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Gravitational pocket billiards with Mathematica TM
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Playing pocket billiards with two gravitational attracting balls and a non-interacting hole requires one to know the trajectories of the balls and
therefore to be an “artisan” in the so-called two-body problem, one of the milestones for undergraduate students of Classical Mechanics.
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Jugar al billar con dos bolas sometidas a interacción gravitatoria y un hoyo no interactuante precisa conocer las trayectorias de las bolas
de billar y, además, ser un “artesano” en el bien conocido Problema de Dos Cuerpos, uno de los más complicados para los estudiantes de
Mecánica Clásica.

Descriptores: Problema de dos cuerpos; problema de Kepler; Mathematica; billar.
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1. Introduction

The gravitational two-body problem has been completely
solved since the time of Kepler and Newton. This problem
is discussed in most mechanics textbooks [1-4] and together
with other problems concerned with gravitation continues to
be a subject of lively interest in papers that meet the needs
and intellectual interests of college and university teachers
and students [5-12]. Conventionally its treatment involves the
description of the problem in terms of the relative orbit and
of the centre of mass motion, both treated separately, giving
way in each case to the equation of motion for a single parti-
cle moving under a given force. In the case of the centre of
mass, the force is zero for isolated systems.

However, although undergraduate students can solve the
above-mentioned equations and therefore obtain the relative
orbit and the motion of the centre of mass, they usually have
some difficult in envisioning the motion of the two individ-
ual bodies from the point of view of a fi ed observer. These
difficultie in plotting the individual trajectories of each body
are probably due, in our opinion, to a misunderstanding of
the concept of relative motion and we must point out that, al-
though the use of the centre of mass frame is often a consid-
erable simplificatio for a two-particle system, we emphasize
in this paper the complete point of view of the fi ed observer
because in our opinion it gives students a better appreciation
of the problem.

As an example of a two-body problem we propose in this
paper a simple pocket billiards game, with two gravitational
attracting balls and one non-interacting hole; although Math-
ematicais firs and foremost a computer algebra system, we
suggest several opportunities to practise with it as a computer
program [13,14] to overcome some of the difficultie in ob-
taining the individual orbits of the balls for the fi ed observer.
The proposal has a triple purpose: to practise using an indis-
pensable didactic tool, namely the program, to do something

amusing, namely playing the game, and finall and as a con-
sequence of both, to master all the concepts related to the
two-body problem.

The present paper is organized as follows:
In Sec. 2 we review the basic equations for the two-body

problem.
In Sec. 3 we propose the game with its corresponding

notation. We envision graphically how the centre of mass po-
sition and the relative position vector must be related to put
one of the balls into the hole, and in Sec. 4 we outline a
working scheme to obtain the necessary initial conditions to
achieve our aim if we know how to solve the relative motion.

In Sec. 5 we analyse how to solve the relative motion
as a function of time in the case of closed relative orbit (Ke-
pler’s problem) and so how to apply the outlined scheme of
Sec. 4. In Sec. 6 we present some results obtained withMath-
ematica. Although the results presented in this section can
be obtained numerically with other reliable methods, we use
Mathematica because it is a valuable tool for research and
teaching [15,16].

In Sec. 7 we focus on obtaining straightforward analyti-
cal solutions for specially chosen hole positions and in Sec. 8
we write some fina comments.

Finally we include a Mathematicadocument for repro-
ducing some results appearing in this paper and some others
concerning the proposed game.

2. Basic equations for the two-body problem

The essential information for obtaining the movement of two
isolated balls with gravitational interaction between them,
can be copied from any mechanics textbook [1]. If we de-
fin the position of the centre of mass (CM),

~R =
m1 ~r1 + m2 ~r2

m1 + m2
(1)



GRAVITATIONAL POCKET BILLIARDS WITH MATHEMATICATM 169

~r1, ~r2 andm1, m2 being the positions and masses of the balls
and the relative position

~r = ~r1 − ~r2, (2)

without any gravitational external field we get

~̈R = ~0, (3)

and
µ ~̈r = −G

M µ

r3
~r (4)

the dots denoting differentiation with respect to the time,
G the gravitational constant, µ the so called reduced mass
define as µ = m1 m2/(m1 + m2) and M the total mass
m1 + m2. It is worth noting that the equation of motion (3)
is identical to the equation of free motion, and the equation
of motion (4) is identical to the equation for a single ball of
mass µmoving under the gravitational fiel created by a fi ed
massM . Once ~R and ~r are found as functions of time, we can
obtain the positions of both balls by solving the simultaneous
Eqs. (1) and (2) giving

~r1 = ~R +
m2

M
~r , ~r2 = ~R− m1

M
~r (5)

and so we can plot the orbit of every ball for the fi ed ob-
server.

Now it is worth emphasizing that:
a) when we refer to the relative orbit, the vector ~r (t), we

mean the orbit of the ball of mass m1 as viewed from a
reference system with origin at the position of the ball
m2, but with non-rotating axes. These axes are always
parallel to those of the fi ed inertial reference system,

b) there are just two masses in our problem: m1 and m2;
there is no other ball of mass µ,

c) the problem of a ball under the influenc of a central
force with fi ed centre is known by the students before
they study the chapter corresponding to the two-body
problem [1] and so they are at home in obtaining the
relative motion in this problem, by solving Eq. (4).

FIGURE 1. The two-body problem.

FIGURE 2. The scheme of the proposed pocket billiards game.

3. The proposed game

We propose, in this paper, the following modifie game of
pocket billiards as indicated in Fig. 2. Suppose we have an
isolated system of two equal billiard ballsA andB of massm
with gravitational interaction between them and we want to
fin the initial conditions required to put ballA into one fi ed
hole with the centre at point H somewhere on the pool table.
The origin of the fi ed x,y-axes of our inertial reference sys-
tem is at the initial position of ball A.

At the initial instant, t = 0, the balls are separated by a
distance δ and ball A is at rest. Ball B is given an initial ve-
locity ~v0 perpendicular to the initial relative position vector,
~r0 = ~r (0), with origin at the position of A and its modu-
lus is the only unknown quantity in the problem to achieve
our aim. So for a given value of δ, α1, α2 we require the
value of the initial velocity modulus v0 to put ball A inside
the hole H with (α1 δ , α2 δ) being the Cartesian coordinates
of its centre.

Graphically, the general solution to our game is also il-
lustrated in the same Fig. 2. The centre of mass velocity is
constant and equal to v0/2, its trajectory being the straight
line PQ; so to obtain a solution to our problem there must
be an instant, t = τ , for which the CM position and the
relative position vector at the same instant, ~r (τ), must be
coordinated as indicated in the figure

4. The general scheme to obtain the solution

We describe, in this section, the scheme for solving the pro-
posed problem that, as has been said, is to put ball A into the
hole. By introducing polar co-ordinates r , ϑ for the relative
position vector in the plane of motion, with the Cartesiany-
axis being the polar axis and r the distance between balls, see
again Fig. 2. The Cartesian coordinates of the position of the
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ball A at any instant are given by

xA =
v0

2
t− r

2
sin ϑ, yA =

δ

2
− r

2
cos ϑ (6)

so that by knowing r (t) and ϑ (t) we obtain xA (t), yA (t)
and thus to get ball A inside the hole there must be a time
t = τ for which the equations

xA (τ) = α1 δ, yA (τ) = α2 δ (7)

are satisfied Here, besides the value, or values, of v0 neces-
sary to satisfy Eq. (7), we obtain as additional information
the fligh time τ , the direction of the relative position vector
at t = τ , that is to say ϑ (τ) ≡ β and the distance r (τ)
between the balls at the same time.

But obtaining the relative motion is a difficul subject.
The orbital equation for motion in a central inverse-square
force law can be solved in a fairly straightforward man-
ner with results that can be stated in simple closed expres-
sions [1], but describing the motion of the particle in time as
it traverses the orbit, that is to say the obtaining of the func-
tions r (t) and ϑ (t), is a much more involved matter. That
is why this is a good opportunity for the students to prac-
tise with the program Mathematicaand we encourage them
at this point to run the program by following the procedure
given in the next section to obtain the relative motion.

5. The relative motion

In order to fin r (t) and ϑ (t), that is to say the relative po-
sition vector as a function of time, one must solve Kepler’s
equation for bounded relative orbits, a different one known
as Barker’s equation in the parabolic case, and a still differ-
ent one in the hyperbolic case. In this paper we limit our
calculus to elliptical relative orbits and so we can proceed in
the following way [2]:

By introducing the auxiliary variable ψ, denoted as the
eccentric anomaly, and define by the relation

r = a (1± e cos ψ) (8)

where a is the semi-major axis of the relative orbit and e its
eccentricity, the relation

√
GM

a3
t = ψ ± e sin ψ (9)

known as Kepler’s equationis obtained. In both equations
the upper sign refers to the case when the perihelion occurs
at ψ = π (where ϑ = π) and the lower to the case when the
perihelion occurs at ψ = 0 (where ϑ = 0). So while Eqs. (8)
and (9) yield the radial distance r (t), the polar angle ϑ can
be expressed in terms of ψ through

tan
ϑ

2
=

√
1 + e

1− e
tan

ψ

2
(10)

and so Eqs. (9) and (10) yield ϑ (t).

We consider it worth definin the following dimension-
less variables,

r∗ =
r

δ
, t∗ =

t (Gm)1/2

δ3/2
(11)

and the following dimensionless magnitudes

v∗0 =
(

δ

Gm

)1/2

v0, a∗ =
a

δ
, l∗ =

l

δ
,

E∗ =
E δ

Gm2
, T ∗ =

T (Gm)1/2

δ3/2
(12)

δ being, as stated above, the initial distance between the balls
and v0, a, l, E, T the initial velocity, semi-major axis, semi-
latus rectum, energy and period of the relative elliptical orbit,
respectively. As these magnitudes are related by [1]

E =
1
2

µ v2
0 −

GM µ

δ

l =
µ δ2v2

0

GM µ
(

T

2 π

)2

=
µ a3

GM µ
=

a3

2 G m

2 a = −GM µ

E
(13)

we obtain for the dimensionless magnitudes define in
Eq. (12)

2a = − 1
E

=
4

4− v2
0

(14a)

l =
v2
0

2
(14b)

E =
1
4

v2
0 − 1 (14c)

T =
√

2 π a3/2 (14d)

where the stars have been dropped for convenience and it
must be pointed out that all the magnitudes appearing in the
rest of the paper must be considered to be dimensionless.

In their dimensionless form the equations we have to deal
with obtained from Eqs. (8), (9) and (10) become

r = a (1± e cos ψ) (15)
√

2
a3

t = ψ ± e sin ψ (16)

tan
ϑ

2
=

√
1 + e

1− e
tan

ψ

2
(17)

where the eccentricity e, as a function of the modulus of the
relative velocity v0, is given by

e (v0) =
√

1 + 2 E l =
∣∣∣∣1−

v2
0

2

∣∣∣∣ . (18)
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It is worth remarking again that in Eqs. (15) and (16) the
upper sign refers to the case 0 < v2

0 < 2 and the lower to
the case 2 < v2

0 < 4, where the maximum limit according
Eq. (14a) corresponds to E = 0, that is to say for parabolic
relative motion.

Once the relative motion is obtained, the balls positions
for the fi ed inertial observer are given in their dimensionless
form by

xA =
v0

2
t− r

2
sin ϑ yA =

1
2
− r

2
cos ϑ (19a)

xB =
v0

2
t +

r

2
sin ϑ yB =

1
2

+
r

2
cos ϑ (19b)

and, as has been said in Sec. 4, at the instant ball A falls into
the hole the dimensionless equations

xA (τ) = α1

yA (τ) = α2 (20)

must be satisfied
In summary, the whole procedure followed in this section

to obtain the motion in time is the following: for a given value
of v0 we calculate e and a with Eqs. (18) and (14a). Then
we start with any value of ψ and from Eq. (16) we obtain
the corresponding value of the dimensionless time t. For this
time t, that is to say for the selected value of ψ, we obtain the
corresponding value of r from Eq. (15) and the correspond-
ing value of ϑ from Eq. (17). Once the values of rand ϑ are
obtained, we calculate from Eq. (19) the positions for both
balls at time t.

As an example of the procedure followed we plot in Fig. 3
the trajectories of ball A for the fi ed observer and different
values of v0 < 2 in the interval 0 < ψ < 2 π. That means
according to (16) different fina times because the values of
a and e depend on the value of v0. In Fig. 4 the trajectories
of the ball B are plotted in the same range of v0 < 2 and
0 < ψ < 2 π. Note in both figure that at t = 0, xB = 0,
yB = 1 and xA = 0, yA = 0 according to Fig. 2

FIGURE 3. The trajectories of ball A plotted with Mathematica
for different values of v0 in the interval 0 < ψ < 2 π. Full line
v0 = 0.1, 0.2, ...1.3, 1.4. Dot-dashed line v0 = 1.5, 1.6, ..., 1.9.

FIGURE 4. The trajectories of the ball B plotted with Mathematica
for different values of v0 in the interval 0 < ψ < 2 π. Full line
v0 = 0.2, 0.4, ...1.2, 1.4. Dot-dashed line v0 = 1.5, 1.6, ..., 1.9.

6. The pocket billiards game with Mathemat-
ica

In this section we use Mathematicato solve our proposed
problem, that is to say to fin the initial velocity v0 to put
ball A into the hole.

a) First we limit our calculus not just to the elliptical rel-
ative orbits, 0 < v0 < 2, but to the case where the hole
is somewhere on the straight line y = x at a distance
dA from the origin.

By following the procedure given in the last section,
after giving a value of v0 we calculate the position of
ball A at different values of ψ, that is to say according
to Eq. (16) at different values of t, and then we use the
program routine [13]

FindRoot [xA [ψ] ==yA [ψ] , {ψ, ψstart, ψmin, ψmax}]

which searches for a solution of xA (ψ) = yA (ψ)
where ψstart, ψmin, ψmaxare chosen suitably after a
random search.

In this way we obtain the value of ψτ which satisfie
xA (ψτ ) = yA (ψτ ) and then with Eq. (16) we ob-
tain the corresponding value of τ , that is to say the firs
time for which xA (τ) = yA (τ). At this time τ , ball A
touches the straight line y = x, dA =

√
2 xA (τ) be-

ing the distance from the crossing point to the origin,
see Fig. 5. So, obviously, if we place the centre of the
hole H with coordinates(α1, α2) at this crossing point,
that is to say if we make α1=α2=xA (τ), we achieve
our aim.

Figure 6 shows, for different values of v0, ranging from
0.1 to 1.99, the trajectories of ball A obtained and plot-
ted with Mathematica, from the origin(t = 0) to the
point where its trajectory crosses the line y = x for the
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firs time (t = τ). The function v0 (dA), as define
above, is plotted in Fig. 7 and it is worth remarking
that this is the form chosen in this paper to give the
solutions to our pocket billiards game when the hole
is somewhere on the y = x line. That means that af-
ter choosing the position of the hole somewhere on the
line y = x, that is to say for a given value of the dis-
tance dA, we obtain from Fig. 7 the necessary value
of v0.

We can also obtain several other interesting correspon-
dences concerning the trajectories of Fig. 6. For in-
stance the fligh time function τ (v0) plotted in Fig. 8
which could also be plotted as τ (dA). It is worth ob-
serving that this function has a minimum for v0 ≈ 0.5,
this result not being easy to grasp from an analytical
point of view.

FIGURE 5. The scheme of the trajectory of ball A with the hole on
the line y = x.

FIGURE 6. First crossing of ball A with the line y = x for
v0 = 0.1, 0.2, ...1.8, 1.9, plotted with Mathematica.

FIGURE 7. v0 (dA) plot where the hole is on the line y = x.

FIGURE 8. τ (v0) plot τ where the hole is on the line y = x.

b) Second, by still considering elliptical relative orbits,
0 < v0 < 2, we extend our calculus to the general
case where the hole is somewhere on the straight line
y = p x with p 6= 1, that is to say for any position of
the hole. Some of the results also plotted and obtained
with Mathematicaare shown in Figs. 9 and 10 again
with v0 ranging from 0.1 to 1.9.
The solution in this case is given in Fig. 9 in the
sense that for a given position of the hole, that is to
say for given values of p and dA, the corresponding
value of v0 can be obtained from the figure The thick-
est line is identical to the line shown in Fig. 7 and
it is worth observing that when the hole is near the
origin (dA < 0.6), the velocity v0 is little depen-
dent on the hole position (p, dA) in the plotted range
0.6 < p < 2.2.
For convenience we show in Fig. 10 the fligh time in
a different manner. We plot the isochronous curves for
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constant values of τ starting from τ = 0.9. To obtain
the fligh time in any particular case we must proceed
in the following way: the point of Cartesian coordi-
nates (p, v0) characteristic of the position of the hole
corresponds to a determined isochronous curve and so
we can read on the curve the corresponding fligh time.

7. Straightforward solutions for β = π(2 n+1)

Straightforward solutions can be obtained analytically in
some particular cases. So in this section and without the help
of the computer we focus our attention on the α1 = α2 ≡ α
case, that is to say with the hole somewhere on the straight
line y = x, (p = 1), and the condition β = π(2 n + 1), that
is to say

τ = (2 n + 1)
T

2
(21)

for n = 0, 1, 2, 3..., T being the period of the relative orbit,
and therefore that means that we are concerned again with el-
liptical relative orbits, that is to say the condition 0 < v0 < 2
still holds.

FIGURE 9. v0 (dA) plot for any position of the hole.

FIGURE 10. τ (p, v0) plot for any position of the hole.

FIGURE 11. Scheme of the straightforward solutions with the hole
on the line y = x and the conditionβ = π(2 n + 1).

In this case, see Fig. 11, the relative position vector ~r (τ),
at the instant t = τ , is antiparallel to the initial relative posi-
tion vector ~r0 and as rmin = |~r0 | and rmax = |~r (τ) |, we
obtain for the major semi-axis of the relative orbit

a =
rmax + rmin

2
=

(2 α− 1) + 1
2

= α . (22)

where again dimensionless magnitudes are considered.
Now the following relationships must hold: first as the

major semi-axis a = α we firs obtain from Eq. (14a)

v2
0 =

2 (2 α− 1)
α

(23)

and second, as the distance travelled by the centre of mass
moving at velocity v0/2 must be α in a time equal to τ , we
obtain with Eq. (21)

(2 n + 1)
4

v0 T = α (24)

Now the substitution of T from Eq. (14d) and v0 from
Eq. (23) yields

α =
1
2

[
1 +

4
π2(2n + 1)2

]
(25)

and so the hole position (α , α) as a function of n is obtained,
α fulfillin the condition

1
2

< α <
1
2

+
2
π2

= 0.7026 (26)

which limits the hole position in the bold line segment CD
shown in Fig. 6.
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174 C. ANTÓN AND J.L. BRUN

FIGURE 12. dA (n) plot for the straightforward solutions.

As a consequence of Eqs. (25) and (23) there is just one
position of the hole on the CD segment for each value of
n and one determined value of v0 to put ball A inside the
hole after a time τ (n) with the condition β = (2 n + 1) π.
The substitution into Eq. (21) of T given in Eq. (14d) and
a = α (n) given in Eq. (25) yields

τ =

[
4 + π2 (2n + 1)2

] 3/2

4 π2 (2n + 1)2
(27)

and by substitution of Eq. (25) into Eq. (24) we obtain

v2
0 (n) =

16
4 + π2 (2 n + 1)2

(28)

and whence the maximum value of v0,(n = 0), corresponds
to the maximum value of α and so in this case the hole must
be at the extreme D. This maximum value is obtained from
Eq. (28) yielding

v0,MAX =

√
16

π2 + 4
= 1.07 (29)

and so as the velocity v0C for circular relative orbit of radius
unity is

v2
0C = 2 (30)

the following condition

v0 (n) < v0C (31)

is fulfille and so v0 is always smaller than the velocity cor-
responding to circular relative orbit.

It is worth remarking that owing to the strong n depen-
dence of α given in Eq. (25) most of the values of α are

near 0.5. That means that for most values of n, the hole must
be near C, that is to say at a distance from the origin dA

near 1/
√

2. This fact is shown in Fig. 12 where the function
dA (n) is plotted.

8. Conclusions

First of all we encourage the use ofMathematicain this prob-
lem and we hope that we have been persuasive enough in this
paper to show how to have an amusing time with this program
and our proposed pocket billiards game. The students could
extend the problem to other situations than those described in
this paper, for instance when the relative orbit is open.

As for the conclusions obtained with the results presented
in this paper, we point out some of them here. For instance,
as we have shown, there are no unique initial conditions for
a determined positioning of the hole. If the hole is placed
somewhere in the segment CD on the line y = x, we can
obtain a solution for β being a multiple of π or for β not
fulfillin this condition. In the firs case the solution can be
straightforwardly obtained with our mechanics textbook, but
in the second the help of Mathematicais invaluable.

Also we would like to emphasize the benefit that can
be obtained with Mathematicain the sense that different and
somewhat unpredictable facts can appear as in Fig. 8 where
there is an interesting minimum in the τ (v0) plot, or in Fig. 9
where the cases for hole positions near the origin could be
studied in more detail.
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A How to reproduce the calculations pre-
sented in this paper

There is much scope for developing the problem proposed in
this paper as a student project. A Mathematicadocument has
been included as a complement to this paperi. This docu-
ment shows how to reproduce some important results which
have already been discussed in the preceding sections. In ad-
dition, it includes the code for visualizing the trajectories of
the balls for a fi ed observer as a fil and other graphics.
Basic knowledge of Mathematicawill be required in order
to understand and use the document. We strongly encourage
students to follow the instructions given in order to make the
most of it.
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i. Click here to download Mathematicadocument.
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