 4 20yt 0L g )
= 0T Kysing g ka AT G sing, (39) rodr
k c dr _ rdf (45)
where the term inside the parenthesis is identifiekketimes on(! (krycest  _sinf d [rhgl)(kr)} 7
the negative of the Wronskian of the spherical Bessel func- rodr
tions: —i/k*a®. which coincide with those of Egs.(15)-(16). They have the

While the solution for the electric intensity field could be same shape as those in Egs.(17)-(18) but differ in their coef-

constructed from its sources, being the gradient of the chargiients involving the derivatives of the product of the radial
density and the time derivative of the current distribution incoordinate with the other Bessel function,
Eq. (29), as we already did for the magnetic induction field,

it i i ; d d
it is more expedient to use the Maxwell connection between k) b\ (ka krjy (kr) sin? 6 =
both fields: ) d(ka) (s G k) d(ka)
10F .
S =VxE, (40) X [(ka)hgl)(ka)} kroji(kro)sin2fo o <a,  (46)
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FIGURE 4. Plot of the real and imaginary parts b6 times the spherical Hankel functiorfka)j:1(ka) and (ka)ni(ka), respectively,
singularazing their lowest roots, optimizing the radiation by antennas, and the positions of their extreme values identifying the inner nodal
lines and the resonant cavityM modes; the outer nodal lines are thosevofka), Eq. (47).

|
[

FIGURE 5. Electric intensity field lines inside and outside the source spherical surface on black, in any meridian plane and at a given time,
for the choices ofa) ka = 1, (b) ka = 4.48724 and(c) ka = 7.71886.

components are continuous. In Fig. 5a the valukcois too

d . 1 9 d small and there are no nodal spheres inside. In Fig. 5b and 5c,
d(ka) [(ka)ji(ka)] krhy” (kr) sin® 6 = d(ka) one and two internal spherical nodes are recognized in green
corresponding to extreme values in Fig. 4a. The lines outside

x [(ka)ji(ka) kroh{" (kro)sin? 6y 7o >a. (47)  have their respective spherical nodes determined by the nodes

As in the previous section, the inclusion of the coefficient in.In Fig. 4b, alternating their directions in between. Notice the

volving the other spherical Bessel function in each of thesé'g{?ré'gess Li?;gg?s?jrrggg”g%g%?fonr::ﬁm?;lz' Zr?tg Iot:)t?h:ehf?rst
equations allows also the direct comparison of the field lines P ' g tang

inside and outside the spherical surface: continuous in th8Uter spherical node.
contributions from the real parts, and discontinuous in the On the other hand, the conditions for the transverse mag-
contributions from the imaginary parts associated with thenetic TM modes of the cavity with vanishing radial and po-
Wronskian in Eq. (43). lar components of the magnetic induction can be appreci-
Figures 5 a,b,c illustrate the electric intensity field lines inated in Eq.(36), and the vanishing of the tangential polar
the vicinity of the source spherical surface for increasing val-component of the electric intensity at the source boundary:
ues ofka = 1, 4.48724, 7.71886, the last two corresponding (d/d(ka)) [kaji(ka)] = 0 leads to the choices of the ex-
to the nodes of Fig. 4a, which optimize the fields outsidetremes from Fig. 4a. The appearance of this common factor
The different colors of the lines inside and outside is duen Egs.(37) and (42) leads to the vanishing of the electromag-
to the charge distribution on the spherical boundary, makingetic fields everywhere outside. Figures 6 a, b, c illustrate the
their radial components discontinuous while their tangentiaborresponding field lines inside for the reson@it cavity
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FIGURE 6. Electric intensity field lines inside the source spherical surface on black, in any meridian plane and at a given time, for the

resonanfTM cavity modesia) ka = 2.74371, (b) ka = 6.11676 and(c) ka = 9.31662.

modes with respective frequencies:= (2.74371, 6.11676, field inside and outside, Egs. (48)-(49), are accompanied also
9.31662), in units of/a, associated with the extreme values by the difference in their respective static electric dipole mo-
in Fig. 4a with0, 1, and2 nodes, respectively. They origi- ments:4ra,/3 and4roga®/3, in the same ratio as those in
nate and end perpendicularly, from and to the source spherizgs. (19)-(20) in Sec. 2.

cal surface, consistent with Gauss’s law. In Fig. 6a there are  On the other hand, in the far away radiation zone where
no internal nodes. In Fig. 6b and 6¢ the lines leaving or arrivkr >> 1 the radial contribution to the electric intensity field in
ing from and to the spherical surface also become tangenti&q. (42) vanishes sooner than the polar-angle direction term:
to the neighbouring inner spherical node; moving farther in,

the reader may identify the similarity with the field lines in  7(; > 4.9, o, ¢) = 270 () S0
Figs. 3a and 3b. w r
We also analyse the quasi-static and radiation limits for y d kajs (ka)] L [_ ikr] it

the exact results obtained so far. For the first lirhit,< 1, d(ka) Jrike d(kr) e e
the electric intensity field inside, Eq. (41), becomes: A p i —wt)

Blr < a.0.0) A7 K, (k) (kaJ (;)osﬁ B é% Zin@) = —02rka’ogsin om (kaji(ka)] - (50)

. and its companion magnetic induction field outside in this
X <Z> — 741001;7 (48)  limit from Eq.(37) becomes:
k2a? 3

where the identification between the amplitudés and oy, B(r>a,0,0,t) = @ﬁKo sin 0(ka)
Eq. (27), has been used; then, the electric intensity field in- ¢
side is axial and uniform. The reader should compare its o d kajs (ka) ik it
downward direction with the upward direction of its counter- d(ka) 1
part of Eq. (19) for the magnetic induction field, for upward 4 i —wt)
pointing electric and magnetic dipoles, respectively. Notice = —@27rka’0q sin 0 —— [kaji (ka)] c (51)
also that, in a similar manner to the magnetic induction in the d(ka) r

previous section, in Fig. 5a the electric intensity field inside

: . These are exact results for the radiation fields, produced
the source sphere is no longer uniform, evenkior= 1, and

o . . S by electric dipole sources distributed on the spherical surface,
outside IS contalr!ed by the first node in Fig. 4b. sharing the same amplitude, the same phase, being perpen-
The field outside Eq. (42) takes the form: dicular to each other, their vector prodifetd) x (—@) = 7
Br > a,0,0) = dm Ko 2ka (f20080 (z) being radial with thein? # angular distribution, and the po-
Y w 3 k2r2 larization in meridian planes. Their point source limit in-
) _ 5 volves the common amplitudera3ook? /3 = pk?, connect-
_ ésma’)> — 47“70“‘(;% (r ) k:) _ k:) , (49) ing also with the familiar results in the books [1-11]. In
rok2r? 3 7 general, the dynamic electric dipole moment is identified as
in which the angular distribution of an axial electric dipole (4woga?/k)(d/d(ka)) [kaji(ka)], consistent with the ampli-
moment and its inverse cube radial dependence are identiudes in Eqs. (50)-(51), its own units, and the point-dipole
fied. The different directions and space dependences of theource limit.

r
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4, Discussion show a discontinuity, which by Ampere’s law Eq. (38) re-
produces the original meridian current distribution, Eq. (39).
This section contains successively a summary and discussidrhe electric intensity is evaluated as the rotational of the mag-
of the quantitative and illustrative results in Secs. 2 and 3netic induction via their Maxwell connection Eqg. (40), with
a comparison of their similarities, differences and complethe explicit forms of Egs. (41)-(42); exhibiting field lines
mentarities, as well as the formulation of some comments ofh each meridian plane with a discontinuity in the radial di-
didactic interest. rection at the spherical boundary connected with the surface
In the case of the magnetic dipole source, Eg. (1) decharge distribution by Gauss’ law, Eq. (43), and consistent
scribes its current parallel circle field lines and dipolarity onwith the relationship between the charge and current ampli-
the boundary spherical surface. The corresponding vector péudes; the polar angle components are continuous, consistent
tential, Egs. (2)-(6), and electric intensity evaluated as thavith Faraday’s law; their field lines turn out to have the same
time derivative of the latter, Egs. (7)-(9), share the directionshapes, Egs. (44)-(45), as those of the magnetic induction for
and angular dipolarity of the source, as well as the radial dethe magnetic dipole source Egs. (15)-(16), allowing for the
pendence and the respective coefficients in terms of the spheatifference in their respective coefficients Eqgs. (46)-(47) and
ical Bessel functions, ordinary and of Hankel type, insideEqgs. (17)-(18). Figures 5a, b, c illustrate their behaviour in
and outside, respectively; both are continuous at the boundhe vicinity, inside and outside, of the source spherical sur-
ary spherical surface. The magnetic induction is evaluated dgce, where the normal components are discontinuous, for
the rotational of the vector potential, Egs. (10)-(11), insideincreasing values of the frequency. Figures 6a, b, c illustrate
and outside, with radial and polar components in each mericthe electric intensity field lines for tHEBM modes of the reso-
ian plane; their radial components at the spherical boundrant cavities determined by the vanishing of the derivative of
ary are continuous, consistent with Gauss’ law; while theirthe product of the radial coordinate and the ordinary spheri-
polar components show a discontinuity at the same boundsal Bessel function, or the positions of the extremes of such
ary, connected with the dipolar current source as required bg product, Fig. 4a, guaranteeing also the vanishing of the ex-
Ampere’s law, Egs. (12)-(13), leading to the relationship beternal fields, Egs. (37) and (42); notice that the field lines end
tween the potential and source amplitudes, Eq. (14); the fieltadially at the source spherical surface where the charges are
lines inside and outside are also identified in their differen-distributed.
tial equation forms, Egs. (15)-(16) and their integrated forms  From the comparative reading of the two previous para-
(17)-(18); they are the bases for Figs. 2a,b,c illustrating theigraphs it is easy to recognize the similarities, differences and
behaviour in the vicinity, inside and outside, of the sourcecomplementarities between the two types of magnetic and
spherical surface where the Faraday and Maxwell electroelectric dipole sources and their electromagnetic fields. In
magnetic inductions come at play. Figures 3 a, b, ¢ correthe first one there is only the parallel circle dipole current
spond to the resonant cavifiE modes determined by the distribution with the same properties inherited by the elec-
boundary condition of the vanishing ¢f(ka), which guar-  tric intensity; while in the second one there are both electric
antees that the external fields also vanish, Egs. (9) and (11)dipole charge and meridian current distributions. In the lat-
On the other hand, the electric dipole source involveger, the rotational of the current distribution exhibits parallel
both a charge and a meridian half-circle current distributectircle field lines and the same dipolarity; those properties are
on the spherical surface, Egs. (24)-(25), connected via thimherited by magnetic induction field with that rotational as
continuity equation, Eq. (26), leading to the relationship be-ts source. In turn, the magnetic induction in the first case
tween their respective amplitudes Eq. (27). The magnetibas its field lines in meridian planes, continuous in their ra-
induction field satisfies the Helmholtz equation with the ro-dial components at the spherical boundary, and discontinu-
tational of the current distribution as its source Eq. (28); itous tangential components where the parallel circle currents
can be evaluated as the integral of the latter multiplied byare distributed; while in the second case the electric inten-
the outgoing-wave Green function in its multipole expansionsity has its field lines also in meridian planes, discontinuous
form Eq. (30). The rotational of the current distribution hasin their radial components at the spherical surface boundary
parallel circle field lines with a sine of the polar angle depen-where the charges are distributed, and continuous in the tan-
dence, as the original meridian current distribution; only thegential polar components. In the first case, the coefficients of
dipolar component in the mulipole expansion is selected byhe inner and outer spherical Bessel functions are the other
the angular integrations, Eqgs. (33)-(34), and the magnetic inspherical Bessel function at the spherical boundary, while in
duction field inherits the parallel circle field lines and the sinethe second case the corresponding coefficients are the deriva
of the polar angle of its source; its radial dependence is thatves of the product of the radial variable and the other spher-
of the ordinary spherical Bessel and Hankel functions, insidécal function at the spherical boundary. These coefficients are
and outside, with coefficients coming from the radial integra-the weight functions defining the respective dynamic dipole
tion as the negative of the derivative of the product of the ramoments for the fields inside and outside. The vanishing of
dial coordinate and the other Bessel function at the radius ahese coefficients also determine the corresponding frequen-
the spherical boundary, Eqgs. (35)-(37). The tangential comeies for the respectiveE andTM resonant modes of the cav-
ponents of the magnetic induction at the spherical boundarities, making the outer fields vanish too.
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Some of the following comments may help the reader unsolutions at very large distances, or no external fields out-
derstand the reasons for considering the sources to be haside a spherical cavity, subject to the conditions of satisfying
monically distributed on a spherical boundary. This assump&Gauss’, Faraday’s and Ampere’s laws at the spherical bound-
tion allows us to recognize that inside and outside such ary, is well defined. Here, we have illustrated their solutions
boundary there are no sources and, consequently, the electfar the magnetic and electric dipole cases. The solutions for
intensity and magnetic induction fields are solenoidal; the rohigher multipoles can also be constructed.
tational of one is related to the time derivative of the other
one by Faraday’'s and Maxwell's laws; both are solutions
of the Helmholtz equation. The harmonicity and the direc-Acknowledgements
tions of the distributed sources are inherited by the respective
fields. The problem of solving the Maxwell equations with The authors gratefully acknowledge partial financial support
well-behaved solutions inside and electromagnetic radiatioffom Consejo Nacional de Ciencia y Tecndi@gSNI-1796.
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