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An alternative solution to the general tautochrone problem
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In 1658, Blaise Pascal put forward a challenge for solving the area under a segment of a cycloid and also its center of gravity. In 1659,
motivated by Pascal challenge, Huygens showed experimentally that the cycloid is the solution to the tautochrone problem, namely that of
finding a curve such that the time taken by a particle sliding down to its lowest point, under uniform gravity, is independent of its starting
point. Ever since, this problem has appeared in many books and papers that show different solutions. In particular, the fractional derivative
formalism has been used to solve the problem for an arbitrary potential and also to put forward the inverse problem: what potential is needed
in order for a particular trajectory to be a tautochrone? Unfortunately, the fractional derivative formalism is not a regular subject in the
mathematics curricula for physics at most of the Universities we know. In this work we develop an approach that uses the well-known
Laplace transform formalism together with the convolution theorem to arrive at similar results.
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En 1658, Blaise Pascal lanzó el reto de determinar elárea debajo de la curva de un segmento de cicloide, ası́ como su centro de gravedad.
En 1659, motivado por el reto de Pascal, Huygens demuestra experimentalmente que la cicloide es la solución al problema de la tautócrona,
es decir, al problema de encontrar una curva tal que, si una partı́cula engarzada en ella se mueve por la acción del campo gravitacional
uniforme, su tiempo de descenso es independiente de la posición inicial. Desde entonces, este problema ha sido tratado en muchos libros
y art́ıculos con diferentes soluciones. En particular, el formalismo de derivadas fraccionales ha sido utilizado para resolver el problema en
el caso de un potencial arbitrario ası́ como el problema inverso: ¿qué potencial se requiere para que una trayectoria, en particular, sea una
taut́ocrona? Desafortunadamente, el formalismo de derivadas fraccionales no forma parte de la currı́cula de la carrera de Fı́sica de muchas
de las Universidades que conocemos. En este trabajo desarrollamos un cálculo que utiliza el bien conocido formalismo de la transformada
de Laplace, que junto con el teorema de convolución, nos lleva a resultados similares.

Descriptores: Taut́ocrona; transformada de Laplace; teorema de convolución.

PACS: 45.20.-d; 02.30.Uu

1. Introduction

As stated in the abstract, Huygens showed experimentally
that a cycloid is the tautochrone curve for a particle sliding
without friction in the uniform gravitational field. He pub-
lished this result in his bookHorologium oscillatorium[1]
and some years later, when J. Bernoulli found that the cy-
cloid is also a brachistochrone, he wrote [2]:

Before I end I must voice once more the admi-
ration I feel for the unexpected identity of Huy-
gens’ tautochrone and my brachistochrone. I
consider it especially remarkable that this coin-
cidence can take place only under the hypothe-
sis of Galileo, so that we even obtain from this
a proof of its correctness. Nature always tends
to act in the simplest way, and so it here lets
one curve serve two different functions, while
under any other hypothesis we should need two
curves. . .

The problem has been, and still is, of interest, espe-
cially because of its similarity with the brachistochrone prob-
lem [3-5]. Great mathematicians such as Joseph Louis La-
grange and Leonhard Euler looked for an analytical solution
to the problem and Niels H. Abel used the Laplace formalism
to solve it [6]. Ever since, many papers have been published
dealing with tautochrone curves under special physical con-
ditions, such as: the tautochrone with friction [7], the rela-
tivistic tautochrone [8], the tautochrone in rotating frames of
reference [9] and the tautochrone under an arbitrary poten-
tial [10]. In this last paper, Flores and Osler introduced the
fractional derivatives formalism to solve the problem and to
generalize to an arbitrary potential energy function, and also
to solve the inverse problem. However, the fractional deriva-
tive formalism is not a regular subject in the under graduate
syllabus of physics or mathematics studies. In this paper we
develop the same type of generalization, but using the more
accessible and well-known formalism of Laplace transform.
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2. The Laplace transform formalism

Before we move toward the tautochrone problem, we shall
recall a pair of definitions and the convolution theorem [11]:

1.- The Laplace transformf(s) of a functionF (t) is de-
fined as:

f(s) = L {F (t)} =

∞∫

0

e−stF (t)dt (1)

and the convolution between two functions as:

t∫

0

F1(z)F2 (t− z) dz = F1 ∗ F2 (2)

2.- The convolution theorem:

If f1(s) andf2(s) are the Laplace transforms ofF1(t)
andF2(t), respectively, then

f1 (s) f2 (s) = L





t∫

0

F1 (z)F2 (t− z) dz





= L (F1 ∗ F2) (3)

3. The Laplace formalism in the Tautochrone
problem

The path-time employed in a given trajectory defined by an
arc element dσ

dσ=
√

dx2 + dy2=
√

1 + (dx/dy)2dy=
√

1 + x′2dy (4)

with a velocity v

v =
√

(2/m) [U (y0)− U (y)], (5)

where m is the mass of the particle and U(y) is the potential
energy function, can be written as:

t∫

t0

dt = −
∫

σ

dσ

v

= −
y∫

y0

dσ

dy

√
(2/m) [U (y0)− U (y)]dy; (6)

the minus sign is becausedσ/dt < 0. As stated before, the
standard way to solve the problem using the Laplace formal-
ism was put forward by Abel [6], and it can be seen, for in-
stance, in Arfken’s book [11]. However, we include it here
for the sake of completeness:

In the constant and uniform gravitational potential case,
U(y) =mgy, the last integral of Eq. (6) is from the top of
the trajectory (y = y0, t= t0 = 0) to its bottom; (y = 0, t =

T), where the ending point has been taken, without lost of
generality asy = 0, so that equation can be written as:

T∫

0

√
2gdt =

√
2gT = −

y=0∫

y=y0

(y0 − y)−1/2

(
dσ

dy

)
dy

=

y0∫

0

(y0 − y)−1/2

(
dσ

dy

)
dy (7)

For a tautochrone, the time of descent T is to be constant
independent ofy0, so that the upper limit of Eq. (7) is ar-
bitrary and this fact makes it possible to take the integrand
as the convolution ofdσ/dy. The convolution theorem then
states that

√
2gT = y−1/2 ∗ dσ

dy
, (8)

and calculating the corresponding Laplace transforms one
obtains

√
2gT

1
s

= L

{
dσ

dy

}
L

{
y−1/2

}
= L

{
dσ

dy

} √
π

s
(9)

because the Laplace transform of a constant A is A/s and that
of y−1/2 is

√
π/s. Applying the inverse transform yields:

dσ

dy
=
√

2gT

π
y−1/2 (10)

Squaring, separating variables, and integrating we arrive
at the parametric equations of a cycloid passing through the
origin [11]. This is the usual method for solving the tau-
tochrone in the homogeneous gravitational field. The same
method can be used to solve the general case, in which the
potential energy function is arbitrary. We give the solution in
the next section.

4. General case

In the general case for an arbitrary potential, we cannot use
the convolution theorem because the left side of Eq. (6) does
not contain a termy0 − y [as in Eq. (7)]. However, making
z = U(y) we can write

dσ

dy
dy=

dσ

dz

dz

dy
dy=

dσ

dz
dz and dz=

dU

dy
dy = U ′dy (11)

so then Eq. (6) takes the form
√

2
m

T∫

0

dt=

√
2
m

T=−
z∫

z0

(z0 − z)−1/2

(
dσ

dz

)
dz (12)

Under the isochronal condition, the left side of Eq. (12)
is a constant, so the right side does not depend on the integra-
tion limits and we can apply the convolution theorem; then

L

{√
2
m

T

}
=

√
2
m

T

s
= L

{
z−1/2

}
L

{
dσ

dz

}

=
√

π

s
L

{
dσ

dz

}
(13)
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because the Laplace transform of a constant A is A/s and that
of z−1/2 is

√
π/s. Solving forL {dσ/dz} we obtain:

L

{
dσ

dz

}
=

(√
2
m

T

π

)√
π

s
. (14)

Applying the inverse transform, and substitutingz =
U(y), yields

dσ

dU
=

√
2
m

T

π
U−1/2 (15)

so that
√

2
m

T

π

U∫

0

U1/2dU =
∫

σ

dσ, (16)

whereU = 0 is taken at the end point of the trajectory. Then:

σ = 2

√
2
m

T

π
U1/2 = A

√
U (17)

and because

dσ

dU
=

dσ

dy

dy

dU
=

1
U ′

dσ

dy
=

√
2
m

T

π
U−1/2 (18)

we obtain, from Eq. (4):

x =

y∫

0

√
2T 2

mπ2

U ′2

U
− 1dy (19)

Equation (17) makes it possible to find the potential en-
ergy function that “makes” a given curve a tautochrone. As
was stated in the introductory section, the results established
in Eqs. (17) and (19) were previously derived using the frac-
tional derivative formalism [10]. However, this formalism is
far from usual at the undergraduate level. On the other hand,
the Laplace transform formalism is a main part of any mathe-
matic methods course, not only in Physics and Mathematics,
but also in Engineering.

5. Generalization to central potentials U(r)

In the case of central potentialU(r), the movement of a parti-
cle is in a plane (φ = constant), so the arc elementdσ in polar
coordinates is:

dσ =

√
1 + r2

(
dθ

dr

)2

dr (20)

and the speed of the particle along the trajectory is:

v =

√
2
m

[U (r0)− U (r)] (21)

so the time from the initial point to the bottom of the trajec-
tory will be:

T=

T∫

0

dt=−
∫

σ

dσ

v
=−

r∫

r0

dσ/dr√
2
m [U (r0)−U (r)]

dr (22)

Proceeding as in the Cartesian coordinates case, we call
z = U(r) so that

√
2
m

T =

z0∫

z

(z0 − z)−1/2 dσ (z)
dz

dz (23)

Repeating the previous steps one obtains:

dσ

dz
=

√
2
m

T

π
z−1/2. (24)

So then

σ = 2

√
2
m

T

π
U1/2 = B

√
U (25)

and because

dσ

dU
=

dσ

dr

dr

dU
=

1
U ′

dσ

dr
=

√
2
m

T

π
U−1/2 (26)

we arrive at

θ =
∫ √

2T 2

mπ2

U ′2

U
− 1

dr

r
. (27)

Equations (25) and (27) are the polar equivalents of
Eqs. (17) and (19) for central potential energy functions.

The purpose of this work is to develop a simpler alter-
native to the fractional derivative method [9]. As was men-
tioned in the introduction, several examples of tautochrone
curves have been published using their results, so it is not
worth extending this paper with those examples. We shall
only point out that once Eqs. (19), and (27) are known, the
direct problem is formally solved, as shown in the following
examples.

6. Examples

6.1. Potential energy functions of the (Ay+B)n form

In this case

x =
∫ √

2T 2

mπ2
n2A2 (Ay + B)n−2 − 1dy (28)

which has simple solutions for the following cases:

i)n = 1

x =
∫ √

2T 2

mπ2

A3

(Ay + B)
− 1dy

=
∫ √

C − (Ay + B) y

(Ay + B)
dy

=
1
a

∫ √
C − u

u
du (29)

with u = Ay + B and C = 2T2/mπ2 the solution is an
inverted cycloid and corresponds to the constant uni-
form gravitational field with A = mg. This is Arfken’s
result, obtained in one line!
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ii)n = 2

x =
∫ √

8T 2A2

mπ2
− 1 dy = Cy (30)

which is a straight line and corresponds to the linear
harmonic oscillator potential.

iii)n = 3

x =
∫ √

18T 2A2

mπ2
(Ay + B)− 1 dy

=
∫ √

Dy + Edy

=
2

3D

√
(Dy + E)3 (31)

iv)n = 4

x =
∫ √

32T 2A2

mπ2
(Ay + B)2 − 1 dy

=
∫ √

cy2 + by + a dy

=
(2cy + b)

√
cy2 + by + a

4c

+
1
c

sinh−1

(
2cy + b√
4ac− b2

)
(32)

6.2. Central Potential energy functions

In the case of central force fields, there are also some cases
in which the integral of the trajectory, Eq. (27) has simple
solutions:

If U = ±Ar2, theU ′2/U = 4A2, so the square root of the
integral is a constant C and the trajectory is

r = r0 exp (−kθ) (33)

where k = 1/C.
If the potential is such that

2T 2

mπ2

U ′2

U
− 1 = Br (34)

then the trajectory will be

θ = 2B
(
r
1/2
0 r1/2

)
(35)

The potential energy function that satisfies Eq. (34) is
readily obtained by solving that equation and it is

U =
2B2

9
mπ2

T 2

[
(Br0 + 1)3/2 − (Br + 1)3/2

]2

. (36)

7. Conclusions

An alternative method to solve the tautochrone problem for
an arbitrary potential energy function based on the Laplace
transform formalism, instead of the fractional derivative for-
malism, has been developed. The method has the advan-
tage of being accessible to students of physics, mathemat-
ics and engineering at the undergraduate level. Moreover, the
method is also developed for polar coordinates, useful in cen-
tral potential problems.
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