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Experimental aspects of the gyroscope’s movement
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In presence of a uniform gravitational field, Euler equations for a gyroscope can be written as a non-linear equation for the components of
Riemann’s stereographic projection of the symmetry axis over a horizontal plane. Under the approximation of nutations with low amplitude,
the solution of this equation corresponds to the sum of two rotating vectors with angular frequencies related to both angular velocities of
nutation and precession. Such velocities are functions of rotation rapidity and inertia momentum of the gyroscope. From pictures of the
movement projection of a commercial gyroscope, and using a laser that turn on during half revolution cycle of a disk, we can determine all
kinematic quantities of the gyroscope, velocities of: rotation, precession and nutation, along with the angle of average inclination from axis.
After complete a total of 120 experiments, we corroborate that the expressions given for velocities of precession and nutation, in function of
rotation, match with experimental data. This is an easy experiment to implement, and can be used in advanced courses of mechanic.
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1. Introduction

The movement of a spinning top has always raised the cu-
riosity of experts and non-experts; basically, it is due to the
stability that the spinning top acquires while rotate. Although
the explanation of its behavior is not immediate in mechani-
cal terms, from Euler and Lagrange is understood the dynam-
ics of this movement, and its theoretical aspects are found in
books of advanced mechanics [1–3].

Despite of the extensive literature one can find regarding
to theories about the spinning top and the gyroscope [4–7],
there are very few reports about the measurements of pre-
cession and nutation rates. In pioneering works, by using
stroboscopes, people could measure: angular velocity, incli-
nation angle and the path of the spinning top tip over coal or
graphite paper; but they did not provide velocities of nutation
and precession [8].

Currently, by using high speed video cams, those mea-
surements can be directly done. This kind of methodology is
used on projects or experiments for university labs, however,
in this case collecting numerical data is a difficult task be-
cause it requires a shot reproduction, frame by frame, in order
to determine the body’s trajectory as a function of time [9].

In this work, we present a simple way to find, for a certain
time interval, the measurements for velocities of: precession,
nutation, and rotation, in a gyroscope; all this by using a sin-
gle picture and a laser light adhered to the gyroscope, which
is projected over a horizontal plane. To compare experimen-
tal values with theoretical, we use an approximate solution
for Euler equations for the problem of symmetrical spinning
top with fixed point by using Riemann stereographic projec-
tion on the horizontal plane.

2. Gyroscope Movement

Generally, a gyroscope is a rigid body with axial symmetry
that can rotate around a fixed point on its symmetry axis. In

particular, it consists of a rod with a fixed point on its middle
and which has the freedom of self-orienting in any direction
inside a specific angular range. At the same time, the rod
has a rotating disk located on one of its ends whose axis co-
incides with the rod. At the other end, the rod also has a
counterweight which allows adjusting the center of mass for
the system.

The most notorious thing of this instrument is the fact
that when the disk rotates speedily, the center of mass does
not fall to the lowest position, instead, it keeps moving slowly
in a horizontal circle with fast nodding motion in the axis of
rotation.

The movement in a gyroscope is composed by three in-
dependent movements: 1) Rotation, which is the disk move-
ment on its own axis; 2) Precession, which is the average hor-
izontal movement done by the disk axis around a vertical, and
3) Nutation which corresponds to small and fast oscillations
of the axis. Usually, Nutation has small amplitude and tends
to quickly disappear under friction; this is why frequently it
goes unnoticed.

2.1. Movement equations of a gyroscope

On the basis of an inertial system, the rate of change of com-
ponents from angular momentum~L corresponds to the net
torque~τ exerted by external forces. However, based on a
rotating system{ê1, ê2, ê3}, which is spinning with angular
velocity~ω; the change on vector~ω× êi is added to the rate of
change of a vector’s components. Therefore, Newton’s equa-
tions take the form of Euler’s equations [10]:

~τ = ~̇L + ~ω × ~L. (1)

By aligning the base vectors from the rotating system
with the main axes of a gyroscope, the Momentum of Inertia
Tensor becomes diagonal,I = diag(I1, I2, I3), and compo-
nents from the angular moment will depend only on the re-
spective components of angular velocity,Li = Iiωi. Now,
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by aligningê3 with the rotation axis,I1 = I2 is obtained, and
the equation (1) can be written by components as follow [11]:

τ1 = I1ω̇1 + ω2ω3(I3 − I1),

τ2 = I1ω̇2 − ω1ω3(I3 − I1),

τ3 = I3ω̇3. (2)

Gyroscope’s orientation is fully described by three Eule-
rian angles corresponding to the angles that relate the main
axis of a gyroscope with the coordinate axis on a steady state
system{êx, êy, êz}; where by convention,z axis represents
vertical direction. Each of these angles can be associated to
each different movement on a gyroscope. The zenith angleθ
corresponds to the angular separation between the symmetry
axis ê3 and the vertical; and it determines the nutation move-
ment. The azimuthal angleφ, formed between thex axis
and the nodes line (intersection between horizontal plane and
that other, perpendicular to the symmetry axis), it determines
the precession. Finally,ψ angle which accounts for the body
spinning around of symmetry axis, and determines the ro-
tational movement. Figure 1 is a graphic representation of
Euler’s angles and the angular velocity associated to them.

The total angular velocity is a vector addition of angular
velocities associated to each one of Euler’s angles. Figure 1
shows that the angular velocity components based on a rotat-
ing system are:

ω1 = φ̇ sin θ sin ψ + θ̇ cos ψ,

ω2 = φ̇ sin θ cos ψ − θ̇ sin ψ, (3)

ω3 = φ̇ cos θ + ψ̇.

On the other hand, the torque exerted by gravitational
force with respect to the fixed point, is given by a vector prod-

FIGURE 1. Euler’s angles and their associate angular velocities.

uct between the center of mass positionhê3, and the gyro-
scope weight−mgêz. This torque is a vector addressed to
the nodes line and with components:

τ1 =µ sin θ cosψ,

τ2 =− µ sin θ sin ψ, (4)

τ3 =0,

whereµ ≡ mgh is the maximum torque. In the case where
this torque was the only contribution to torsion momentum of
system (neglecting friction), then the products ofê3 · ~τ and
êz · ~τ are nulls, so the components from the angular momen-
tum L3 andLz are constant of movement. These constants
provide relations between variables, which in union with the
energy conservation law, allows to determine values of the
angular variablesθ, φ andψ as function of time. This proce-
dure is equivalent to Lagrange’s method, it provides a solu-
tion in terms of elliptic functions [12]. Even, though in this
way an exact solution for the values of frequencies can be
obtained, the relation between the oscillation amplitudes ofθ
andφ, which define a typical gyroscope movement, are not
direct.

Although approximately, the direct solution of Euler’s
equations gives an intuitive method to correctly describe the
movement of a gyroscope. To find out such a solution, is ad-
visable to work in the complex plane, so that we add the first
equation from (2), to the second one which was previously
multiplied by the imaginary numberi; all this to obtain the
following complex equation:

τ = −iωω3(I3 − I1) + I1ω̇, (5)

with τ ≡ τ1 + iτ2 andω ≡ ω1 + iω2. From (3) and (4) is
obtained for these complex quantities thatτ = µ sin θe−iψ

andω = Ωe−iψ, whereΩ ≡ (θ̇ + iφ̇ sin θ). By using these
values on (5), and factorizing the exponentiale−iψ, the fol-
lowing expression appears:

µ sin θ = iΩ(φ̇ cos θI1 − L3) + I1Ω̇. (6)

This is a differential equation on the real variablesθ andφ,
and can be expressed in terms of complex variable as

a = −i tan
(

θ

2

)
eiφ. (7)

This variable corresponds to Riemann’s stereographic projec-
tion of a point on the sphere in the plane [13]; here, the real
part is directed tôex, and the imaginary tôey (see Fig. 2).

By differentiating the expression (7) respect of time, we
obtain

Ω =
ȧ

a
sin θ, (8)

and

Ω̇ =
(

ä

a
− ȧ2

a2

)
sin θ +

ȧ

a
(Ω− iφ̇ sin θ) cos θ. (9)
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FIGURE 2. Variablea in the projective plane.

Replacing (8) and (9) on Eq. (6) the following equation
shows up:

µa = I1
ȧ2

a
(cos θ − 1)− iL3ȧ + I1ä, (10)

here, according with (7),cos θ = (1−|a|2)/(1+ |a|2). Equa-
tion (10), together withL̇3 = τ3 are equivalent to Euler’s
equations (2). This equation is a generalization toθ large for
the gyroscope’s equation used in external ballistic [14].

2.2. Approximate Solution to the gyroscope’s equation

Equation (10) is not linear, of second order on the complex
variablea, and is not analytic. The exact solution for this
equation is not easy to find. However, an approximate solu-
tion for small nutation can be easily obtained. In this case
the value ofθ can be replaced, on first approximation, by the
mean valueθ0. After changing variables

s = −i
ȧ

a
, (11)

Eq. (10) can be rewritten as:

iI1ṡ = I1s
2 cos θ0 − L3s + µ. (12)

The roots of the right hand polinomy on (12) are given by

s± =
L3 ±

√
L2

3 − 4µI1 cos θ0

2I1 cos θ0
≡ α± β, (13)

which corresponds to the fast precession frequenciess+ and
slow s− [15]. The differential Eq. (12) can be solved by
separating variables followed by an integration using partial
fractions, thus obtaining

s = α− iβ cot x, (14)

wherex = βt cos θ0 + c, beingc a complex constant of in-
tegration. The imaginary part ofc is the relevant quantity
because the real part may be eliminated through a tempo-
ral translation. Having on mind the definition ofs given
in (11), the value fora is obtained after integrate and expo-
nentiate (14)

a = A′eiαt(sinx)sec θ0 , (15)

whereA′ is a constant resulting from the integration. The
function sin x is proportional toe−iβt cos θ0(1 − e2ix), soa
can be expressed as

a = Aei(α−β)t
(
1−Bei2βt cos θ0

)sec θ0
, (16)

with A andB arbitrary constants. On the limit whenB → 0
a slow precession solution fora is given, the case when
B → ∞ (with AB finite) leads to a fast precession solu-
tion. Generally, precession turns out to be of lower frequency
than nutation, therefore the solution for nutation of small am-
plitude corresponds to (16) with|B| ¿ 1. By making a bi-
nomial approximation of the term inside parenthesis in (16),
we have

a = eiωpt
(
ap + aneiωnt

)
, (17)

whereωn andωp are frequencies of nutation and precession
respectively, given by

ωn = 2β cos θ0 =

√
L2

3 − 4µI1 cos θ0

I1
, (18)

ωp = α− β =
L3 −

√
L2

3 − 4µI1 cos θ0

2I1 cos θ0
. (19)

Expression (17) implies thata is the sum of two rotat-
ing vectors of constant amplitude,|ap| and|an|, which spin
with frequenciesωp andωp + ωn respectively. Because of
the fact that the amplitude of precession movement is greater
than that of nutation, and its frequency is lower, the trajectory
that vectora presents in a plane has a shape of rosette. On
expression (18)ωn is defined positive, and from (19) can be
seen thatωp has the same sign asµ. The rosette shape formed
on the projection plane comes given by the relative sign be-
tween frequencies of precession and nutation, which means
depends on the sign ofµ. When the frequencies have the
same sign (µ > 0) the projection created on the plane has the
apices pointing inward, while if signs are opposite (µ < 0),
the apices on the projection are going outward (See Fig. 3).

The precession frequency does not diverge forθ0 ap-
proaching= π/2, despite first appearances. In this limit is
obtainedωp = µ/L3, like the simple theoretical expression
for precession frequency found in most elementary physics
textbooks, andωn = L3/I1. They also correspond to the
expressions of frequency values on the limit of fast rotation
L2

3 À µI1. If θ0 is less thanπ/2 andµ > 0 then the preces-
sion frequency will be greater thanµ/L3, while nutation
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FIGURE 3. Graphic representation of the gyroscope solution,(a)
for µ > 0 and(b) for µ < 0. φn y φp are the arguments ofan and
ap, respectively.

smaller thanL3/I1. These relations are inverted for angles
higher thanπ/2 or µ < 0. All of this can be sumarized in
an expression coming from (19) at first order inr ≡ µI1/L2

3

given by
ωp ' µ

L3
(1 + r cos θ0). (20)

From Eqs. (19) and (18), can be found relations between
precession and nutation frequencies which are independent
of the state of movement, given by:

ωp(cos θ0ωp + ωn) =
µ

I1
, (21)

(2 cos θ0ωp + ωn)
ω3

=
I3

I1
. (22)

Given that ω3=〈ψ̇〉+ωp cos θ0, from expression (22)
is obtained that the number of rotations per nutation
∆n=〈ψ̇〉/ωn, in function of precession and nutation frequen-
cies, and the azimuthal angle, is given by

∆n =
I1

I3
+

(
2
I1

I3
− 1

)
ωp

ωn
cos θ0. (23)

This relation predicts that the number of rotations by nutation
tends to the valueI1/I3 for θ = π/2 or L3 large, but in gen-
eral (23) has a linear behavior with respect to the parameter
(ωp/ωn) cos θ0, where the slope and the axis intersection are
determined byI1/I3.

Finally, to obtain the expressions of these angles as a
function of time, solution (17) and definition (7) are equat-
ing, and considering|an/ap| ¿ 1 we got:

tan
θ

2
= |ap|+ |an| cos(ωnt + δ), (24)

and except a constant

φ = ωpt + |an/ap| sin(ωnt + δ), (25)

whereδ is the argument ofan/ap. From this last expres-
sion is evident that the mean value of the angular velocityφ̇
is the precession velocityωp, while for tan θ/2 is |ap|, what
we make to coincide withtan θ0/2, having an relative uncer-
tainty of order(|ap|/|an|)2.

Results aforementioned coincide with the Lagrangian de-
scription in the approximation of harmonic potential to first
order in the parameterµI1/L2

3 [15].

FIGURE 4. Laser assembly on the gyroscope.

3. Experimental section

3.1. Experimental Assembly

With an experimental set up we looked for a corroboration
of the gyroscope solution, Eq. (17), with its corresponding
parameter values, fits in an exactly way to an experimental
situation. For this experience was used a Pasco ME8960 gy-
roscope, it consist of a disk of1.755 ± 0.001 kg mass with
a radius of12.7 ± 0.1 cm and a thickness of2.0 ± 0.1 cm,
which can spin around an axis with little friction, at the same
time this axis may be orientated in any azimuthal direction
but inside a range of 30◦ to 140◦ respect to the zenith. The
orientable axis has a fixed point at12.7 ± 0.1 cm from the
disk, which is pivoted at30.7± 0.1 cm from the floor over a
vertical bar. This bar is nailed in the center of anA-shaped
base of molten iron, and it can rotates around its own axis.
At the opposite end of orientable axis, opposite to the disk,
there is a counterweight that works to vary the position of the
center of mass.

To visualize thea vector, a simple laser pointer device
is set up in such a way that it remains on the same vertical
plane than orientable axis, but presenting an angle with re-
spect to the vertical equal to half of zenithal angle of the axis.
This can be achieved by setting the pointer on the base of
an isosceles triangle where one of its congruent sides aligns
with the vertical bar and the other with the orientable axis, as
showed in Fig. 4.

To have information about the angular velocity of rotation
from the disk, an electric switch was installed to the pointer
device so, it turns on during half of revolution cycle and then
turns off on the other half. The switch was fixed by stick-
ing a copper semi-disk to one of the faces of the spinning
disk. The laser’s feeder circuit becomes closed only when
two small brushes, in contact with the disk, also get in touch
with the cooper semi-disk, thus the circuit is open every half
revolution. (see Fig. 4).

In our case the laser light is projected upward over a hor-
izontal screen 70 cm away from floor, which is formed by a
framed fabric in a way that the luminous dot can be observed
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FIGURE 5. Experimental Assembly.

over the screen. A mirror just above the screen works as a
guide of images from screen to the digital camera; the cam-
era is installed in a tripod, on side of the mirror and pointing
out to it, as can be seen in Fig. 5.

By taking a photography of luminous dot in a time inter-
val large enough is obtained a discontinuous light beam, each
segment of the bright line along with the following dark in-
terval, correspond to a disk rotation. Initially counterweights
were set on the disk axis in a way that the center of mass will
stay just on the pivoted point from orientable axis. Later, an
additional counterweight, with a mass of151.48±0.01 g, was
set on one of the orientable axis ends. Experiments with the
counterweight on the same disk side at21.0 ± 0.1 cm from
pivoted point (forward) were made, and then with the coun-
terweight on opposite side (backward) to34.5 ± 0.1 since
pivoted point. The counterweight mass value multiplied by
the pivoted point distance and by the constant of gravity, ac-
counts for the maximum torqueµ to which the gyroscope
is subjected. Given the laser pointer position, with an addi-
tional counterweight ahead, the rosette shape formed by the
movement of the dot of light shows its apices outward; recip-
rocally, by adding the counterweight back, rosette’s apices
point inward, as show Fig. 3.

3.2. Results

With the mass values of both, counterweights and disk, and
taking into account their position, the calculation of values
for the main inertia momentum and maximum torque, related
to each situation of additional counterweight, is direct. These
values are given by Table I.

The disk was set up to spin around the orientable axis at
a specific velocityψ̇ and certain value ofθ0. The system was
left to evolve and the trajectory of luminous dot was pho-
tographed, with a digital camera which has an aperture time

TABLE I. Values for inertia moment and maximum torque in both
positions of additional counterweight.

I1(g·m2) I3(g·m2) µ(g·m2/s2)

Counterweight forward 100± 1 13.3± 0.1 316± 1

Counterweight backward 112± 1 13.3± 0.1 512± 1

FIGURE 6. Pictures of the projection of gyroscope movement with
inverted colors. Counterweight ahead and back respectively.

control, inside a dark room. The camera was located above
screen and by over the gyroscope, an exposure time of 10 sec-
onds for each photo was set, also a green laser was used
which is why the result of each photography is a dotted green
line with a dark background. After inverting colors using an
editor of images, pictures are seen as a red trace with white
background.

From photographic records is obtained: an angular inter-
val of a nutation∆φ, the number of rotations per nutation
∆n, the total number of rotationsn, and the circumference
diametersD1 andD2, intern and extern, tangent to the tra-
jectory of luminous dot. The values of these diameters must
be given using units of a reference diameterDr, which is
defined as the trajectory diameter of luminous dot when gy-
roscope precesses uniformly withθ = π/2. These measure-
ments, along with the exposition timet, allow us to find the
frequencies of rotation, precession and nutation, as well as
the average value of zenithal angle, through next relations:

ωp =
n∆φ

t∆n
, ωn =

2πn

t∆n
,

〈ψ̇〉 =
2πn

t
, tan

θ0

2
=
√

D1D2

Dr
.

Using these values, and according to (21) and (22), relations
given byµ/I1 andI1/I3 can be calculated. 60 pictures of
each counterweight, back and front, were analyzed. Figure 6
shows one example of each case, where the way how every
measurement was obtained is described. The average values
of these quantities are called experimental values; the associ-
ated uncertainty is the standard deviation of data, divided
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FIGURE 7. Experimental value ofµ/I1 for experiments with coun-
terweight ahead (light circles), and with it on back (dark circles).

TABLE II. Theoretical and experimental values forµ/I1 andI1/I3.

Forward Backward

µ/I1(s−2) I1/I3 µ/I1(s−2) I1/I3

Theoretical 3.16±0.03 7.51±0.07 4.57±0.04 8.47±0.08

Experimental 3.20±0.03 7.42±0.02 4.58±0.02 8.53±0.02

by square root of the amount of data. Theoretical data corre-
spond to those obtained from Table I. The average values for
µ/I1 andI1/I3, experimental and theoretical, are shown in
Table II.

According to (23) the graphs ofωn in function of
(ωp cos θ+ωn)−1, present a linear form with a slope ofµ/I1.

Figure 7 shows the experimental results using counter-
weight back and then ahead. Solid lines represent theoretical
values.

A kind of dispersion in values can be noticed; it possibly
is because of a high value of the relative uncertainties on∆n.
If it is only considered one nutation cycle, it shall an uncer-
tainty of order1/∆n, which, in our case is around 12%. In
order to diminish the uncertainty,N cycles of nutation are
taken, reducing the error in one factor of1/N . However,
for low velocities,N cannot be too large because the∆n
variation per cycle of nutation will be significantly affected
by friction, therefore on the beginning exists an insuperable
limit on precision of measurements, determined by the disk
friction.

Figure 8 shows experimental results for the number of ro-
tation per nutation as a function of the relation between pre-
cession and nutation frequencies, multiplied by cosine ofθ0.
Solid lines represent theoretical values.

Figure 9 shows the ratio between experimental preces-
sion speedωp and the expected in the simplest modelµ/L3,
as a function of the parameterr = µI1/L2

3. The dotted line
indicates the predicted value by the elementary model and
the continuous line shows the predicted by the model for this
work, according to the Eq. (20).

FIGURE 8. Relation between the number of revolutions per nuta-
tion cycle for the experiments with the counterweight ahead (light
circles) and back (dark circles).

FIGURE 9. Relationship between experimental precession speed
ωp and its expected valueµ/L3 in the simplest model, in function
on the parameterr = µI1/L2

3, for both counterweight ahead and
counterweight back

For the data reported in Fig. 7, 8 and 9 the rotation fre-
cuency was between 3 to 13 revolutions per second.

4. Summary

By using Riemann projections, Euler’s equations for a sym-
metric spinning top with a fixed point are solved, in an ap-
proximate way, when considering nutations of small ampli-
tude. Under this approximation, the solution corresponds to
the addition of two rotating vectors on the complex plane,
and their velocities of rotation will define both velocities of
precession and nutation for a spinning top.

The Riemann projection was visualized through an in-
termittent light of a laser. A photographic register of lumi-
nous dot projection allowed us to obtain in an easy and sim-
ple way, quantitative information of rotation, precession and
nutation velocities, and the zenithal average angle of gyro-
scope; which may be expensive and complicated using dif-
ferent methods.
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From the photographic record of laser dot trajectory on a
horizontal plane, the parameters of movement for a total of
120 experiments were determined. Theoretical expressions
are verified experimentally.

From the parameters obtained by photographic records,
quantitiesµ/I1 andI3/I1 were found, and then were com-
pared with the direct measurement of these on the mass dis-
tribution of gyroscope. Although there was some dispersion,
the average on measurements is adjusted in a precise way
with theoretical data.

Experimentally was shown that the number of rotations
per nutation cycle is a lineal function of the relation between

velocities of precession and nutation, and the average inclina-
tion angle of gyroscope axis. The slope and intercept with the
axis coincide, inside the range of uncertainty, with the values
predicted by the model.

The analysis made on this work does not considered the
friction due to air viscosity, although the photographic regis-
ters evidence this effect; this is an indicator of the high level
of sensibility in this experiment. Nevertheless, because rela-
tively small intervals of time were taken, these effects were
ignored.
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12. E. Pĩna, On the motion of the symmetric Lagrange’s top, Rev.
Mex. Fis.39 (1993) 10-31.

13. J. W. Brown, R.V. Churchill,Complex Variable and Applica-
tions, seventh edition. Mc Graw Hill (2003). pp. 49-50.
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