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An algebraic approach to a charged particle in a uniform magnetic field
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We study the problem of a charged particle in a uniform magnetic field with two different gauges, known as Landau and symmetric gauges.

By using a similarity transformation in terms of the displacement operator we show that, for the Landau gauge, the eigenfunctions for this

problem are the harmonic oscillator number coherent states. In the symmetric gauge, we calcSlEte the Perelomov number coherent

states for this problem in cylindrical coordinates in a closed form. Finally, we show that these Perelomov number coherent states are relatec
to the harmonic oscillator number coherent states by the contraction 6L, 1) group to the Heisenberg-Weyl group.
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1. Introduction unitary representations and the tilting transformation.

On the other hand, the problem of a charged particle in a
Yiniform magnetic field has been widely studied in classical

. ) . mechanics, condensed matter physics, quantum optics and
Glauber defined these states as the eigenfunctions of the Jlativistic quantum mechanics, among others. The energy

nlhllgtlon operator. [2]. Klauder showed that these statgs argpectrum of this problem is known as the Landau levels. The
obtained by applying the Weyl operator to the harmonic 0s-

cillator ground state [3]. Harmonic oscillator coherent statesmtera.cuon of an electron with the umfo_rm magne.tlc field is
are gaussian functions .displaced from origin which maintaindescnped by means of.elect.romagnetlcal potentials. HOW._
their shape over time. Boiteux and Levelut defined the num—e.ver’ different gauges give raise to thg same electromagnetic
ber coherent states folr the harmonic oscillator by applying thfIEId.[la]' Th_e coherent _state_s for this problem have been
. tained previously by using different formalisms, as can be
Weyl operator to any excited state [4]. These states are calle :
. een in references [19-24].
displaced number states or number coherent states and were ] ) . ] )
extensively studied in the middle of the last century. Mostof ~ The &im of this work is to introduce a algebraic approach
their properties are compiled in Refs. 5 to 8. In Ref. 9, Nietot0 study the problem of a charged particle in an uniform mag-
review these states and gave their most general form. netic field and obtain its coherent states. Specifically, the al-
Perelomov generalized the Klauder coherent states to arfjPraic approach used in this work is the tilting transforma-
Lie group by applying the group displacement operator tdion, which offers to graduate.students an aI'FernatNe method
the lowest normalized state [10]. The Perelomov cohereri® the commonly used analytical approach, in order to study

states haven been applied to many physical problems as caRd exactly solve several problems in quantum mechanics.
be seen in Refs. 11 to 13. Gerry defined #é(1, 1) num- This work is organized as it follows. In Se2, we give a

ber coherent states by applying the Perelomov displacemestimmary on the Heisenberg-Weyl af&@ (1, 1) groups and
operator to any excited state and used this definition to calits number coherent states. In S&¢.we study the problem
culate the Berry’s phase in the degenerate parametric amplof a charged particle in a uniform magnetic field in cartesian
fier [14]. Recently, we have studied the Perelomov numbecoordinates with the Landau gauge. We solve this problem
coherent states for th&U (1, 1) and.SU(2) groups. In par- and show that its eigenfunctions are the harmonic oscillator
ticular, we gave the most general expression of these statasiimber coherent states. In Sécwe study the Landau levels
their ladder operators and applied them to calculate the eigeproblem in cylindrical coordinates with the symmetric gauge.
functions of the non-degenerate parametric amplifier [15] andVe construct thé&U (1, 1) Perelomov number coherent states
the problem of two coupled oscillators [16]. In Ref. 17, we for its eigenfunctions. In Secs, we contract theSU (1, 1)
computed the number radial coherent states for the generajroup to the Heisenberg-Weyl group. We show that, under
ized MICZ-Kepler problem by using theu(1,1) theory of  this contraction theésU(1,1) Perelomov coherent states are

Harmonic oscillators coherent states were introduced b
Schiddinger at the beginning of the quantum mechanics [1]



128 D. OJEDA-GUILLEN, M. SALAZAR-RAMIREZ, R.D. MOTA AND V.D. GRANADOS

related to the harmonic oscillator coherent states. Finally, w&hese operators play the role of annihilation and creation op-
give some concluding remarks. erators when they act on the harmonic oscillator number co-
herent states, since [4]

2. H(4)and SU(1,1) number coherent states Afn,ay = VATl +1,a),

2.1. Heisenberg-Weyl group Aln,a) = valn — 1, a). )
The annihilation and creation operators of the harmonic os-

cillator a, o', together with the number and identity operatorsBy using the disentangled form of the Weyl operafafe)
ata, I satisfy the following relations of Eq. (5), we can prove that the most general form of these

states in the Fock space is [9]

[a,al] =1, [a,ata] = a, (aa)t & ( )
lal? aa —a*a)!
[a",a'a) = —a', [a,1]=[a'a,]]=0=[a",I]. (1) n,a) = e /22 k! 4!
k=0 j=0
These equations are known as the Heisenberg-Weyl algebra Y\ V2
h(4). The action of these operators on the Fock states is given X <W> In—j+k). (10)
by (n—j)n —j)!
aT|n> =Vn+1n+1), On the other hand, the eigenfunctions of the one-

dimensional harmonic oscillator are given by

aln) = v/njn — 1), ataln) = nln). 2

The harmonic oscillator coherent states are defined in terms
of these operators as

tn(x) = N Hy (Bz)e 277 (12)

where H, (8x) are the Hermite polynomials and =

la) = D(@)[0) = e*'~"*[0) Vmelh s
B
1 e a N, = </ - .
= exp {—2|@|2} Eo 7’7?'”)’ 3) w12 n!)

The Weyl operatorD(«) can be expressed in terms of the
where D(«) is the Weyl operator (also called displacementharmonic oscillator positiom and momentunp operators as
operator),|0) is the ground state andis a complex number _
given by D(xg, poy) = e (Pos®=T0P)

y izOPox iPQzT iZTQPx
[ Mmw 1 —=e 2 e h e h (]_2)
o = —x0 + . 4 )
[ Qmwhpo “)

as it is shown in reference [25]. Thus, the action of this op-
erator on the harmonic oscillator eigenfunctions of Eq. (11)
is

This unitary operatoD(«) can be expressed in a disentan-
gled form by using the Weyl identity as follows [25]

_ _—lal?/2 aal —a*a )
Dia) = 7 et ™ . O D, 0 () = Npe 20 1, (B(z — x0)) . (13)
The harmonic oscillator number coherent states are defined
as the action of the Weyl operator on any excited dtat¢4] 2.2. SU(1,1) group

In,a) = D(a)|n) = e~ 1o*/2c0a” c=aTayy), (6)  Thesu(1,1) Lie algebra is generated by the set of operators

) ] ] {K+, K_, Ky}. These operators satisfy the commutation re-
By using the Baker-Campbell-Hausdorff identity lations [26]
1 1
—Ap A
e "Be’ = B+ 5[B, Al + 5[[B, A], A] (Ko, Ki]=+Ky, [K_,K,]=2K, (14)
1 .
+ 5[[[3, Al AL Al + .., (7)  The action of these operators on the Fock space states

{|k,n),n =0,1,2,...} is given by
and the commutation relationship of the ladder operators

[a,a] = 1, it can be shown the following properties Ky lk,n) =+ (n+1)2k+n)k,n+1), (15)
A(a) = D¥(@)aD(a) = a + a, K_|k,n) = /n(2k+n—1)[k,n—1), (16)
AT(a) = DT (a)a'D(a) = a' + o*. (8) Kolk,n) = (k4 n)|k,n). (17)
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In analogy to the harmonic oscillator coherent statesfFock space was calculated as follows [15]
Perelomov defined the standafi/(1,1) coherent states

as [11] ¢, k,mn) n(k+n—j)
¢) = D)k, 0)
\/1“(21@ +n)I'(2k +n—j+s)
L'(n + 2k) T(2k +n— j)
1<) Z ) Hoe ks, s
y VIn+1DI(n—j+s+1)
where|k, 0) is the lowest normalized state. In this expression, n—j+1)
D(¢) is displacement operator for this group defined as x|k, — j + 8). (24)
D(§) = exp(EKy — &K, These states are the analogue for$t&1, 1) group to those
given by Nieto for the harmonic oscillator in Eqg. (10).

where

1.

f = __rte “P’ . . . H
2 3. A charged particle in a uniform magnetic

—oo < 7 < oo and0 < ¢ < 2. The so-called normal form field in the Landau gauge.
of the displacement operator is given by
The stationary Sclidinger equation of a charged particle in
D(§) = exp(CK ) exp(nKo) exp(—C* K ), (19)  auniform magnetic field3 is given by

1 N2
where L HY = — (ﬁ+ fA) V= EV, (25)
(= —taunh(ﬁT)e_“‘J 2p ¢
and whgreA’ is the vector potential, related to the magnetic field
n = —2Incosh|¢] = In(1 — ||?) asB = V x A. This vector potential does not describe the

magnetic field in a unique way, since the magnetic field re-
[27]. This expression is the analogue of Eq. (5) for the Weylmains invariant against gauge transformatiohs— A’ =
operator. A + Vg, whereg is a time independent scalar field [18]. We
TheSU(1,1) Perelomov number coherent states were incan choose the vector potential.ds= (1/2)B x i and our
troduced by Gerry and are defined by the following exprescoordinate system so that the z-axis is paralleBtorhen,
sion [14]

- B
A=——(y,—x,0). (26)
¢k, n) = D(§)|k, n) 2! )
= exp(CK4 ) exp(nKs) exp(—C*K_)|k,n). (20)  This choice is known as the symmetric gauge. If we make
the gauge transformation with= —(B/2)xy, we obtain the
By using the BCH formula of Eq. (7), it has been shown thatfollowing vector potential
the similarity transformation of the operatdks, are [15] -
A" = —B(y,0,0). (27)
L, =D()K, D'
* K+ D) This choice of the vector potential is known as the Landau
_ |£€|04K0 5 (K+ n 56 P ) ‘K. (21) 9auge. With this gauge the Eq. (25) becomes [18]

2 d%p mw? 9 h%k?2
L_ = D(6)K_D(¢) —%dfyz+7(y—d) Y= (E— )w, (28)
= | |QKO+/3 K_+ £K+ + K (22) where the Larmor frequency andd are defined as
3 & ’
_eB de hck, 29
The action of these on th&U (1, 1) Perelomov number co- Y= e = B’ (29)

herent states is

Lil¢ kon) = v/(n + D@k + )|,k + 1),

By introducing the harmonic oscillator operatars: '

mw )
L_|Ckyn) = /n@k +n—D|Ckn—1). (23) SNV amenty
Thus, L act as ladder operators for these number coherent af = ﬂy o Dy» (30)
states. Also, the most general form of theses states on the h 2mwh
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we can write the Eq. (28) as follows 4. A charged particle in a uniform mag-
o . netic field in the symmetric gauge and its
Hiy = p (a a+ 2) vtv(ata)d SU(1,1) number coherent states
_ _ h*kZ mw 2 In the symmetric gauge (Eq. (26)) the Satlinger equation
=|\£ d” |, (31) 2o : N
2m of a charged patrticle in a uniform magnetic field is
where
—h? B
hmw3 Hy = TV27/) + %Lzﬂf
p = hw, v=—\—5—d (32) H e
e?B? ,
If we make the definition t 5 (a® +y )Y = E. (38)
k2 mw? ' ,
e=E-—-%—-— d If we consider the wave functiog(r) = U(p)ei™Petr>

(m = 0,1,2,...) in cylindrical coordinates, the Sdbdinger

and in order to diagonalize this Hamiltonian, we apply the
equation for a charged particle in an external magnetic field

tilting transformation with the displacement operator as fol-

lows [15, 16] remains
2 2 22
Dt (a)HD(a)D'(a)y = DT (a)y. (33) & 1d m_eB o,
dp?  pdp p?  4Rh2c2
From Egs. (8) the tilted Hamiltonial’ = D'(a)HD(«)
becomes 2mE eBm o U(p) = 0. (39)
h? i
H =p ( a+ |al? )
2 By performing the change of variable= /(eB/2fic)p in
—v(a+a*) +al(ap—v)+ala*n—v). (34) theabove equation we obtain
If we choose the coherent state parametgys= d and d? 1d m? 5
py, = 0 we obtain that the tilted Hamiltonian reduces, up I T ade 22 (A -z )} U(z) =0, (40)
to a constant factor, to that of the one-dimensional harmonic
oscillator where we have introduced the variablelefined as
1 * S
H’:#(aTa+|a|2+2>—y(a+a). (35) \ _ Aue Eih%? o, 41)
eBh 24

Thus, the energy spectrum for a charged particle in a uniform
magnetic field is Thesu(1,1) Lie algebra for this problem is well known and
the generators for its realization are given by [28]

h2k2

E= ( > hw + o (36) . J

S . _ _ Ki:(ix—x2+2K0i1>, (42)
The wave function) is obtained by applying the displace- 2 dx
ment operatorD(«) to the harmonic oscillator wave func-
tionsv’. Thus, from Eq. (13)

) Ko=t(-L _L1d m o (43)
= D) = Nie T H, (y _Aw) SNCL) =il sttt

In this expressionV; is a normalization constant andis  Moreover, by defining) = 22, the normalized wave func-
the magnetic length = (hc/eB)l/Q. The eigenfunction for  tions are
the general problen¥ is obtained by adding the free particle '
Eﬁrmef(’“w"”’fzz)_ to Eq. (37). Therefore, we have showed that Un(y) = 2n! e~v/2ymI2[m (). (44)

e eigenfunctions of a charged particle in a uniform mag- (n+m)!
netic field are the harmonic oscillator number coherent states.
The treatment developed in this section can be also applied tohich are the Sturmian functions for the unitary irreducible
the problem of a charged particle in a pure electric field or inrepresentations of thew(1,1) Lie algebra. Also, the
a magnetic and electric field. With a proper choice of the coBargmann index is k = m/2 + 1/2, and the other group
herent states parameters it can be shown that the harmomcimber is just the radial quantum number Therefore
oscillator number coherent states are the eigenfunctions afie can construct th8U (1, 1) Perelomov number coherent
these problems. states for this problem by substituting Eq.(44) into Eq. (24).
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By interchanging the order of summations and using theéAlso, in order to contract the displacement operd®g¢) to

propertiesi8.7.6 and48.7.8 of Ref. 29 we obtain the Weyl operatoD(«) the coherent state parameters must
satisfy
2i(n+1) (=1)™ | *
wn,m = ezmdn . § _ . i %
T(n+m+1) 7 im-=a  lm->=o" (51)
(—¢)™(1 — |g|2)%+%(1 +o)" To obtain the relationship between the contraction parame-
X
(1—)mt1 ter ¢ and the group numbérwe apply theh operator to an
arbitrarysu(1, 1) state|n, k)
IVE(SS)) po
xe 200 pnLm | ——————— ], (45) 1
(1-0@1-o0) holn, k) = (Ko - 22KI) n, k)
where we have defined )
1— |12 :(n+k—> |n, k). (52)
= A (46) 2¢2
(1=0(=¢*)

If we demand that this eigenvalue must vanish for the lowest
These are th6U (1, 1) Perelomov number coherent states of state|0, k) we obtain
a charged particle in a magnetic field. As a particular case
of this result we can see that fer= 0 these states reduces lim (

c—0

k— 212> =0. (53)
to the standard Perelomov coherent states, presented in ref-

erence [30]. These states are significant in quantum optic§hys, in the limitc — 0, ¢ = = /(1/2k) and thesu(1,1)
since a particular case of them are the eigenfunctions of thf?redumble unitary representations contract to te) irre-
non-degenerate parametric amplifier [15]. ducible unitary representations. The relationship between the

states of both groups can be obtained by defining the state
5. SU(1,1) contraction to the Heisenberg- o0, 1) = Tim |, k) (54)
Weyl group ’ =0

. . . ) With this definition we obtain
In this section, we will contract theu(1, 1) Lie algebra to

the h(4) algebra of the harmonic oscillator. The proceeding ,f¢|0o, n) = hm (Ko — 1) In, k)
developed here is analogue to that presented by Arecchi in 2

reference [31] for thew(2) algebra. Thus, we define the fol- ' 1
lowing transformation = lim (” +k— > In, k) = nloo,n). (55)
h4 c 00 O K In a similar way we obtain
ho|l |0 ¢ 0 0 K_ 47 .
| loo 1 ||k @) atloo,n) = v/ + 1joo,n + 1)
h 0oo 1 Kr aloo,n) = /nloo,n — 1). (56)

These new operatofssatisfy the following commutation re-  Therefore, the Perelomov number coherent states contract to
lationships the harmonic oscillator number coherent states, since
[ho, ht] = HeK, ja) = lim ¢, n, k) = lim (1 — 1C12)" S K 4 n, k)
c— c—

h_,hy] =22 Ko, [h, hy] = 0. 48
[ +] 0 [ I] ( ) _ hII’(l) (1 . cgaa*)1/24 eaaf‘0>
In the limit ¢ — 0 this transformation becomes singular. -

However, the commutation relationships are well defined and = ¢~ lol’ goa |0). (57)
become L
In our problem, this implies that theU(1, 1) Perelomov
[ho, hs] = £ha, number coherent states of a charged particle in a magnetic
. field of Eq. (45), under the contraction of thé/(1, 1) group,
[h—,h4] = ho, [h, hi] =0, (49)  reduce to the number coherent states of the harmonic oscilla-

tor of Eqg. (37). In Ref. 32, the authors studied the contraction
of the SU(1,1) group to the quantum harmonic oscillator.
Moreover, they shown that one advantage of working with

which is nothing but thé(4) algebra with the definition

lim hg = n = ala,

c—0 SU(1,1) is that its representation Hilbert space is infinite-
. ot . _ dimensional, thus it does not change dimension in the con-
limhy =a', lim h_ = a. (50) T :

c—0 traction limit, as it happens for th&U (2) case.
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6. Concluding remarks Heisenberg-Weyl group.

) ) It is important to note that the tilting transformation
We applied the generalized number coherent states theory fiethod used in this work has been applied to more novel

study the problem of a charged particle in the Landau angyroplems, as the non-degenerate parametric amplifier [15],
symmetric gauge. We showed that for the Landau gauggne problem of two coupled oscillators [16], and the general-

the eigenfunctions for the Landau level states can be repre;qq MICZ-Kepler problem [17].
sented in terms of the harmonic oscillator coherent states.
For the symmetric gauge we study the eigenfunctions of this
problem in cylindrical coordinates and we constructed theAcknowledgments
SU(1,1) Perelomov number coherent states in a closed way.
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