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surface with magnetic/electric dipole distributed sources
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Exact solutions of the Maxwell equations for the electromagnetic fields inside and outside a spherical surface, with time alternating magnetic
or electric dipole source distributions, are constructed as alternatives to the respective familiar point-dipole solutions in undergraduate and
graduate books. These solutions are valid for all positions, inside and outside the sphere, including the quasi-static, induction and radiation
zones; the solutions inside make the difference from the point-dipole solutions; the definitions of the dynamic dipole moments must be based
on the ordinary spherical Bessel functions for the solutions outside, and on the outgoing spherical Hankel functions for the solutions inside,
instead of the powers of the radial coordinate as solutions of the Laplace equation valid for the static case. The solutions for the resonating
cavities are associated with the nodes of the spherical Bessel function for theTE modes of the magnetic dipole source, and with the extremes
of the product of the radial coordinate times the same spherical function for theTM modes of the electric dipole source; both conditions also
guarantee the vanishing of the fields outside.

Keywords: Time alternating electric and magnetic dipole sources; potentials and force fields; inner and outer exact solutions; Helmholtz
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1. Introduction

The introductory examples of electromagnetic radiation, in
the advanced undergraduate and graduate levels, are com-
monly those of the Hertz electric and magnetic point-dipole
sources with a harmonic time variation; in addition the study
of the electromagnetic radiation in resonant cavities is pre-
sented separately [1-11]. Our experience with the multipole
expansions of the electrostatic and magnetostatic fields [12],
and of the electromagnetic fields [13] and of their respec-
tive sources distributed on a spherical surface, shows the ex-
istence of complete and exact solutions inside and outside
such a boundary surface, for each multipole component. In
this contribution, we construct the electromagnetic radiation
solutions for the finite electric and magnetic dipole sources,
applicable for both antennas and resonant cavity modes.

In Sec. 2, the magnetic dipole case is analyzed first be-
cause it is didactically simpler. In fact, it involves a surface
current with a sine of the polar angle distribution along par-
allel circles. Then, the vector potential and the electric inten-
sity inherit the alternating time variation, the dipolarity and
parallel-circle field lines of their source; additionally, they
share the same radial dependence in terms of spherical Bessel
functions of order 1 : ordinary ones inside and of Hankel type
outside, and with coefficients involving the other function at
the radius of the boundary surface guaranteeing their continu-
ity there. The magnetic induction field is evaluated as the ro-

tational of the vector potential, with radial components con-
tinuous at the boundary surface, and polar angle tangential
components with a discontinuity connected with the source
current by Ampere’s law.

On the other hand, in Sec. 3 the electric dipole source
consists of a surface charge with a cosine of the polar an-
gle distribution, and a surface current with a sine of the po-
lar angle distribution along the meridian half-circles on the
boundary spherical surface; both distributions are connected
by the continuity equation. In this case the solutions are con-
structed first for the magnetic induction from the Helmholtz
equation with its rotational of the current source. The latter
shares the same dipolarity as the original current and its field
lines are parallel circles. The solutions are evaluated as the
integrals of this source with the outgoing-wave Green func-
tion in its multipole expansion form: only the dipole term
contributes, the parallel circle field lines and the radial inner
and outer spherical Bessel functions are also inherited, with
coefficients involving the derivative of the radial coordinate
times the other Bessel function at the radius of the spherical
boundary surface. The magnetic induction field is discontin-
uous at the spherical boundary, and their discontinuity leads
to the meridian current as demanded by Ampere’s law. Next,
the electric intensity is evaluated via the Maxwell connec-
tion as the rotational of the magnetic induction, exhibiting
field lines in meridian planes with discontinuous radial com-
ponents at the spherical boundary surface, connected with the



140 E. LEY-KOO, CH. ESPARZA-ĹOPEZ AND H. TORRES-BUSTAMANTE

charge distribution by Gauss’s law, and continuous tangential
components at the same boundary.

In both sections, the exact solutions lead to analytical
forms for the field lines in the meridian planes of the mag-
netic induction and the electric intensity, respectively, inside
and outside; they turn out to share the same shape. Inside
they have opposite directions, reflecting the nature of their
respective sources; and for the same reason, their continu-
ities and discontinuities at the boundary surface are different
and complementary. The outer solutions can be analyzed in
the very near quasi-static and in the very far radiation lim-
its, connecting with the standard analysis in the books. An
important difference in our solutions is the identification of
the dynamical dipole moments, involving the coefficients in
the other spherical Bessel function, for the fields inside and
outside. The characterization of the transverse electricTE
and magneticTM modes, of the respective resonant cavities,
depends on the boundary conditions on the inner solutions,
which at the same time guarantee the vanishing of the fields
outside.

Section 4 includes a discussion of the results for the mag-
netic dipole and the electric dipole fields, a comparison of
their similarities and differences, as well as their complemen-
tarities; and the formulation of some didactic comments.

2. Magnetic Dipole Sources, Potential and
Fields

The linear current density distribution on parallel circles on
the spherical surface has the form:

~K = ϕ̂K0 sin θe−iωt

= (−ı̂ sin ϕ + ̂ cosϕ)K0 sin θe−iωt , (1)

which in its cartesian representation exhibits its harmonic
dipole components. Since its divergence vanishes, the con-
tinuity equation indicates that there is not a companion dis-
tribution of charge.

The vector electromagnetic potential shares the same
time and multipolarity dependences of its source, as well as
the radial spherical Bessel functions inside and outside of the
sphere as solutions of the Helmholtz equation [14]:

~A(r ≤ a, θ, ϕ, t) = ϕ̂Ai
0j1(kr) sin θe−iωt (2)

~A (r ≥ a, θ, ϕ, t) = ϕ̂Ae
0h

(1)
1 (kr) sin θe−iωt (3)

The choices of the ordinary and outgoing spherical wave
radial functions guarantee that the boundary conditions for
r → 0 and r → ∞, respectively, are properly satisfied.
The condition of continuity of the potential at the spherical
boundary becomes:

Ai
0j1(ka) = Ae

0h
(1)
1 (ka) (4)

making each coefficient proportional to the radial function on
the other side

Ai
0 = A0h

(1)
1 (ka) , Ae

0 = A0j1(ka) (5)

Consequently, both Eqs.(2) and (3) can be written as a single
one

~A (r, θ, ϕ, t) = ϕ̂A0j1(kr<)h(1)
1 (kr>) sin θe−iωt (6)

wherer< andr> are the smaller and larger ofr anda, re-
spectively. Notice that the vector potential also shares the
solenoidal character of its source, and its companion scalar
potential also vanishes.

The electric intensity field is evaluated from the partial
time derivative of the potential:

~E (r, θ, ϕ, t) = −1
c

∂ ~A

∂t

=
iω

c
ϕ̂A0j1(kr<)h(1)

1 (kr>) sin θe−iωt , (7)

with the explicit forms:

~E (r ≤ a, θ, ϕ, t) =
iω

c
ϕ̂A0j1(kr)h(1)

1 (ka) sin θe−iωt (8)

~E (r ≥ a, θ, ϕ, t) =
iω

c
ϕ̂A0j1(ka)h(1)

1 (kr) sin θe−iωt (9)

sharing the same space and time dependence, including the
multipolarity, direction and solenoidal nature of their com-
mon source.

The magnetic induction field is evaluated as the rotational
of the potential taking the explicit forms:

~B (r < a, θ, ϕ, t) = A0h
(1)
1 (ka)

(
r̂
2 cos θ

r
j1(kr)

− θ̂
sin θ

r

d

dr
[rj1(kr)]

)
e−iωt (10)

~B (r > a, θ, ϕ, t) = A0j1(ka)
(

r̂
2 cos θ

r
h

(1)
1 (kr)

−θ̂
sin θ

r

d

dr

[
rh

(1)
1 (kr)

])
e−iωt. (11)

Notice the continuity of its normal components at the
spherical boundary, consistent with Gauss’ law. On the other
hand, notice the discontinuity of its tangential polar compo-
nents at the same boundary, which by Ampere’s law [11]

r̂ ×
(

~Be − ~Bi
) ∣∣∣∣

r=a

=
4π

c
~K (12)

is connected with the linear density current:

−ϕ̂A0
sin θ

a

(
j1(ka)

d

dr

[
rh

(1)
1 (kr)

]

− h
(1)
1 (ka)

d

dr
[rj1(kr)]

)∣∣∣∣∣
r=a

e−iωt

= −ϕ̂A0
i

ka2
sin θe−iωt = ϕ̂

4π

c
K0 sin θe−iωt . (13)
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FIGURE 1. Plot of the real and imaginary parts of the spherical Hankel function:j1(ka) andn1(ka), respectively, singularazing their lowest
roots: x1,s andy1,s, identifying the nodal lines, including the resonant cavity modes, and the positions of their extreme values:xext

1,s and
yext
1,s , optimizing the radiation by antennas.

The quantity inside the parenthesis in the first line is identi-
fied aska times the Wronskian of the spherical Bessel func-
tions: i/k2a2. The result of the next line yields the relation-
ship between the amplitudes of the vector potential and the
current distribution:

A0 = 4πika2K0 . (14)

The current Eq. (1), the vector potential Eq. (6) and the
electric intensity field Eq. (7) all share parallel circle field
lines. The field linesd~l = r̂dr + θ̂rdθ for the magnetic in-
duction field inside and outside Eqs. (10) and (11), can also
be evaluated from the tangentiality conditions:

dr

2j1(kr) cos θ
=

rdθ

− sin θ d
dr [rj1(kr)]

, (15)

dr

2h
(1)
1 (kr) cos θ

=
rdθ

− sin θ d
dr

[
rh

(1)
1 (kr)

] . (16)

Both equations are separable and integrable, leading to the
equations for the lines passing by a point(r0, θ0), in any
meridian plane:

h
(1)
1 (ka)krj1(kr) sin2 θ = h

(1)
1 (ka)kr0j1(kr0)

× sin2 θ0 r0 < a , (17)

j1(ka)krh
(1)
1 (kr) sin2 θ = j1(ka)kr0h

(1)
1 (kr0)

× sin2 θ0 r0 > a . (18)

Here the inclusion of the coefficient of the other spherical
Bessel function in each of these equations, coming from
Eq. (6), allows also the direct comparison of the field lines
inside and outside the spherical surface: continuous in the
contributions from the real parts, and discontinuous in the
contributions from the imaginary parts associated with the
Wronskian in Eq. (13).

Figure 1 displays the coefficients in Eqs. (17)-(18) as the
real and imaginary parts of the Hankel function:j1(ka) and
n1(ka), respectively. The roots of the first function:x1,s =
4.49, 7.72, 10.9 ... determine the nodal circle lines inside the
boundary surface, and those ofn1: y1,s = 2.79, 6.11, 9.31 ...
determine the nodal circle lines outside. The extremes ofj1
determine the optimal amplitude for the external fields.

Figures 2a,b,c illustrate magnetic induction field lines
of Eqs.(10) and (11) in their forms of Eqs.(17) and (18), in-
side and outside the spherical surface in black, on any merid-
ian plane at a given instant of time. The alternating lines in
red and blue are closed, exhibiting their solenoidal character,
and have opposite circulation directions; their separatrices in
green dashed circles indicate the vanishing of the field there.
Notice also the discontinuities of the field lines at the spheri-
cal surface where the current is distributed, Eq.(12).

On the other hand, the conditions for the transverse elec-
tric TE modes of the cavity with vanishing radial and polar
components of the electric intensity can be appreciated in
Eq. (8), and the vanishing of the normal component of the
magnetic induction at the source boundary:j1(ka) = 0 in
Eq.(10) leads to the choices of the nodes from Fig. 1. The
appearance of this common coefficient in the external elec-
tric intensity field, Eq. (9), and in the external magnetic in-
duction field, Eq. (11), leads to the vanishing of the elec-
tromagnetic fields everywhere outside. Figures 3a,b,c il-
lustrate the magnetic induction field lines in the lowerTE
modes of the resonant cavity for the respective frequencies:
ω = (4.48724, 7.71886, 10.9005), in units of (c/a). The
fields along the axis of the cavity also vanish.

It is relevant to emphasize that the field lines in Figs. 2
and 3 in the vicinity of the source spherical surface, both in-
side and outside, are dominated by the Faraday magnetoelec-
tric and Maxwell electromagnetic inductions. Additionally,
for the cavities the source distribution guarantees the vanish-
ing of the fields outside.
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FIGURE 2. Magnetic induction field lines inside and outside the source spherical surface on black, in any meridian plane and at a given time,
for the choices of(a) ka = 1, (b) ka = 2.0710 and(c) ka = 5.9280.

FIGURE 3. Magnetic induction field lines inside the spherical surface, in any meridian plane and at a given time, for the resonantTE cavity
modes for(a) ka = 4.48724, (b) ka = 7.71886 and(c) ka = 10.9005.

It is very important to recognize that the results obtained
so far are exact. Then, we analyze successively the quasi-
static limit and the radiation limit. In fact, for the first one
when kr ¿ 1, the ordinary spherical Bessel function be-
comes linear and the spherical Hankel function is inversely
proportional to the square of the radial coordinate:kr/3 and
−i/k2r2, respectively. Then, the magnetic induction field in-
side, Eq. (10), becomes

~B (r < a, θ, ϕ) = −A0
i

k2a2

2k

3

(
r̂ cos θ − θ̂ sin θ

)

=
4πK0

3
2k̂, (19)

where the connection between the amplitudesA0 andK0 has
been used from Eq. (14), and identifying the unit axial vector
k̂; in conclusion, the magnetic induction field inside is ax-
ial and uniform. Notice that in Fig. 2a) the field inside the
sphere is no longer uniform, even forka = 1, and outside is
contained by the first node in Fig. 1b).

The field outside, Eq. (11), takes the following form:

~B (r > a, θ, ϕ) = −A0

(
ia

3k

)
r̂2 cos θ + θ̂ sin θ

r3

=
4πK0

3
a3

r3

(
3r̂(r̂ · k̂)− k̂

)
, (20)

in which the angular distribution of an axial dipole moment
and its inverse cube radial dependence are identified. The
respective static magnetic dipole moments determining the
fields inside and outside are4πK0/3 and4πK0a

3/3, consis-
tent with the amplitudes in Eqs. (19)-(20).

It is convenient to point out the different radial depen-
dences of the coefficients in Eqs. (19) and (20): independent
of the radiusa and with the cube ofa, respectively, reflecting
the ratio between the inner and outer dipolar radial depen-
dences in the solutions for the Laplace equationr vs1/r2.

On the other hand, in the far away zone wherekr À 1,

h
(1)
1 (kr) → −eikr

kr
,

d

dr

[
h

(1)
1 (kr)

]
→ −ik

eikr

kr
, (21)
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then, the radial contribution to the field in Eq. (11) and the
term in the derivative ofr in the polar angle direction vanish
sooner than the surviving term in the radiation zone:

~B (r > a, θ, ϕ, t) = −A0j1(ka)θ̂ sin θ
d

dr

[
h

(1)
1 (kr)

]

× e−iωt → −4πK0θ̂ sin θka2j1(ka)
ei(kr−ωt)

r
. (22)

Its companion electric intensity field from Eq.(9) be-
comes:

~E (r > a, θ, ϕ, t) = ikϕ̂ sin θA0j1(ka)h(1)
1 (kr)

× e−iωt → 4πK0ϕ̂ sin θka2j1(ka)
ei(kr−ωt)

r
. (23)

These are the exact results for the radiation fields from the
sources distributed on the spherical surface, with a common
amplitude determined by the value ofj1(ka) there, the same
phase, perpendicular~E and ~B fields, with a vector product
in the radial directionϕ̂ × (−θ̂) = r̂ with a sin2 θ angu-
lar distribution, and a polarization in thêϕ direction, per-
pendicular to the meridian plane. Now, we can take again
the point source limit, arriving at the common amplitude
4πK0a

3k2/3 = µk2, using the respective value of the point
static dipole moment and connecting with the familiar re-
sults in the books [1-11], including the square dependence
on the wave number. At the same time the dynamic magnetic
dipole moment can be identified as4πK0a

2j1(ka)/k, con-
sistent with its own dimensions, with the exact amplitudes in
Eqs. (22)-(23), and with the point-dipole source limit.

3. Electric Dipole Sources and Fields

This section involves electric dipole distributions of surface
charge density and linear current density along meridian half-
circles on the spherical surface:

σ = σ0 cos θe−iωt, (24)

~K = K0θ̂ sin θe−iωt . (25)

Both densities are connected by the continuity equation

∇ · ~K +
∂σ

∂t
= 0 , (26)

which allows to obtain the relationship between their respec-
tive amplitudes:

K0
2 cos θ

a
− iωσ0 cos θ = 0 ∴ K0 =

iωσ0a

2
(27)

and to convince the reader about their respective polar angle
dependences.

Instead of constructing the scalar and vector potentials,
we choose to construct the force fields from their inhomoge-
neous Helmholtz equation [11]:

(∇2 + k2
)

~B(~r, t) = −4π

c
∇× ~J(~r, t) , (28)

(∇2 + k2
)

~E(~r, t) =
4π

c

(
∇ρ(~r, t) +

1
c

∂J(~r, t)
∂t

)
, (29)

where~J = ~Kδ(r − a) andρ = σδ(r − a). We construct the
solution for the magnetic induction field first, Eq. (28), by
using the multipole expansion of the outgoing-wave Green
function [13]:

G+(~r, ~r ′) =
eik|~r−~r ′|

|~r − ~r ′| = ik
∑

l

(2l + 1)

× Pl(r̂ · r̂′)jl(kr<)h(1)
l (kr>) (30)

~B(~r, t) =
1
c

∫
∇′ × ~J(~r ′, t)G+(~r, ~r ′)d3r′ , (31)

where its transverse source is the rotational of the current
density, whose explicit form follows from Eq. (25):

∇× ~J = ϕ̂
K0 sin θ

r

d

dr
[rδ(r − a)] . (32)

For the dipole source of Eq. (32), only the terml = 1 in
the sum of Eq. (30) is needed, thus

~B(~r, t) = ik
3K0

c
e−iωt

∞∫

0

r′
d

dr′
[r′δ(r′ − a)]

× j1(kr<)h(1)
1 (kr>)dr′

π∫

0

2π∫

0

ϕ̂′ sin2 θ′

× [sin θ sin θ′ cosϕ cosϕ′ + sin θ sin θ′ sin ϕ sin ϕ′

+ cos θ cos θ′]dθ′dϕ′ . (33)

The unit vector in its cartesian componentŝϕ′ =
−ı̂ sin ϕ′ + ̂ cos ϕ′ projects the first and second terms
in the square brackets, representingr̂ · r̂′, when the
integration over ϕ′ is performed with explicit result
π sin θ sin θ′ [̂ cosϕ− ı̂ sin ϕ] = π sin θ sin θ′ϕ̂. This shows
that the magnetic induction field is in the direction of parallel
circles inherited from its source in Eq. (32). Correspond-
ingly, the integration over the third term in the square brack-
ets vanishes. Next the integration overθ′,

π∫

0

sin2 θ′ sin θ sin θ′dθ′

= sin θ

1∫

−1

(1− η2)dη =
4
3

sin θ (34)

projects into thesin θ dependence also shared with the
source, Eq. (32). The remaining integration over the radial
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coordinate is performed by parts:

~B(~r, t) = ϕ̂
4πik

c
K0 sin θe−iωt

∞∫

0

r′
d

dr′
[r′δ(r′ − a)]

× j1(kr<)h(1)
1 (kr>)dr′ = ϕ̂

4πik

c
K0 sin θe−iωt

×
(

r′δ(r′ − a)r′j1(kr<)h(1)
1 (kr>)

∣∣∣∣
∞

0

−
∞∫

0

d

dr′

[
r′j1(kr<)h(1)

1 (kr>)
]
r′δ(r′ − a)dr′

)
. (35)

The first term vanishes because the Dirac delta function
vanishes in both limits. Then the results inside and outside
the source spherical surface become, respectively:

~B(r < a, θ, ϕ, t) = −ϕ̂
4πi

c
K0 sin θ(ka)j1(kr)

×
(

d

d(ka)

[
(ka)h(1)

1 (ka)
])

e−iωt

(36)

~B(r > a, θ, ϕ, t) =− ϕ̂
4πi

c
K0 sin θ(ka)

×
(

d

d(ka)
[(ka)j1(ka)]

)
h

(1)
1 (kr)e−iωt (37)

The magnetic induction field shows a discontinuity in its par-
allel circle components at the source spherical surface

r̂ ×
(

~Be − ~Bi
) ∣∣∣∣

r=a

=
4π

c
~K , (38)

according to Ampere’s law [11], measuring the magnitude of
the meridian current distribution:

θ̂
4πika

c
K0 sin θ

(
d

d(ka)
[(ka)j1(ka)] h(1)

1 (kr)

− j1(kr)
d

d(ka)

[
(ka)h(1)

1 (ka)
])∣∣∣∣

r=a

= θ̂
4πika

c
K0 sin θ

−ika

k2a2
=

4π

c
θ̂K0 sin θ , (39)

where the term inside the parenthesis is identified aska times
the negative of the Wronskian of the spherical Bessel func-
tions:−i/k2a2.

While the solution for the electric intensity field could be
constructed from its sources, being the gradient of the charge
density and the time derivative of the current distribution in
Eq. (29), as we already did for the magnetic induction field,
it is more expedient to use the Maxwell connection between
both fields:

1
c

∂ ~E

∂t
= ∇× ~B , (40)

to obtain the electric intensity field as the rotational of the
other one using Eqs.(36)-(37), with the results:

~E (r < a, θ, ϕ, t) =
4πK0

ω
(ka)

(
r̂
2 cos θ

r
j1(kr)

− θ̂
sin θ

r

d

d(kr)
[(kr)j1(kr)]

)

× d

d(ka)

[
(ka)h(1)

1 (ka)
]
e−iωt , (41)

~E (r > a, θ, ϕ, t) =
4πK0

ω
(ka)

(
r̂
2 cos θ

r
h

(1)
1 (kr)

− θ̂
sin θ

r

d

d(kr)

[
(kr)h(1)

1 (kr)
])

× d

d(ka)
[(ka)j1(ka)] e−iωt . (42)

Notice the continuity of its tangential meridian compo-
nents at the spherical boundary, as required by Faraday’s law.
On the other hand, notice the discontinuity of its radial com-
ponents at the same boundary in agreement with Gauss’ law:

r̂ ·
(

~Ee − ~Ei
)∣∣∣

r=a
=

4πK0

ω

2 cos θ

r
(ka)

×
(

d

d(ka)
[(ka)j1(ka)] h(1)

1 (kr)

− j1(kr)
d

d(ka)

[
(ka)h(1)

1 (ka)
])∣∣∣∣

r=a

= 4π
2K0ka

ωa

−ika

k2a2
cos θ

= 4π

(−2i

ωa
K0

)
cos θ = 4πσ0 cos θ , (43)

leading to the same relationship of Eq. (27) for the ampli-
tudesK0 andσ0.

The electric field lines inside and outside the spherical
boundary are defined by

dr

2j1(kr) cos θ
r

=
rdθ

− sin θ

r

d

dr
[rj1(kr)]

, (44)

dr

2h
(1)
1 (kr) cos θ

r

=
rdθ

− sin θ

r

d

dr

[
rh

(1)
1 (kr)

] , (45)

which coincide with those of Eqs.(15)-(16). They have the
same shape as those in Eqs.(17)-(18) but differ in their coef-
ficients involving the derivatives of the product of the radial
coordinate with the other Bessel function,

d

d(ka)

[
(ka)h(1)

1 (ka)
]
krj1(kr) sin2 θ =

d

d(ka)

×
[
(ka)h(1)

1 (ka)
]
kr0j1(kr0) sin2 θ0 r0 < a , (46)
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FIGURE 4. Plot of the real and imaginary parts ofka times the spherical Hankel function:(ka)j1(ka) and (ka)n1(ka), respectively,
singularazing their lowest roots, optimizing the radiation by antennas, and the positions of their extreme values identifying the inner nodal
lines and the resonant cavityTM modes; the outer nodal lines are those ofn1(ka), Eq. (47).

FIGURE 5. Electric intensity field lines inside and outside the source spherical surface on black, in any meridian plane and at a given time,
for the choices of(a) ka = 1, (b) ka = 4.48724 and(c) ka = 7.71886.

d

d(ka)
[(ka)j1(ka)] krh

(1)
1 (kr) sin2 θ =

d

d(ka)

× [(ka)j1(ka)] kr0h
(1)
1 (kr0) sin2 θ0 r0 > a . (47)

As in the previous section, the inclusion of the coefficient in-
volving the other spherical Bessel function in each of these
equations allows also the direct comparison of the field lines
inside and outside the spherical surface: continuous in the
contributions from the real parts, and discontinuous in the
contributions from the imaginary parts associated with the
Wronskian in Eq. (43).

Figures 5 a,b,c illustrate the electric intensity field lines in
the vicinity of the source spherical surface for increasing val-
ues ofka = 1, 4.48724, 7.71886, the last two corresponding
to the nodes of Fig. 4a, which optimize the fields outside.
The different colors of the lines inside and outside is due
to the charge distribution on the spherical boundary, making
their radial components discontinuous while their tangential

components are continuous. In Fig. 5a the value ofka is too
small and there are no nodal spheres inside. In Fig. 5b and 5c,
one and two internal spherical nodes are recognized in green
corresponding to extreme values in Fig. 4a. The lines outside
have their respective spherical nodes determined by the nodes
in Fig. 4b, alternating their directions in between. Notice the
field lines leaving or arriving perpendicularly, from or to the
source spherical surface, and becoming tangential to the first
outer spherical node.

On the other hand, the conditions for the transverse mag-
netic TM modes of the cavity with vanishing radial and po-
lar components of the magnetic induction can be appreci-
ated in Eq.(36), and the vanishing of the tangential polar
component of the electric intensity at the source boundary:
(d/d(ka)) [kaj1(ka)] = 0 leads to the choices of the ex-
tremes from Fig. 4a. The appearance of this common factor
in Eqs.(37) and (42) leads to the vanishing of the electromag-
netic fields everywhere outside. Figures 6 a, b, c illustrate the
corresponding field lines inside for the resonantTM cavity
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FIGURE 6. Electric intensity field lines inside the source spherical surface on black, in any meridian plane and at a given time, for the
resonantTM cavity modes:(a) ka = 2.74371, (b) ka = 6.11676 and(c) ka = 9.31662.

modes with respective frequencies:ω = (2.74371, 6.11676,
9.31662), in units ofc/a, associated with the extreme values
in Fig. 4a with0, 1, and2 nodes, respectively. They origi-
nate and end perpendicularly, from and to the source spheri-
cal surface, consistent with Gauss’s law. In Fig. 6a there are
no internal nodes. In Fig. 6b and 6c the lines leaving or arriv-
ing from and to the spherical surface also become tangential
to the neighbouring inner spherical node; moving farther in,
the reader may identify the similarity with the field lines in
Figs. 3a and 3b.

We also analyse the quasi-static and radiation limits for
the exact results obtained so far. For the first limit,kr ¿ 1,
the electric intensity field inside, Eq. (41), becomes:

~E(r < a, θ, ϕ) =
4πK0

ω
(ka)

(
r̂
2k cos θ

3
− θ̂

2k sin θ

3

)

×
(

i

k2a2

)
= −4π

3
σ0k̂ , (48)

where the identification between the amplitudesK0 andσ0,
Eq. (27), has been used; then, the electric intensity field in-
side is axial and uniform. The reader should compare its
downward direction with the upward direction of its counter-
part of Eq. (19) for the magnetic induction field, for upward
pointing electric and magnetic dipoles, respectively. Notice
also that, in a similar manner to the magnetic induction in the
previous section, in Fig. 5a the electric intensity field inside
the source sphere is no longer uniform, even forka = 1, and
outside is contained by the first node in Fig. 4b.

The field outside Eq. (42) takes the form:

~E(r > a, θ, ϕ) =
4πK0

ω

2ka

3

(
r̂
2 cos θ

r

( −i

k2r2

)

− θ̂
sin θ

r

i

k2r2

))
=

4πσ0

3
a3

r3

(
3r̂

(
r̂ · k̂

)
− k̂

)
, (49)

in which the angular distribution of an axial electric dipole
moment and its inverse cube radial dependence are identi-
fied. The different directions and space dependences of the

field inside and outside, Eqs. (48)-(49), are accompanied also
by the difference in their respective static electric dipole mo-
ments:4πσ0/3 and4πσ0a

3/3, in the same ratio as those in
Eqs. (19)-(20) in Sec. 2.

On the other hand, in the far away radiation zone where
kr À 1 the radial contribution to the electric intensity field in
Eq. (42) vanishes sooner than the polar-angle direction term:

~E(r > a, θ, ϕ, t) = −θ̂
4πK0

ω
(ka)

sin θ

r

× d

d(ka)
[kaj1(ka)]

d

d(kr)
[−eikr

]
e−iωt

= −θ̂2πka2σ0 sin θ
d

d(ka)
[kaj1(ka)]

ei(kr−ωt)

r
, (50)

and its companion magnetic induction field outside in this
limit from Eq.(37) becomes:

~B(r > a, θ, ϕ, t) = ϕ̂
4πi

c
K0 sin θ(ka)

× d

d(ka)
[kaj1(ka)] eikrre−iωt

= −ϕ̂2πka2σ0 sin θ
d

d(ka)
[kaj1(ka)]

ei(kr−ωt)

r
. (51)

These are exact results for the radiation fields, produced
by electric dipole sources distributed on the spherical surface,
sharing the same amplitude, the same phase, being perpen-
dicular to each other, their vector product(−θ̂) × (−ϕ̂) = r̂
being radial with thesin2 θ angular distribution, and the po-
larization in meridian planes. Their point source limit in-
volves the common amplitude4πa3σ0k

2/3 = pk2, connect-
ing also with the familiar results in the books [1-11]. In
general, the dynamic electric dipole moment is identified as
(4πσ0a

2/k)(d/d(ka)) [kaj1(ka)], consistent with the ampli-
tudes in Eqs. (50)-(51), its own units, and the point-dipole
source limit.
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4. Discussion

This section contains successively a summary and discussion
of the quantitative and illustrative results in Secs. 2 and 3,
a comparison of their similarities, differences and comple-
mentarities, as well as the formulation of some comments of
didactic interest.

In the case of the magnetic dipole source, Eq. (1) de-
scribes its current parallel circle field lines and dipolarity on
the boundary spherical surface. The corresponding vector po-
tential, Eqs. (2)-(6), and electric intensity evaluated as the
time derivative of the latter, Eqs. (7)-(9), share the direction
and angular dipolarity of the source, as well as the radial de-
pendence and the respective coefficients in terms of the spher-
ical Bessel functions, ordinary and of Hankel type, inside
and outside, respectively; both are continuous at the bound-
ary spherical surface. The magnetic induction is evaluated as
the rotational of the vector potential, Eqs. (10)-(11), inside
and outside, with radial and polar components in each merid-
ian plane; their radial components at the spherical bound-
ary are continuous, consistent with Gauss’ law; while their
polar components show a discontinuity at the same bound-
ary, connected with the dipolar current source as required by
Ampere’s law, Eqs. (12)-(13), leading to the relationship be-
tween the potential and source amplitudes, Eq. (14); the field
lines inside and outside are also identified in their differen-
tial equation forms, Eqs. (15)-(16) and their integrated forms
(17)-(18); they are the bases for Figs. 2a,b,c illustrating their
behaviour in the vicinity, inside and outside, of the source
spherical surface where the Faraday and Maxwell electro-
magnetic inductions come at play. Figures 3 a, b, c corre-
spond to the resonant cavityTE modes determined by the
boundary condition of the vanishing ofj1(ka), which guar-
antees that the external fields also vanish, Eqs. (9) and (11).

On the other hand, the electric dipole source involves
both a charge and a meridian half-circle current distributed
on the spherical surface, Eqs. (24)-(25), connected via the
continuity equation, Eq. (26), leading to the relationship be-
tween their respective amplitudes Eq. (27). The magnetic
induction field satisfies the Helmholtz equation with the ro-
tational of the current distribution as its source Eq. (28); it
can be evaluated as the integral of the latter multiplied by
the outgoing-wave Green function in its multipole expansion
form Eq. (30). The rotational of the current distribution has
parallel circle field lines with a sine of the polar angle depen-
dence, as the original meridian current distribution; only the
dipolar component in the mulipole expansion is selected by
the angular integrations, Eqs. (33)-(34), and the magnetic in-
duction field inherits the parallel circle field lines and the sine
of the polar angle of its source; its radial dependence is that
of the ordinary spherical Bessel and Hankel functions, inside
and outside, with coefficients coming from the radial integra-
tion as the negative of the derivative of the product of the ra-
dial coordinate and the other Bessel function at the radius of
the spherical boundary, Eqs. (35)-(37). The tangential com-
ponents of the magnetic induction at the spherical boundary

show a discontinuity, which by Ampere’s law Eq. (38) re-
produces the original meridian current distribution, Eq. (39).
The electric intensity is evaluated as the rotational of the mag-
netic induction via their Maxwell connection Eq. (40), with
the explicit forms of Eqs. (41)-(42); exhibiting field lines
in each meridian plane with a discontinuity in the radial di-
rection at the spherical boundary connected with the surface
charge distribution by Gauss’ law, Eq. (43), and consistent
with the relationship between the charge and current ampli-
tudes; the polar angle components are continuous, consistent
with Faraday’s law; their field lines turn out to have the same
shapes, Eqs. (44)-(45), as those of the magnetic induction for
the magnetic dipole source Eqs. (15)-(16), allowing for the
difference in their respective coefficients Eqs. (46)-(47) and
Eqs. (17)-(18). Figures 5a, b, c illustrate their behaviour in
the vicinity, inside and outside, of the source spherical sur-
face, where the normal components are discontinuous, for
increasing values of the frequency. Figures 6a, b, c illustrate
the electric intensity field lines for theTM modes of the reso-
nant cavities determined by the vanishing of the derivative of
the product of the radial coordinate and the ordinary spheri-
cal Bessel function, or the positions of the extremes of such
a product, Fig. 4a, guaranteeing also the vanishing of the ex-
ternal fields, Eqs. (37) and (42); notice that the field lines end
radially at the source spherical surface where the charges are
distributed.

From the comparative reading of the two previous para-
graphs it is easy to recognize the similarities, differences and
complementarities between the two types of magnetic and
electric dipole sources and their electromagnetic fields. In
the first one there is only the parallel circle dipole current
distribution with the same properties inherited by the elec-
tric intensity; while in the second one there are both electric
dipole charge and meridian current distributions. In the lat-
ter, the rotational of the current distribution exhibits parallel
circle field lines and the same dipolarity; those properties are
inherited by magnetic induction field with that rotational as
its source. In turn, the magnetic induction in the first case
has its field lines in meridian planes, continuous in their ra-
dial components at the spherical boundary, and discontinu-
ous tangential components where the parallel circle currents
are distributed; while in the second case the electric inten-
sity has its field lines also in meridian planes, discontinuous
in their radial components at the spherical surface boundary
where the charges are distributed, and continuous in the tan-
gential polar components. In the first case, the coefficients of
the inner and outer spherical Bessel functions are the other
spherical Bessel function at the spherical boundary, while in
the second case the corresponding coefficients are the deriva-
tives of the product of the radial variable and the other spher-
ical function at the spherical boundary. These coefficients are
the weight functions defining the respective dynamic dipole
moments for the fields inside and outside. The vanishing of
these coefficients also determine the corresponding frequen-
cies for the respectiveTE andTM resonant modes of the cav-
ities, making the outer fields vanish too.
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Some of the following comments may help the reader un-
derstand the reasons for considering the sources to be har-
monically distributed on a spherical boundary. This assump-
tion allows us to recognize that inside and outside such a
boundary there are no sources and, consequently, the electric
intensity and magnetic induction fields are solenoidal; the ro-
tational of one is related to the time derivative of the other
one by Faraday’s and Maxwell’s laws; both are solutions
of the Helmholtz equation. The harmonicity and the direc-
tions of the distributed sources are inherited by the respective
fields. The problem of solving the Maxwell equations with
well-behaved solutions inside and electromagnetic radiation

solutions at very large distances, or no external fields out-
side a spherical cavity, subject to the conditions of satisfying
Gauss’, Faraday’s and Ampere’s laws at the spherical bound-
ary, is well defined. Here, we have illustrated their solutions
for the magnetic and electric dipole cases. The solutions for
higher multipoles can also be constructed.
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