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An algebraic approach to a charged particle in a uniform magnetic field
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cEscuela Superior de Fı́sica y Mateḿaticas, Instituto Polit́ecnico Nacional,
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We study the problem of a charged particle in a uniform magnetic field with two different gauges, known as Landau and symmetric gauges.
By using a similarity transformation in terms of the displacement operator we show that, for the Landau gauge, the eigenfunctions for this
problem are the harmonic oscillator number coherent states. In the symmetric gauge, we calculate theSU(1, 1) Perelomov number coherent
states for this problem in cylindrical coordinates in a closed form. Finally, we show that these Perelomov number coherent states are related
to the harmonic oscillator number coherent states by the contraction of theSU(1, 1) group to the Heisenberg-Weyl group.
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1. Introduction

Harmonic oscillators coherent states were introduced by
Schr̈odinger at the beginning of the quantum mechanics [1].
Glauber defined these states as the eigenfunctions of the an-
nihilation operator [2]. Klauder showed that these states are
obtained by applying the Weyl operator to the harmonic os-
cillator ground state [3]. Harmonic oscillator coherent states
are gaussian functions displaced from origin which maintain
their shape over time. Boiteux and Levelut defined the num-
ber coherent states for the harmonic oscillator by applying the
Weyl operator to any excited state [4]. These states are called
displaced number states or number coherent states and were
extensively studied in the middle of the last century. Most of
their properties are compiled in Refs. 5 to 8. In Ref. 9, Nieto
review these states and gave their most general form.

Perelomov generalized the Klauder coherent states to any
Lie group by applying the group displacement operator to
the lowest normalized state [10]. The Perelomov coherent
states haven been applied to many physical problems as can
be seen in Refs. 11 to 13. Gerry defined theSU(1, 1) num-
ber coherent states by applying the Perelomov displacement
operator to any excited state and used this definition to cal-
culate the Berry’s phase in the degenerate parametric ampli-
fier [14]. Recently, we have studied the Perelomov number
coherent states for theSU(1, 1) andSU(2) groups. In par-
ticular, we gave the most general expression of these states,
their ladder operators and applied them to calculate the eigen-
functions of the non-degenerate parametric amplifier [15] and
the problem of two coupled oscillators [16]. In Ref. 17, we
computed the number radial coherent states for the general-
ized MICZ-Kepler problem by using thesu(1, 1) theory of

unitary representations and the tilting transformation.

On the other hand, the problem of a charged particle in a
uniform magnetic field has been widely studied in classical
mechanics, condensed matter physics, quantum optics and
relativistic quantum mechanics, among others. The energy
spectrum of this problem is known as the Landau levels. The
interaction of an electron with the uniform magnetic field is
described by means of electromagnetical potentials. How-
ever, different gauges give raise to the same electromagnetic
field [18]. The coherent states for this problem have been
obtained previously by using different formalisms, as can be
seen in references [19–24].

The aim of this work is to introduce a algebraic approach
to study the problem of a charged particle in an uniform mag-
netic field and obtain its coherent states. Specifically, the al-
gebraic approach used in this work is the tilting transforma-
tion, which offers to graduate students an alternative method
to the commonly used analytical approach, in order to study
and exactly solve several problems in quantum mechanics.

This work is organized as it follows. In Sec.2, we give a
summary on the Heisenberg-Weyl andSU(1, 1) groups and
its number coherent states. In Sec.3, we study the problem
of a charged particle in a uniform magnetic field in cartesian
coordinates with the Landau gauge. We solve this problem
and show that its eigenfunctions are the harmonic oscillator
number coherent states. In Sec.4, we study the Landau levels
problem in cylindrical coordinates with the symmetric gauge.
We construct theSU(1, 1) Perelomov number coherent states
for its eigenfunctions. In Sec.5, we contract theSU(1, 1)
group to the Heisenberg-Weyl group. We show that, under
this contraction theSU(1, 1) Perelomov coherent states are
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related to the harmonic oscillator coherent states. Finally, we
give some concluding remarks.

2. H(4) and SU(1, 1) number coherent states

2.1. Heisenberg-Weyl group

The annihilation and creation operators of the harmonic os-
cillator a, a†, together with the number and identity operators
a†a, I satisfy the following relations

[a, a†] = I, [a, a†a] = a,

[a†, a†a] = −a†, [a, I] = [a†a, I] = 0 = [a†, I]. (1)

These equations are known as the Heisenberg-Weyl algebra
h(4). The action of these operators on the Fock states is given
by

a†|n〉 =
√

n + 1|n + 1〉,
a|n〉 =

√
n|n− 1〉, a†a|n〉 = n|n〉. (2)

The harmonic oscillator coherent states are defined in terms
of these operators as

|α〉 = D(α)|0〉 = eαa†−α∗a|0〉

= exp
[
−1

2
|α|2

] ∞∑
0

αn

√
n!
|n〉, (3)

whereD(α) is the Weyl operator (also called displacement
operator),|0〉 is the ground state andα is a complex number
given by

α =
√

mω

~
x0 +

i√
2mω~

p0. (4)

This unitary operatorD(α) can be expressed in a disentan-
gled form by using the Weyl identity as follows [25]

D(α) = e−|α|
2/2eαa†e−α∗a. (5)

The harmonic oscillator number coherent states are defined
as the action of the Weyl operator on any excited state|n〉 [4]

|n, α〉 = D(α)|n〉 = e−|α|
2/2eαa†e−α∗a|n〉. (6)

By using the Baker-Campbell-Hausdorff identity

e−ABeA = B +
1
1!

[B,A] +
1
2!

[[B,A], A]

+
1
3!

[[[B,A], A], A] + ..., (7)

and the commutation relationship of the ladder operators
[a, a†] = 1, it can be shown the following properties

A(α) = D†(α)aD(α) = a + α,

A†(α) = D†(α)a†D(α) = a† + α∗. (8)

These operators play the role of annihilation and creation op-
erators when they act on the harmonic oscillator number co-
herent states, since [4]

A†|n, α〉 =
√

n + 1|n + 1, α〉,
A|n, α〉 =

√
n|n− 1, α〉. (9)

By using the disentangled form of the Weyl operatorD(α)
of Eq. (5), we can prove that the most general form of these
states in the Fock space is [9]

|n, α〉 = e−|α|
2/2

∞∑

k=0

(αa†)k

k!

n∑

j=0

(−α∗a)j

j!

×
(

(n− j + k)!n!
(n− j)!(n− j)!

)1/2

|n− j + k〉. (10)

On the other hand, the eigenfunctions of the one-
dimensional harmonic oscillator are given by

ψn(x) = NnHn(βx)e−
1
2 β2x2

, (11)

where Hn(βx) are the Hermite polynomials andβ =√
mω/~,

Nn =
(

β

π1/42nn!

)1/2

.

The Weyl operatorD(α) can be expressed in terms of the
harmonic oscillator positionx and momentump operators as

D(x0, p0x) = e
i
~ (p0xx−x0px)

= e−
ix0p0x

2~ e
ip0xx
~ e

ix0px
~ , (12)

as it is shown in reference [25]. Thus, the action of this op-
erator on the harmonic oscillator eigenfunctions of Eq. (11)
is

D(x0, 0)ψn(x) = Nne−
1
2 β2(x−x0)

2
Hn (β(x− x0)) . (13)

2.2. SU(1, 1) group

Thesu(1, 1) Lie algebra is generated by the set of operators
{K+, K−,K0}. These operators satisfy the commutation re-
lations [26]

[K0,K±] = ±K±, [K−,K+] = 2K0. (14)

The action of these operators on the Fock space states
{|k, n〉, n = 0, 1, 2, ...} is given by

K+|k, n〉 =
√

(n + 1)(2k + n)|k, n + 1〉, (15)

K−|k, n〉 =
√

n(2k + n− 1)|k, n− 1〉, (16)

K0|k, n〉 = (k + n)|k, n〉. (17)
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In analogy to the harmonic oscillator coherent states,
Perelomov defined the standardSU(1, 1) coherent states
as [11]

|ζ〉 = D(ξ)|k, 0〉

= (1− |ζ|2)k
∞∑

s=0

√
Γ(n + 2k)
s!Γ(2k)

ζs|k, s〉, (18)

where|k, 0〉 is the lowest normalized state. In this expression,
D(ξ) is displacement operator for this group defined as

D(ξ) = exp(ξK+ − ξ∗K−),

where

ξ = −1
2
τe−iϕ,

−∞ < τ < ∞ and0 ≤ ϕ ≤ 2π. The so-called normal form
of the displacement operator is given by

D(ξ) = exp(ζK+) exp(ηK0) exp(−ζ∗K−), (19)

where

ζ = − tanh(
1
2
τ)e−iϕ

and
η = −2 ln cosh |ξ| = ln(1− |ζ|2)

[27]. This expression is the analogue of Eq. (5) for the Weyl
operator.

TheSU(1, 1) Perelomov number coherent states were in-
troduced by Gerry and are defined by the following expres-
sion [14]

|ζ, k, n〉 = D(ξ)|k, n〉
= exp(ζK+) exp(ηK3) exp(−ζ∗K−)|k, n〉. (20)

By using the BCH formula of Eq. (7), it has been shown that
the similarity transformation of the operatorsK± are [15]

L+ = D(ξ)K+D†(ξ)

= − ξ∗

|ξ|αK0 + β

(
K+ +

ξ∗

ξ
K−

)
+ K+, (21)

L− = D(ξ)K−D†(ξ)

= − ξ

|ξ|αK0 + β

(
K− +

ξ

ξ∗
K+

)
+ K−, (22)

The action of these on theSU(1, 1) Perelomov number co-
herent states is

L+|ζ, k, n〉 =
√

(n + 1)(2k + n)|ζ, k, n + 1〉,
L−|ζ, k, n〉 =

√
n(2k + n− 1)|ζ, k, n− 1〉. (23)

Thus,L± act as ladder operators for these number coherent
states. Also, the most general form of theses states on the

Fock space was calculated as follows [15]

|ζ, k, n〉 =
∞∑

s=0

ζs

s!

n∑

j=0

(−ζ∗)j

j!
eη(k+n−j)

×
√

Γ(2k + n)Γ(2k + n− j + s)
Γ(2k + n− j)

×
√

Γ(n + 1)Γ(n− j + s + 1)
Γ(n− j + 1)

× |k, n− j + s〉. (24)

These states are the analogue for theSU(1, 1) group to those
given by Nieto for the harmonic oscillator in Eq. (10).

3. A charged particle in a uniform magnetic
field in the Landau gauge.

The stationary Schrödinger equation of a charged particle in
a uniform magnetic field~B is given by

HΨ =
1
2µ

(
~p +

e

c
~A
)2

Ψ = EΨ, (25)

where ~A is the vector potential, related to the magnetic field
as ~B = ∇ × ~A. This vector potential does not describe the
magnetic field in a unique way, since the magnetic field re-
mains invariant against gauge transformations~A → ~A′ =
~A +∇g, whereg is a time independent scalar field [18]. We
can choose the vector potential as~A = (1/2) ~B × ~r and our
coordinate system so that the z-axis is parallel to~B. Then,

~A = −B

2
(y,−x, 0). (26)

This choice is known as the symmetric gauge. If we make
the gauge transformation withg = −(B/2)xy, we obtain the
following vector potential

~A′ = −B(y, 0, 0). (27)

This choice of the vector potential is known as the Landau
gauge. With this gauge the Eq. (25) becomes [18]

− ~
2

2m

d2ψ

dy2
+

mω2

2
(y − d)2ψ =

(
E − ~

2k2
z

2m

)
ψ, (28)

where the Larmor frequencyω andd are defined as

ω =
eB

mc
, d =

~ckx

eB
. (29)

By introducing the harmonic oscillator operatorsa, a†

a =
√

mω

~
y +

i√
2mω~

py,

a† =
√

mω

~
y − i√

2mω~
py, (30)
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we can write the Eq. (28) as follows

Hψ = µ

(
a†a +

1
2

)
ψ + ν

(
a + a†

)
ψ

=
(

E − ~
2k2

z

2m
− mω2

2
d2

)
ψ, (31)

where

µ = ~ω, ν = −
√
~mω3

2
d. (32)

If we make the definition

ε = E − ~
2k2

z

2m
− mω2

2
d2

and in order to diagonalize this Hamiltonian, we apply the
tilting transformation with the displacement operator as fol-
lows [15,16]

D†(α)HD(α)D†(α)ψ = εD†(α)ψ. (33)

From Eqs. (8) the tilted HamiltonianH ′ = D†(α)HD(α)
becomes

H ′ = µ

(
a†a + |α|2 +

1
2

)

− ν(α + α∗) + a†(αµ− ν) + a(α∗µ− ν). (34)

If we choose the coherent state parametersy0 = d and
py0 = 0 we obtain that the tilted Hamiltonian reduces, up
to a constant factor, to that of the one-dimensional harmonic
oscillator

H ′ = µ

(
a†a + |α|2 +

1
2

)
− ν(α + α∗). (35)

Thus, the energy spectrum for a charged particle in a uniform
magnetic field is

E =
(

n +
1
2

)
~ω +

~2k2
z

2m
. (36)

The wave functionψ is obtained by applying the displace-
ment operatorD(α) to the harmonic oscillator wave func-
tionsψ′. Thus, from Eq. (13)

ψ = D(α)ψ′ = N1e
− (y−y0)2

2λ2 Hn

(
y − y0

λ

)
. (37)

In this expressionN1 is a normalization constant andλ is
the magnetic lengthλ = (~c/eB)1/2. The eigenfunction for
the general problemΨ is obtained by adding the free particle
termei(kxx+kzz) to Eq. (37). Therefore, we have showed that
the eigenfunctions of a charged particle in a uniform mag-
netic field are the harmonic oscillator number coherent states.
The treatment developed in this section can be also applied to
the problem of a charged particle in a pure electric field or in
a magnetic and electric field. With a proper choice of the co-
herent states parameters it can be shown that the harmonic
oscillator number coherent states are the eigenfunctions of
these problems.

4. A charged particle in a uniform mag-
netic field in the symmetric gauge and its
SU(1, 1) number coherent states

In the symmetric gauge (Eq. (26)) the Schrödinger equation
of a charged particle in a uniform magnetic field is

Hψ =
−~2

2µ
∇2ψ +

eB

2µc
Lzψ

+
e2B2

8µc2
(x2 + y2)ψ = Eψ. (38)

If we consider the wave functionψ(r) = U(ρ)eimφeikz

(m = 0, 1, 2, ...) in cylindrical coordinates, the Schrödinger
equation for a charged particle in an external magnetic field
remains

[
d2

dρ2
+

1
ρ

d

dρ
− m2

ρ2
− e2B2

4~2c2
ρ2

+
2mE

~2
− eBm

~c
− k2

]
U(ρ) = 0. (39)

By performing the change of variablex =
√

(eB/2~c)ρ in
the above equation we obtain

[
d2

dx2
+

1
x

d

dx
− m2

x2
+ (λ− x2)

]
U(x) = 0, (40)

where we have introduced the variableλ defined as

λ =
4µc

eB~

(
E − ~

2k2

2µ

)
− 2m. (41)

Thesu(1, 1) Lie algebra for this problem is well known and
the generators for its realization are given by [28]

K± =
1
2

(
±x

d

dx
− x2 + 2K0 ± 1

)
, (42)

K0 =
1
4

(
− d2

dx2
− 1

x

d

dx
+

m2

x2
+ x2

)
. (43)

Moreover, by definingy = x2, the normalized wave func-
tions are

Un(y) =

√
2n!

(n + m)!
e−y/2ym/2Lm

n (y), (44)

which are the Sturmian functions for the unitary irreducible
representations of thesu(1, 1) Lie algebra. Also, the
Bargmann indexk is k = m/2 + 1/2, and the other group
number is just the radial quantum numbern. Therefore
we can construct theSU(1, 1) Perelomov number coherent
states for this problem by substituting Eq.(44) into Eq. (24).
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By interchanging the order of summations and using the
properties48.7.6 and48.7.8 of Ref. 29 we obtain

ψn,m =

√
2Γ(n + 1)

Γ(n + m + 1)
(−1)n

√
π

eimφ

× (−ζ∗)n(1− |ζ|2)m
2 + 1

2 (1 + σ)n

(1− ζ)m+1

× e−
ρ2(ζ+1)
2(1−ζ) ρmLm

n

(
ρ2σ

(1− ζ)(1− σ)

)
, (45)

where we have defined

σ =
1− |ζ|2

(1− ζ)(−ζ∗)
. (46)

These are theSU(1, 1) Perelomov number coherent states of
a charged particle in a magnetic field. As a particular case
of this result we can see that forn = 0 these states reduces
to the standard Perelomov coherent states, presented in ref-
erence [30]. These states are significant in quantum optics,
since a particular case of them are the eigenfunctions of the
non-degenerate parametric amplifier [15].

5. SU(1, 1) contraction to the Heisenberg-
Weyl group

In this section, we will contract thesu(1, 1) Lie algebra to
theh(4) algebra of the harmonic oscillator. The proceeding
developed here is analogue to that presented by Arecchi in
reference [31] for thesu(2) algebra. Thus, we define the fol-
lowing transformation




h+

h−
h0

hI


 =




c 0 0 0
0 c 0 0
0 0 1 − 1

2c2

0 0 0 1







K+

K−
K0

KI


 . (47)

These new operatorsh satisfy the following commutation re-
lationships

[h0, h±] = ±cK±,

[h−, h+] = 2c2K0, [~h, hI ] = 0. (48)

In the limit c → 0 this transformation becomes singular.
However, the commutation relationships are well defined and
become

[h0, h±] = ±h±,

[h−, h+] = h0, [~h, hI ] = 0, (49)

which is nothing but theh(4) algebra with the definition

lim
c→0

h0 = n = a†a,

lim
c→0

h+ = a†, lim
c→0

h− = a. (50)

Also, in order to contract the displacement operatorD(ξ) to
the Weyl operatorD(α) the coherent state parameters must
satisfy

lim
c→0

ξ

c
= α, lim

c→0

ξ∗

c
= α∗. (51)

To obtain the relationship between the contraction parame-
ter c and the group numberk we apply theh0 operator to an
arbitrarysu(1, 1) state|n, k〉

h0|n, k〉 =
(

K0 − 1
2c2

KI

)
|n, k〉

=
(

n + k − 1
2c2

)
|n, k〉. (52)

If we demand that this eigenvalue must vanish for the lowest
state|0, k〉 we obtain

lim
c→0

(
k − 1

2c2

)
= 0. (53)

Thus, in the limitc → 0, c =
√

(1/2k) and thesu(1, 1)
irreducible unitary representations contract to theh(4) irre-
ducible unitary representations. The relationship between the
states of both groups can be obtained by defining the state

|∞, n〉 = lim
c→0

|n, k〉. (54)

With this definition we obtain

a†a|∞, n〉 = lim
c→0

(
K0 − 1

2c2

)
|n, k〉

= lim
c→0

(
n + k − 1

2c2

)
|n, k〉 = n|∞, n〉. (55)

In a similar way we obtain

a†|∞, n〉 =
√

n + 1|∞, n + 1〉
a|∞, n〉 =

√
n|∞, n− 1〉. (56)

Therefore, the Perelomov number coherent states contract to
the harmonic oscillator number coherent states, since

|α〉 = lim
c→0

|ζ, n, k〉 = lim
c→0

(
1− |ζ|2)k

eξK+|n, k〉

= lim
c→0

(
1− c2αα∗

)1/2c2

eαa† |0〉

= e−|α|
2
eαa† |0〉. (57)

In our problem, this implies that theSU(1, 1) Perelomov
number coherent states of a charged particle in a magnetic
field of Eq. (45), under the contraction of theSU(1, 1) group,
reduce to the number coherent states of the harmonic oscilla-
tor of Eq. (37). In Ref. 32, the authors studied the contraction
of the SU(1, 1) group to the quantum harmonic oscillator.
Moreover, they shown that one advantage of working with
SU(1, 1) is that its representation Hilbert space is infinite-
dimensional, thus it does not change dimension in the con-
traction limit, as it happens for theSU(2) case.
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6. Concluding remarks

We applied the generalized number coherent states theory to
study the problem of a charged particle in the Landau and
symmetric gauge. We showed that for the Landau gauge,
the eigenfunctions for the Landau level states can be repre-
sented in terms of the harmonic oscillator coherent states.
For the symmetric gauge we study the eigenfunctions of this
problem in cylindrical coordinates and we constructed the
SU(1, 1) Perelomov number coherent states in a closed way.
We show that under a contraction of theSU(1, 1) group, the
Perelomov number coherent states are reduced to the num-
ber coherent states of the harmonic oscillator, related to the

Heisenberg-Weyl group.
It is important to note that the tilting transformation

method used in this work has been applied to more novel
problems, as the non-degenerate parametric amplifier [15],
the problem of two coupled oscillators [16], and the general-
ized MICZ-Kepler problem [17].
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