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Exploring the behavior of solitons on a desktop personal computer
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In recent years, there has been a growing interest in studying and applying nonlinear wave equations and their soliton solutions. In this paper
we discuss at undergraduate level a simple finite–difference numerical method for solving nonlinear wave equations. This method is applied
for studying the striking behavior of the optical solitons. The procedures presented can be reproduced by enthusiastic students and instructor
with a minimum of programming experience. We provide a set of interesting problems that could be taken as starting point to numerically
explore the solutions of nonlinear wave equations.
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El inteŕes en el estudio de las ecuaciones de onda no lineales y sus soluciones solitónicas se ha incrementado recientemente. En este artı́culo
estudiamos un ḿetodo ńumerico muy simple basado en diferencias finitas para solucionar ecuaciones de onda no lineales. Este método es
aplicado en el estudio del comportamiento de los solitonesópticos. Los procedimientos expuestos en este trabajo pueden reproducirse por
estudiantes e instructores con un mı́nimo de experiencia en programación. Adicionalmente, incluimos una lista de problemas que pueden
servir como punto de inicio para explorar las interesantes soluciones de las ecuaciones no lineales.

Descriptores:Solitones; ecuaciones diferenciales no lineales; métodos nuḿericos.
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1. Introduction

The termsoliton was derived from the namesolitary wave,
which was first observed by Scott Russell in 1834 [1–3]. In
his studies, he saw a smooth, rounded, well-defined “heap” of
water that traveled without changing its shape and speed for
many miles along the canal linking Edinburgh with Glasgow.
This initial observation was followed by extensive theoreti-
cal and experimental research that established the existence
of solitons as one of the most striking aspects of nonlinear
wave phenomena. Solitons have been observed and studied
in various fields ranging from optics and fluids [3–6] to solid-
state and chemical systems [7,8].

Exact analytical solutions to nonlinear wave equations do
not exist in most cases, and thus there is a need for numer-
ical techniques. Despite the existence of many applications,
these numerical techniques are often avoided in undergradu-
ate textbooks and curricula, and other texts present only lim-
ited discussions [9–13]. When facing a nonlinear wave prob-
lem that requires numerical methods, we can consult special-
ized books [4,14] and classic articles [15–20]. However, this
experience can be rather painful if one is trying to learn this
subject for the first time. In most cases we are confronted
with a large variety of sophisticated methods or references
with a high density of equations. We believe that this lack of
literature is due to the belief that nonlinear physics is difficult
and cannot be taught to undergraduates.

The purpose of this article is to provide an introduction to
the soliton phenomenon and discuss some basic soliton prop-
erties using elementary numerical methods based on linear
algebra. This discussion is intended for students, teachers,
and researchers who are unfamiliar with numerical methods
for studying soliton propagation. We shall include only the

essential formulas needed to explain the numerical method
for propagation. The procedures and results presented in this
paper can be reproduced by students with a minimum of pro-
gramming experience on a desktop personal computer. To
this end we propose some interesting numerical problems.
Because the paper is relatively self-contained, we believe that
undergraduate students and instructors can take our problems
as a starting point for exploring the numerical solutions of
nonlinear wave equations in various fields of physics.

1.1. Solitary waves and solitons

A solitary wave is a stable isolated (localized) traveling solu-
tion of a nonlinear wave equation, for instance a solitary wave
propagating in positivez direction with velocityv could be
exp[−(z− vt)2]. For a long time, the solitary wave was con-
sidered only as an unimportant curiosity in nonlinear wave
theory. It seemed clear that if two solitary waves were ini-
tially launched into a collision course, the interaction upon
collision would destroy their original identity. But it was a
great surprise when a special kind of solitary wave was dis-
covered that maintains its velocity and shape after collision
with other solitary waves [21]. These solitary waves that be-
have like “particles” were namedsolitonsin 1965 by Zabusky
and Kruskal [2]. The stability of solitons stems from the del-
icate balance of “nonlinearity” and “dispersion” in the model
equations. Nonlinearity drives a solitary wave to concentrate
further; dispersion is the effect of spreading such a localized
wave.

At the present time, solitons are studied in many fields
of Physics. The following three nonlinear differential equa-
tions are well known examples of equations that have soliton
solutions.
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• Korteweg-de Vries equation: The KdV equation [22]
is given by

∂Ψ
∂t

+ kΨ
∂Ψ
∂x

+
∂3Ψ
∂x3

= 0, (1)

whereΨ(x, t) depends on both positionx and timet,
andk is a constant. The KdV equation was developed
by the mathematicians Korteweg and de Vries, and it
is typically used to describe the lossless evolution of
shallow water waves. In addition, the KdV equation
describes longitudinal dispersive waves in elastic rods,
magnetohydrodynamic waves in plasma, Ion-acoustic
waves in plasma, the anharmonic lattice and thermally
excited phonon packets in low-temperature nonlinear
crystal [21].

• The sine-Gordon equation: This nonlinear equa-
tion [23]

∂2Ψ
∂x2

− ∂2Ψ
∂t2

= sin(Ψ), (2)

appears in differential geometry and relativistic field
theory. It has been used also to describe the propa-
gation of light through a crystal dislocation and lipid
membrane, propagation of magnetic flux on a Joseph-
son line, Bloch wall motion of magnetic crystals and a
unitary theory for elementary particles [21].

• The Nonlinear Schr̈odinger Equation: The NLSE [24]

∂2Ψ
∂x2

+ i
∂Ψ
∂t

+ k|Ψ|2Ψ = 0, (3)

is widely used in nonlinear optics. This equation has
been used to describe one-dimensional self-modulation
of monochromatic waves, the self-trapping phenomena
of nonlinear optics, Langmuir waves in plasmas and is
also related to the Ginzburg-Landau equation of super-
conductivity and to the propagation of a heat pulse in a
solid [21].

There are several other well known nonlinear wave equa-
tions that exhibit solitons. For instance: the Klein-Gordon
equation, the Boussinesq systems, the Landau-Lifshitz sys-
tem, and the Burgers equation that arises in fluid mechanics
to describe one-dimensional turbulence [3,19,25].

2. Nonlinear Schr̈odinger equation and soli-
tons

In addition to the applications of NLSE mentioned above, the
NLSE also describes soliton propagation in nonlinear disper-
sive optical fibers [4, 5, 18]. Because the application of soli-
tons in fiber optic communication systems is a rapidly grow-
ing field, we have chosen the NLSE for discussing the soliton
properties and basic numerical methods for solving nonlinear
wave equations. We stress that the discussion given in this pa-
per can be applied straightforwardly to other nonlinear wave
equations.

If u(z, t) denotes the complex amplitude of a wave pulse
travelling along an optical fiber, the spatiotemporal evolution
of the pulse is governed by the NLSE with the form:

∂u

∂z
= −i

β

2
∂2u

∂t2
+ iγ|u|2u, (4)

wherez is the distance along the direction of propagation
in the optic fiber,t is the time a travelling frame of refer-
ence,β is the group-velocity dispersion parameter (this pa-
rameter quantifies how much the index of refraction changes
with respect to the frequency of the wave) andγ is a con-
stant that quantifies the nonlinear phenomena of the media
where the wave pulse is propagated [4,5]. An important con-
dition for ensuring the existence of solitons isβ < 0 [26].
Equation (4) is often written in a simpler normalized form by
takingβ = −1 andγ = 1. Here we have kept the parameters
β andγ in order to control the strength of the dispersive and
nonlinear effects.

The NLSE does not generally lend itself to analytic so-
lutions except for some special cases in which some special
methods for solving nonlinear partial differential equations
can be used, (i.e. the inverse scattering method, the Hirota
method and the B̈acklund transform) [15, 16, 20, 25] Equa-
tion (4) allows exactN -order temporal soliton solutions for
the special case when the initial conditionU(t) is given by

u(z = 0, t) = U(t) = NE0 sech(t/t0), (5)

where the soliton orderN is an integer,E0 is the pulse am-
plitude, andt0 is the time width parameter. The amplitude
and the width of a soliton are not independent, but satisfy the
inverse relation

E2
0t20 =

|β|
γ

. (6)

This relation is a crucial property of the optical solitons of
the NLSE. For reference purposes we include in Appendix A
the complete expressions of the analytic solutions for the first
three order solitons (N = 1, 2, and3).

An interesting property of theN–soliton is that the inten-
sity |u (z, t)|2 is periodic inz with the period

L =
π

2
t20
|β| =

π

2
1

γE2
0

, (7)

and this periodicity occurs for all high–order solitons.

3. Propagating solitons

If the initial condition U(t) does not correspond to aN -
soliton, then a numerical approach is necessary for a full un-
derstanding of the propagation. Roughly speaking, numeri-
cal methods for obtaining solutions to initial value problems
of nonlinear wave equations fall into two categories: finite
difference methods and spectral methods. In general, spec-
tral methods are faster for achieving the same accuracy. For
historical reasons the literature on spectral methods has been
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disjoint from the literature on classical numerical analysis.
The existence of highly efficient algorithms such as the Fast
Fourier Transform (FFT) has made spectral methods com-
mon in current numerical research [4, 9, 10]. However, fi-
nite difference methods are more intuitive, more easily un-
derstood, and relatively easy to program in a personal com-
puter. For this reason, we have chosen a direct explicit finite
difference method to simulate the propagation of solitons in
this paper. For the interested reader, a review of the split-step
Fourier spectral method is included in Appendix B.

3.1. Description of the direct explicit method

The feature of a finite difference method is the approximation
of the spatial and temporal derivatives in the governing equa-
tion by finite differences that relate the values of the unknown
function at a set of neighboring grid points at various times
and positions. The goal is to calculate the values of the un-
known function at the nodes of a grid that covers the domain
of the solution. The finite difference grid may be defined in
rectangular coordinates (see for example Fig. 1) or other or-
thogonal coordinates depending on the boundary conditions.

The direct explicit methodis perhaps the simplest algo-
rithm based on finite–differences to solve the NLSE. Assume
that the initial conditions of the pulse launched is given by
the temporal shapeu(z = 0, t) = U(t), where the time ex-
tends in the rangeti ≤ t ≤ tf , and the functionu(z, t) to be
determined is the spatiotemporal evolution of the pulse. We
discretize time and space and introduce the shorthand nota-
tion

uj
k = u(zj , tk), (8)

wherezj = jh and tk = ti + (k − 1)τ . The finite dif-
ference grid consists of an array of perpendicular lines that
run parallel to thez andt axes. This(z, t) space-time plane
is represented by the grid matrix shown in Fig. 1, where
j = 0, 1, 2, . . . andk = 1, 2, . . . , K denote the spatial and
temporal indices or levels of a given grid point respectively.
The space and time increments are denoted byh andτ , re-
spectively. Note that the boundary points areuj

1 anduj
K , so

the grid spacing isτ = (tf − ti)/(K − 1).
Our objective is to compute the values of the functionuj

k

at the grid pointstk, at a sequence ofz successive grid points
zj beginning from the initial condition atz0 = 0, and subject

FIGURE 1. Grid matrix showing the(z, t) space-time plane.

to the boundary conditionsuj
1 = 0 anduj

K = 0. We approxi-
mate the spatial derivative in Eq. (4) by a first-order two-point
difference and the time derivative by a second-order centered
difference, [9–12] and obtain

uj+1
k −uj−1

k

2h
=−i

β

2

(
uj

k+1−2uj
k+uj

k−1

τ2

)
+iγ

∣∣∣uj
k

∣∣∣
2

uj
k. (9)

Solving foruj+1
k , we obtain

uj+1
k =−α

[
uj

k+1−2uj
k+uj

k−1

]
+i2hγ

∣∣∣uj
k

∣∣∣
2

uj
k+uj−1

k , (10)

whereα ≡ iβh/τ2. The direct explicit method provides us
with a straightforward algorithm to computeu at levelj + 1
in terms of the values ofu at levelsj and j − 1. Because
everything that depends onj andj − 1 is on the right-hand
side, while only the next value ofu is on the left, this method
is an example of an explicit method.

Equation (10) can be applied to the internal grid points
k = 2, . . . ,K − 1, but not at the boundary pointsk = 1 and
k = K. If we express the values ofuj

k as a column vector
uj = [uj

2, . . . , u
j
K−1]

T , we can conveniently rewrite Eq. (10)
in matrix form as

uj+1 = Auj + vj+uj−1, (11)

where A is a tridiagonal square matrix of size
(K − 2)× (K − 2) given by

A =




2α −α 0 · · · · · ·
−α 2α −α 0 · · ·
0

. . .
. ..

. . . 0
· · · 0 −α 2α −α
· · · · · · 0 −α 2α




, (12)

andvj is the column vector

vj = i2γh

[∣∣∣uj
2

∣∣∣
2

uj
2, . . . ,

∣∣∣uj
K−1

∣∣∣
2

uj
K−1

]T

. (13)

Equation (11) is the basic propagating equation for solv-
ing the NLSE numerically with the direct explicit method and
then for simulating temporal solitons. Note that the direct
explicit method in Eqs. (10) and (11) is a three space-level
method, that is, the method uses the levelsuj−1, uj to deter-
mine the next one,uj+1. Because only an initial condition at
levelj = 0 is specified, the scheme is not self-starting. To get
it started,u1 can be determined fromu0 by applying an auxil-
iary first-order forward difference method to approximate the
spatial derivative, that is,

u1
k−u0

k

h
=−i

β

2

(
u0

k+1−2u0
k+u0

k−1

τ2

)
+iγ

∣∣u0
k

∣∣2 u0
k. (14)

Solving foru1
k, we obtain

u1
k = −α

2
[
u0

k+1 − 2u0
k + u0

k−1

]
+ ihγ|u0

k|2u0
k + u0

k, (15)
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FIGURE 2. Flowchart for the direct explicit method.

or in matrix form

u1 =
A
2

u0 +
v
2

0
+u0. (16)

Onceu1 has been determined, Eq. (11) is used to pro-
duce the initial condition. The flowchart of the direct explicit
algorithm for solving the NLSE is shown is Fig. 2. The sta-
bility of simple finite difference methods for partial differ-
ential equations may be assessed by several methods includ-

ing the Von Neumann stability method, the projection matrix
method, and the discrete perturbation method [12]. Applica-
tion of the Von Neumann stability analysis reveals that the
direct explicit method is numerically stable if|α| < 0.5. [18]

3.2. Numerical problems

In order that students and instructors may gain a numerical
insight into propagating solitons, we propose a set of simple
numerical problems. The exercises are chosen in such a way
as to show interesting physical phenomena.

Problem 1: Fundamental soliton

The evolution of the fundamental soliton (first order soliton,
N = 1) is given byu(z, t) = E0sech(t/t0) exp(iγE2

0z/2).
Verfy by direct substitution that this expression is a solution
of Eq. (4) and that Eq. (6) is a required condition.

Problem 2: Propagation of the fundamental soliton

Write a program that uses the direct explicit method to solve
the NLSE. First we will use the direct explicit method to
propagate a fundamental soliton (N = 1). Launch an ini-
tial profile given by Eq. (5) withN = 1. Assume the typical
physical constantsβ = −1.5 ps2 km−1 andγ =3 W−1 km−1.
Choose the numerical parametersK = 100, t ∈ [−5t0, 5t0],
t0 = 2 ps and propagation step sizeh = L/1000 (where
L = πt20/2|β|). Use a mesh plot to graph the soliton evo-
lution versus time and propagation distance. Remember to
plot the intensity|u (z, t)|2 (the squared absolute value of the
field) and not the field itself. Observe how the form of this
pulse remains constant because there is an equilibrium be-
tween the dispersion and nonlinear phenomena. Try a variety
of values forτ andh and verify that the method is condition-
ally stable. You also could run the same simulation but now
usingβ = +1.5 ps2 km−1 and observe how the soliton is not
formed.

Important points to keep in mind: Remember that the
amplitude and the width of the initial shape of the soliton
are not independent [see Eq. (6)]. Be careful with the units
of the physical constants and verify that the input data and
your algorithm are dimensionally consistent. Keep in mind
that the propagated fieldu(z, t) is a complex function, con-
sequently it carries information of both amplitude and phase
of the field. The physical quantity to observe is the intensity,
i.e. |u|2 = u∗u, where the asterisk denotes complex conju-
gate. We have suggested some values for the numerical step
sizes and physical constants in the simulation, however we
encourage you to run your simulation several times adjusting
the step sizes and changing the physical constants until you
obtain nice, acceptable propagations.

In Fig. 3a we show the evolution of the fundamental soli-
ton obtained with the direct explicit method using the values
of the parameters from Problem 2. All numerical calculations
done in this paper were completed within less than 1 min on a
1 GHz personal computer with 512 Mbyte RAM. Matlab was
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used, mainly because of its wealth of built-in matrix func-
tions.

Problem 3: Propagating the second and third order solitons

In the fundamental soliton propagation shown in Fig. 3a, we
can appreciate how nonlinearity and dispersion are in perfect
balance along the propagation distance. Unlike fundamental

FIGURE 3. Space-time evolution over one soliton period for
the first three order solitons. Plots correspond to the intensity
|u(z, t)|2. Numerical values of the parameters are included in
Problems 2 and 3.

soliton, higher–order solitons exhibit a periodic balance,i.e.
the propagation is governed by a balance between broaden-
ing (due to dispersion) and narrowing (due to nonlinearity)
such that the pulse recovers its original shape after a period
L given by Eq. (7).

Test your routine made in Problem 2 by propagating the
second and third order solitons. Launch an initial profile
given by Eq. (5) usingN = 2 andN = 3 respectively, and
satisfying the condition (6). Use the same physical constants
that were used in Problem 2. For visualizing purposes, the
evolution of the second and third order solitons along a pe-
riod L are depicted in Figs. 3b and 3c. These plots were
computed with the direct explicit method using the propaga-
tion step sizeh = L/5000 andt ∈ [−5t0, 5t0] for the second
order soliton, andh = L/15000 andt ∈ [−4t0, 4t0] for the
third order soliton. For higher-order solitons smaller prop-
agation step sizes are needed because the phase of the field
u(z, t) exhibits increasing longitudinal variations as the or-
der increases. You could try a variety of values forh andτ
to show that the accuracy of the propagation decreases with
increasingh. Remember that the intensity profile is recov-
ered after a distanceL, so this can be useful to monitor the
accuracy of your simulations.

Problem 4: Soliton stability I: propagation of a perturbed
fundamental soliton

From a practical point of view, one may ask how the soli-
ton is affected if the initial pulse shape or the peak ampli-
tude is not matched to that required by Eq. (5). In this
problem, we numerically explore the case for whichN in
Eq. (5) is not an integer. To this end, we perform a vari-
ety of simulations with an initial pulse shape of the form
U(t) = (N + δ)E0 sech(t/t0), where|δ| < 1/2. Choose
K = 100, t ∈ [−5t0, 5t0], andh = L/5000. The propa-
gation of this perturbed pulse is depicted in Fig. 4. Verify
the following known results: Fig. 4a The pulse broadens as
it propagates along the fiber ifδ < 0 and narrows ifδ > 0.
Fig. 4b The pulse adjusts its shape and width as it propagates
and evolves into a soliton whose order is an integer closest
to the value ofN + δ. Hint: You need to propagate for sev-
eral soliton periods (typically 5) to see this asymptotic be-
havior. The soliton stability is a very important characteristic
because it permits initial conditions for forming a soliton to
be easily reproduced (you will need to launch an initial pulse
like a hyperbolic secant profile and not an exact hyperbolic
secant form). This condition plus soliton robustness against
collisions with other pulses, have made the soliton a strong
candidatefor the next bit representation in optical telecom-
munications.

Problem 5: Soliton stability II: propagation of Gaussian
pulses

Let us now investigate the case when the initial pulse shape
does not correspond to a sech shape. Assume an initial super-
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Gaussian pulse of the form

U = E0 exp
(
− t2m

3mt2m
0

)
, (17)

with t0 = 2 ps, andm = 1, 2, 3, . . . The casem = 1 re-
duces to a simple Gaussian pulse. Use the same physical
parameters as in Problem 2, andK = 100, andh = L/5000,
t ∈ [−8t0, 8t0], andm = 1. Show that this pulse adjusts its
width and evolves asymptotically into a fundamental soliton
after a distance of about three soliton periods. The propaga-
tion of the super–Gaussian pulse is shown in Figs. 5a and 5b
for m = 1 andm = 2, respectively. Try a variety of in-
put shapes such as triangular and square pulses, and verify
that the qualitative behavior remains the same. Keep the en-
ergy of the perturbed pulses approximately the same as for
the fundamental soliton. The reason why the initial perturbed
pulse tends to the soliton shape is that the soliton solution is
a nonlinear mode of the NLSE. In this reshaping process, the
energy dispersed is known as continuous radiation [4].

FIGURE 4. (a) Fundalmental soliton with an initial positive per-
turbation (δ = +0.075). (b) Fundamental soliton with an initial
negative perturbation (δ = −0.075).

FIGURE 5. Time evolution of a superGaussian input pulse with (a)
m = 1, and (b)m = 2.

You could study also the dispersion and nonlinear phe-
nomena selecting eitherβ or γ equal to zero and observ-
ing the pulse intensity and phase propagation. If there is no
nonlinearity, Eq. (4) reduces to∂u/∂z = −i(β/2)∂2u/∂t2,
which is a special case of the diffusion equation [10]. If
there is no dispersion, Eq. (4) reduces to∂u/∂z = iγ|u|2u,
where in your phase propagation simulation, you can appre-
ciate how the nonlinear phenomenon has a great impact on
the phase components of the field.

Problem 6: Interacting solitons

The interaction between two solitons launched into a fiber is
important from a practical point of view [4,5] and also illus-
trates the particle-like behavior of the solitons. Propagate two
fundamental solitons initially separated by a time2q from
each other. Consider the following initial pulse waveform:

U (t) = E0sech
(

t− q

t0

)
+ QE0sech

(
Q (t + q)

t0

)

× exp (iφ) , (18)

whereQ is the relative amplitude andφ is the initial phase
difference. First study the case of equal amplitude solitons
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FIGURE 6. Time evolution of the interaction of two solitons over
20 soliton periods. (a) No interaction, (b) attraction effect, (c) repul-
sion effect, and (d) interaction of solitons with different intensities.

(Q = 1). In the following exercises, take a time range
t ∈ [−10t0, 10t0] and propagate until at least 20 soliton peri-
ods.

(a) Show that a time separation equal toq ≈ 5t0 is large
enough for avoiding the interaction between the soli-
tons, see Fig. 6a.

(b) Choose an initial separationT = 2.5t0, and propa-
gate about20 soliton periods. Show that the two soli-
tons attract each other and collide periodically along
the fiber in the in-phase case (φ = 0). SetK = 150,
t ∈ [−5t0, 5t0], andh = L/15000. The propagation is
shown in Fig. 6b. A very small step sizeh must be used
for propagating the attractive interaction of solitons be-
cause the phase of the attractive interaction oscillates
very quickly along the propagation distance. Plot the
evolution of the phase in order to see this behavior. By
performing several simulations, you could find the op-
timum distance of separation between solitons where
there is no interaction between them. This distance
would be translated into the optimum bandwidth ca-
pacity of the fiber using solitons (i.e. the capacity of
transmitting the fastest and the largest amount of infor-
mation).

(c) Using the same parameters used in exercise (b), show
that the solitons repel each other and their spacing in-
creases monotonically with the distance forφ = π/2
[see Fig. 6c].

(d) Study the case of slightly different amplitudes by
choosingQ = 1.4 andφ = 0. Show that the two soli-
tons oscillate periodically but never collide or move far
away from each other. From this simulation you can
see that you can increase your bandwidth capacity of
your optical system, thus sending soliton with differ-
ent amplitudes. The results are shown in Fig. 6d.

4. Conclusions

We have assessed a simple numerical method to solve non-
linear wave equations and have used it to study the physi-
cal behavior of temporal optical solitons in fiber optics. Our
main goal was to encourage familiarity with soliton phenom-
ena among the undergraduate community. We have proposed
a set of challenging numerical problems in order to encourage
the students and instructors to explore the striking behavior of
solitons and nonlinear wave phenomena in various fields of
physics.
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Appendix A: Explicit expressions for soliton so-
lutions

For reference purposes, in this appendix we include the evo-
lution expressions for theN -soliton solutions of the NLSE
for N = 1, 2, 3. In the following,T = t/t0 is the normal-
ized time andZ = z/LD is the normalized distance, where
LD = 1/(γE2

0) = t20/|β| is the dispersion length.
ForN = 1 :

u (Z, T ) = E0 exp (iZ/2) sech (T ) , (19)

ForN = 2 :

u (Z, T ) = 4E0 exp (iZ/2)
G2 (Z, T )
H2 (Z, T )

, (20)

where

G2 (Z, T ) = cosh (3T ) + 3 cosh (T ) exp (i4Z) ,

H2 (Z, T ) = cosh (4T ) + 4cosh (2T ) + 3 cos (4Z) .

ForN = 3 :

u (Z, T ) = 3E0 exp (iZ/2)
G3 (Z, T )
H3 (Z, T )

, (21)

where

G3 (Z, T ) = 2 cosh (8T ) + 32 cosh (2T )

+ exp (i4Z) [36 cosh (4T ) + 16 cosh (6T )]

+ exp (i12Z) [20 cosh (4T ) + 80 cosh (2T )]

+ 5 exp (−i8Z) + 45 exp (i8Z) + 20 exp (i16Z) ,

and

H3 (Z, T ) = cosh (9T ) + 9 cosh (7T )

+ 64 cosh (3T ) + 36 cosh (T )

+ 36 cosh (5T ) cos (4Z)

+ 20 cosh (3T ) cos (12Z)

+ 90 cosh (T ) cos (8Z) .

Appendix B: Split-step Fourier method

In this Appendix we briefly discuss one of the most pop-
ular algorithms for solving nonlinear differential equations,
the split-step Fourier method (SSFM). This method relies
on ideas associated with the Fourier transform and is usu-
ally placed under the general heading ofspectralmethods.
The existence of highly efficient algorithms such as the Fast
Fourier Transform (FFT) has made spectral methods com-
mon in current numerical research. The split-step Fourier
method has been used extensively to solve the NLSE in the
context of optical fibers. [4].

To understand the SSFM, we start by writing the NLSE
in the operator form

∂u

∂z
=

[
D̂ + Ŝ

]
u, (22)

whereD̂ ≡ −i (β/2) ∂2/∂t2 and Ŝ ≡ iγ|u|2 are the dif-
ferential operators that account for dispersion and nonlinear
effects in the medium. The method assumes that when prop-
agatingu (z, t) from z to z + h, the dispersive and nonlinear
effects act independently. In the first step, only dispersion
acts, and̂S = 0. The effect of the nonlinearity is now taken
into account in the midplane of the segment.

By integrating Eq. (22) with respect toz we have

z+h∫

z

∂u

u
=

z+h∫

z

D̂dz +

z+h∫

z

Ŝdz. (23)

If the step sizeh is small enough, then the opera-
tors D̂ and Ŝ are approximately constant and we obtain
u (z + h, t) ' exp(hŜ)

[
exp(hD̂) u (z, t)

]
. Notice here

that the exponential operatorexp(hD̂) acts over the argument
u (z, t) , while the operatorexp(hŜ) operates over the argu-
mentexp(hD̂) u (z, t) .

The application of the operatorexp(hD̂) over u(z, t) is
easily performed in Fourier space, namely

exp
(
hD̂

)
u(z, t)==−1

{
exp

(
hD̂(iω)

)
={u(z, t)}

}
, (24)

where= stands for the one dimensional Fourier transform
over the time variable,ω is the angular frequency variable,
and D̂(iω) is the operatorD̂ evaluated at∂/∂T → iω in
such a way that̂D(iω) = i(β/2)ω2.

The implementation of the SSFM is relatively straight-
forward. The fieldu(z, t) is first propagated for a distanceh
with dispersion only. After this, the field is multiplied by a
complex term that accounts for the change phase suffered by
the field due to the nonlinearity over the whole segment. This
prescription is written mathematically as follows

u′ = =−1

{
exp

(
i
βω2

2
h

)
={u(z, t)}

}
(25)

u(z + h) = exp
(
ihγ|u′|2) u′. (26)

The use of the SSFM has become widespread in recent
years because of its fast execution compared with most finite–
difference methods. The Fourier transform and its inverse
can be performed efficiently with the fast Fourier transform
algorithm [9,10] that is widely available in commercial math-
ematical software.

A comparison between the finite differences methods
(FDM) and the SSFM is summarized as follows.

• SSFM has an error of second order in the step size,
whereas for the FDMs it is adjustable depending on
the specific method

• SSFM is up to one order of magnitude faster than
FDM.

• Applicability of the SSFM is narrower than FDMs.

• FDMs permit boundaryless propagation.

• FDMs are easier to program than SSFM.
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