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Radiation from a dipole perpendicular to the interface
between two planar semi-infinite magnetoelectric media
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We consider two semi-infinite magnetoelectric media with constant dielectric permittivity separated by a planar interface, whose electro-
magnetic response is described by non-dynamical axion electrodynamics and investigate the radiation of a point-like electric dipole located
perpendicularly to the interface. We start from the exact Green’s function for the electromagnetic potential, whose far-field approximation
is obtained using a modified steepest descent approximation. We compute the angular distribution of the radiation and the total radiated
power finding different interference patterns, depending on the relative position dipole-observer, and polarization mixing effects which are
all absent in the standard dipole radiation. They are a manifestation of the magnetoelectric effect induced by axion electrodynamics. We
illustrate our findings with some numerical estimations employing realistic media as well as some hypothetical choices in order to illuminate
the effects of the magnetoelectric coupling which is usually very small.
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1. Introduction

The radiation produced by an electric dipole near a planar in-
terface has been well studied over the years and has remained
a relevant subject of research for physicists and engineers
due its relevance in a wide range of phenomena like prac-
tical applications in radio communications [1], THz Zenneck
wave propagation [2], near-field optics [3], plasmonics [4]
and nanophotonics [5], just to mention a few examples. In
1909, Sommerfeld [6] published a theory for a radiating ver-
tically oriented dipole above a planar and lossy ground which
formed the basis for subsequent investigations [7–11]. Prob-
ably, by the fact that the early theory of dipole emission near
planar interfaces was written in German, although there was
an English version summarized in Sommerfeld’s lectures on
theoretical physics [12], many aspects of the theory were
reinvented and clarified over the years [13–16].

Here we consider planar interfaces constructed with lin-
ear homogeneous and isotropic magnetoelectric (ME) media
giving rise to the so called magnetoelectric effect (MEE),
whereby electric (magnetic) fields are able to induce addi-
tional magnetization (polarization) in the material. This ef-
fect, which was predicted [17] and discovered [18] in an-
tiferromagnets, has been widely studied along the years in
multiferroic materials and it is codified in an additional pa-
rameter of the material: the magnetoelectric polarizability

(MEP) [19]. The recent discovery of three-dimensional topo-
logical insulators (TIs) has boosted the interest in this topic
by providing new materials where this effect is predicted to
occur [20–25]. Generally speaking, TIs belong to a novel
state of matter in which the characterization of their quantum
states does not fit into the standard paradigm of condensed
matter physics whereby the phases of the material are clas-
sified according to order parameters arising from the sponta-
neous symmetry breaking of the corresponding Hamiltonian
according to the phenomenological Ginzburg-Landau theory.
A distinguished example of this classification are normal su-
perconductors, where gauge invariance is spontaneously bro-
ken. Instead, these states are classified according to topo-
logical invariants that arise in the Hilbert space generated by
the corresponding Hamiltonians in the reciprocal space of the
crystal lattice. They are protected by time-reversal-symmetry
(TRS) and admit an insulating bulk together with conduct-
ing surface (edge) states. The imposition of this symmetry
yields two classes of materials: standard insulators labeled
by a zero MEP and TIs characterized by a MEP equal to
π. These new materials host a number of exceptional elec-
tromagnetic properties. Among them we have: (i) they can
carry currents along the edge channels without dissipation,
(ii) their MEP is quantized, (iii) the conducting edge states
can be interpreted as quasi-particles being massless Dirac
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fermions. This by itself is an important feature that makes
contact with high energy physics and which provides the op-
portunity to investigate the existence of unseen particles like
Majorana fermions, for example. (iv) they are predicted to
exhibit the quantized photogalvanic effect in which light can
induce a quantized current. For an extensive review of the
properties of TIs see for example [26–28]. All these new fea-
tures provide additional motivation to reconsider the problem
of radiation in magnetolectric media.

The effective theoretical framework to deal with magne-
toelectric media is motivated by axion electrodynamics [29],
which consists of adding the termLa = gaγγ a(t,x)Fµν F̃µν

to the Maxwell Lagrangian densityLem, plus a kinetic and a
mass terms for the pseudoscalar fielda(t,x). The so called
axion field a(t,x) was introduced in Ref. [30] to propose
a solution for the strong CP problem in strong interactions
[31, 32]. In the original formulation [29], the coupling con-
stantgaγγ arised from a specific grand unification model of
the strong and electroweak interactions. Also,Fµν is the
electromagnetic tensor and̃Fµν = (1/2)εµναβFαβ is the
dual tensor. The well known relationFµν F̃µν = −4E · B
allows to rewriteLa in terms of the electricE and magnetic
B fields. As we will show in the following the coupling
La encapsulates the MEE which characterizes the electro-
magnetic response of the materials we consider in this work.
Thus we restrict ourselves to a non-dynamical axion field
a(t,x) → ϑ(x), to be called the magnetoelectric polariz-
ability (MEP), which we consider as an additional electro-
magnetic property of the medium, in the same footing as
its permittivity and permeability [23, 33, 34]. Following a
standard convention we now consider the interaction term
Lϑ = −(α/4π2)ϑ(x)E · B, whereα is the fine structure
constant characteristic of the electromagnetic interaction be-
tween fermions and photons in the material, which produces
this effective term. We callϑ-Electrodynamics (ϑ-ED) this
restriction of axion electrodynamics and our purpose is to
study the radiation produced by a dipole oriented vertically
with respect to the interface between two semi-infinite pla-
nar magnetoelectric media, having different constant MEPs.
Excluding important differences in their microscopic struc-
ture, we will refer to the medium as a magnetoelectric, or
a ϑ-medium, as long as its macroscopic electromagnetic re-
sponse can be described in the framework of theϑ-ED.

The paper is organized as follows. In Sec. 2, we present
a review ofϑ-ED which also contains a summary of the cal-
culation of the time-dependent Green’s function (GF) for the
4-potentialAµ in our setup. As the source of the electro-
magnetic fields, in Sec. 3 we introduce an oscillating verti-
cally oriented point-like electric dipole located at a distance
z0 > 0, on thez-axis perpendicular to the interface between
the two media. The convolution of this source with the GF
is carried out in the Subsec. 3.1 and yields the correspond-
ing electromagnetic potentialsAµ in terms of closed integrals
which are calculated in the Appendix A. The next step is to
obtain the far-field approximation of those integrals. This is
performed using a modified version of the steepest descent

method, which is appropriate to the situation where the inte-
grand is not a smooth function in the vicinity of the stationary
phase due to the appearance of poles in the steepest descent
path at this point.

This approximation,which heavily relies upon Ref. [13]
is explained in detail and carefully carried out in the Ap-
pendix B. These results are summarized in the Subsec. 3.1.

As a consequence of the presence of the pole we find that
the 4-potential acquires a contribution from axially symmet-
ric cylindrical waves (denoted also as surface waves) besides
the standard spherically symmetric ones. A detailed analysis
on the former kind of waves allows us to introduce what we
call the discarding angleθ0, which permits us to divide the
space in two regions:V1 where the cylindrical wave contri-
bution can be neglected andV2 where this contribution has to
be considered within a certain range of parameters in what is
called the intermediate zone in the literature [13]. To charac-
terize the relevance of these cylindrical waves we introduce
a rapidly decreasing function measuring their amplitude and
realize that for observation distances further away from the
intermediate zone in the regionV2 they turn out to be very
much suppressed with respect to the spherical ones. This sit-
uation is quantitatively explained in detail also in the Sub-
sec. 3.1. In Subsec. 3.2, the far-field expressions forE and
B are calculated for each region. In Sec. 4 we consider the
angular distribution, the total radiated power and the energy
transport of the dipolar radiation. In the Subsec. 4.1 we estab-
lish the numerical parameters to be used in the subsequent ap-
plications. Subsection 4.2 comprises a detailed examination
of the angular distribution spectrumdP/dΩ in the regionV1.
In Subsec. 4.3, we calculate the power radiated into the region
V1. Subsection 4.4 is devoted to the energy transport of the
radiation in the regionV2. Here we also give some numerical
estimations considering the media already discussed in Sub-
secs. 4.2 and 4.3, plus some additional hypothetical choices.
Finally, Sec. 5 provides a concluding summary and the con-
clusions from our results. In the Appendix A we derive the
exact expressions for the potentialAµ required to calculate
the electromagnetic fields. The far-field approximation is car-
ried out in the Appendix B using a modified steepest descent
method. The final Appendix C includes a brief review of the
Faddeeva plasma dispersion function which arises in the dis-
cussion of the cylindrical waves. Throughout this paper we
use Gaussian units with~ = c = 1, the metric signature is
(+,−,−,−) andε0123 = 1. We follow the conventions of
Ref. [35].

2. ϑ-Electrodynamics

Let us consider two semi-infiniteϑ-media separated by a pla-
nar interface located atz = 0, filling the regionsU1, z < 0
andU2, z > 0 of the space. We take both media to be non-
magnetic,i.e. µ1 = µ2 = 1 and with the same permittivity
ε1 = ε2 = ε. This condition is motivated by the results
of Ref. [36], which show that the effects of the MEE are
substantially enhanced with respect to the optical contribu-
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tions when bothϑ-media have the same dielectric constant
and permeability. Additionally we assume the parameterϑ to
be piecewise constant so that it takes the valuesϑ = ϑ1 in the
regionU1 andϑ = ϑ2 in the regionU2. This is expressed as

ϑ(x) = Θ(z)ϑ2 + Θ(−z)ϑ1, (1)

whereΘ(z) is the standard Heaviside function withΘ(z) =
1, z ≥ 0 and Θ(z) = 0, z < 0. The dynamics is
governed by the standard Maxwell equations in a material
medium [35,37]

∇ ·D = 4π%, ∇×H− ∂D
∂t

= 4πJ,

∇ ·B = 0, ∇ ·E = −∂B
∂t

, (2)

which require to specify additional constitutive relations
characterizing the medium under consideration. In the case
of the magnetoelectric media the constitutive relations are

D = εE− α

π
ϑ(z)B, H = B +

α

π
ϑ(z)E. (3)

Hereα is the fine-structure constant,% and j are the exter-
nal sources given by the charge and current densities respec-
tively. Substituting the constitutive relations (3) into the inho-
mogeneous equations (2) and using the MEP given in Eq. (1)
yields our final equations

ε∇ ·E = 4π% + θ̃δ(z)B · û , (4)

∇×B− ε
∂E
∂t

= 4πj + θ̃δ(z)E× û , (5)

whereû is the outward unit normal to the regionU1 and

θ̃ = α(ϑ2 − ϑ1)/π . (6)

In the case of a TI located in the regionU2 (ϑ2 = π) in
front of a regular insulator (ϑ = 0) in regionU1, we have
θ̃ = α(2m̃ + 1), with m̃ being an integer depending on the
details of the TRS breaking at the interface between the two
materials.

The homogeneous Maxwell equations still enable us to
define the electromagnetic fieldsE andB in terms the elec-
tromagnetic potentialsΦ andA as

E = −∂A
∂t

−∇Φ, B = ∇×A, Aµ = (Φ,A). (7)

We observe that Eqs. (4) and (5), together with the constitu-
tive relations (3), can also be derived from the action

S[Φ,A] =
∫

dt d3x
[ 1
8π

(
εE2 −B2

)

− α

4π2
ϑ(x)E ·B− %Φ + J ·A

]
, (8)

which clearly incorporates the modified axion termLϑ dis-
cussed in the Introduction. As usual, the electric and mag-
netic fields in Eq. (8) are written in terms of the potentials
according to Eq. (7).

The Eqs. (4) and (5) explicitly show that there are no
modifications to the dynamics in the bulk (z 6= 0) with re-
spect to standard electrodynamics. Nevertheless, as it is well
known, the solution of a system of differential equations de-
pends crucially upon de boundary conditions. In this way, the
new physics induced byLϑ arises from the interface between
the media (z = 0) and will be a consequence of the boundary
conditions there. Physically, this is a consequence that TIs
behave as normal insulators in the bulk, but possess conduct-
ing properties at interfaces, as indicated by the MEE. Even
though we are dealing with a continuous dielectric, (ε1 = ε2),
the different MEP of both media generate effective trans-
mission and reflection coefficients for electromagnetic waves
across the interface. Mathematically, this feature is under-
stood becauseE ·B in Lϑ is a total derivative, so the only al-
lowed modifications to the standard Maxwell equations arise
when the integration by parts produces∂αϑ 6= 0, which pre-
cisely define the interface in our problem.

Assuming that the time derivatives of the fields are finite
in the vicinity of the surfacez = 0, the modified Maxwell
equations (4) and (5) imply the following boundary condi-
tions (BCs)

ε [Ez]
z=0+

z=0− = θ̃Bz|z=0,
[
B‖

]z=0+

z=0− = −θ̃E‖|z=0 ,

[Bz]
z=0+

z=0− = 0,
[
E‖

]z=0+

z=0− = 0 , (9)

for vanishing external sources on the surfacez = 0. The no-
tation is [V]z=0+

z=0− = V(z = 0+) − V(z = 0−), V
∣∣
z=0

=
V(z = 0), wherez = 0± indicates the limitsz = 0 ± η,
with η → 0, respectively. The continuous terms in the right-
hand side of the first and second equations in Eq. (9) represent
self-induced surface charge and surface current densities, re-
spectively, which clearly demonstrate the MEE localized just
at the interface between the two media.

A convenient way to deal with the fields produced by ar-
bitrary sources in electrodynamics, in particular inϑ-ED, is
by using the corresponding GFGµ

ν(x, x′), which we briefly
revise below [38-42]. Before going into the details we com-
ment upon the advantages provided by the use of GF methods
over different alternatives in electrodynamics: the knowledge
of the GF of a given physical system allows a direct calcula-
tion of the corresponding electromagnetic fields for arbitrary
sources either analytically or numerically just by direct sub-
stitution. This clearly avoids the guesswork required when
using the image method, which by the way works only in
highly symmetrical cases. Also, it saves a lot of work when
one needs to consider different sources in a given system
by avoiding to solve the equations for each source. This
very useful technique extends to many branches of physics
like scattering theory, condensed matter physics and quantum
field theory, for example.

In what follows we restrict ourselves to contributions of
free sourcesJµ = (%, j) located outside the interface, and to
systems without BCs imposed on additional surfaces, except
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for those at infinity. A compact formulation of the problem
is given in terms of the potentials (7) expressed in their four
dimensional form(Φ,A) together with the GF

Aµ(x) =
∫

d4x′Gµ
ν(x, x′)Jν(x′) , (10)

which satisfies the equation[
♦µ

ν − θ̃δ(z)ε3µα
ν∂α

]
Gν

σ(x, x′)

= 4πηµ
σδ(x− x′) , (11)

in the modified Lorenz gaugeε∂Φ/∂t +∇ ·A = 0, together
with the appropriate BCs. The operator♦µ

ν is

♦µ
ν =

(
ε¤2, ¤2δi

j

)
, ¤2 = ε∂2

t −∇2 . (12)

The detailed calculation of the GF is reported in Sec. 3 of
Ref. [42]. Here we only recall the results that are written
in terms ofḠµ

ν , which differs fromGµ
ν only in the term

G0
0 = Ḡ0

0/ε. Since the GF is time-translational-invariant
it is convenient to introduce the corresponding Fourier trans-
form such that

Ḡµ
ν (x,x′, t− t′) =

∞∫

−∞

dω

2π
e−iω(t−t′) Ḡµ

ν (x,x′; ω) . (13)

The final result is presented as the sum of three terms,
Ḡµ

ν(x,x′;ω) = Ḡµ
ED ν(x,x′;ω) + Ḡµ

θ̃ ν
(x,x′;ω) +

Ḡµ

θ̃2 ν
(x,x′; ω), whose explicitly form are

Ḡµ
ED ν(x,x′;ω) = ηµ

ν4π

∫
d2k⊥
(2π)2

eik⊥·R⊥ iei
√

k̃2
0−k2

⊥|z−z′|

2
√

k̃2
0 − k2

⊥

,

Ḡµ

θ̃ ν
(x,x′;ω) = iεµ α3

ν

4πθ̃

4n2 + θ̃2

∫
d2k⊥
(2π)2

eik⊥·R⊥kα
ei
√

k̃2
0−k2

⊥(|z|+|z′|)

k̃2
0 − k2

⊥
, (14)

Ḡµ

θ̃2 ν
(x,x′;ω) =

i4πθ̃2

4n2 + θ̃2

∫
d2k⊥
(2π)2

[
kµkν − (ηµ

ν + nµnν) k2
]

eik⊥·R⊥ ei
√

k̃2
0−k2

⊥(|z|+|z′|)

2
(
k̃2
0 − k2

⊥
)3/2

.

HereR⊥ = (x − x′)⊥ = (x − x′, y − y′), k⊥ = (kx, ky) is the momentum parallel to the interface,kα = (ω,k⊥) and
k̃0 = nω wheren =

√
ε is the refraction index. We observe that in the static limit (ω = 0), the result (14) reduces to the one

reported in Ref. [38].

3. Electric Dipole perpendicular to the interface

In this section we determine the electric field of an oscillating point-like electric dipolep = p ẑ located at a distancez0 > 0
on thez-axis and perpendicular to the interface. We restrict ourselves to the far-field approximation (k̃0r À 1) starting from
the GF given by Eqs. (14).

3.1. The Electromagnetic PotentialAµ

The charge and current density for this dipole are

%(x′;ω) = −pδ(x′)δ(y′)δ′(z′ − z0), j(x′; ω) = −iωpδ(x′)δ(y′)δ(z′ − z0)ẑ, (15)

respectively, whereδ′(u) = dδ(u)/du. After convoluting the sources (15) with the GF (14) we find the following components
of Aµ

A0(x; ω) = − p

n2
ik̃0 cos θ

eik̃0(r−z0 cos θ)

r
− 1

n2

θ̃2p

4n2 + θ̃2
H(x, z0; ω) , (16)

Aa(x; ω) = − 2θ̃p

4n2 + θ̃2

iεabxb

ρ

∂

∂ρ
I(x, z0; ω) +

θ̃2p

4n2 + θ̃2

iωxa

ρ

∂

∂ρ
J (x, z0;ω) , (17)

A3(x; ω) = −iωp
eik̃0(r−z0 cos θ)

r
, (18)

Rev. Mex. Fis.68060701



RADIATION FROM A DIPOLE PERPENDICULAR TO THE INTERFACE BETWEEN TWO PLANAR SEMI-INFINITE. . . 5

whereρ = ‖x⊥‖ =
√

x2 + y2, r =
√

x2 + y2 + z2, a, b ∈ {1, 2}, εab = −εba, ε12 = +1, and{xa} = {x1, x2} with
x1 = x, x2 = y. We also have the functions

H(x, z0; ω) =

∞∫

0

k3
⊥dk⊥

k̃2
0 − k2

⊥
J0 (k⊥ρ) ei

√
k̃2
0−k2

⊥(|z|+z0) , (19)

I(x, z0; ω) =

∞∫

0

k⊥dk⊥√
k̃2
0 − k2

⊥

J0 (k⊥ρ) ei
√

k̃2
0−k2

⊥(|z|+z0) , (20)

J (x, z0; ω) =

∞∫

0

k⊥dk⊥
k̃2
0 − k2

⊥
J0 (k⊥ρ) ei

√
k̃2
0−k2

⊥(|z|+z0) . (21)

The derivation of the above results can be found in the Appendix A.
The next step is to calculate the integrals (19)-(21) in the far-field approximation. To begin with, we recap the main

ingredients of the calculation carried out in full detail for the functionH in Appendix B. We employ the steepest descent
method [44–46] and incorporate some modifications based on Refs. [13, 47]. These modifications are required because the
current integrals (19)-(21) have poles coinciding with their stationary point(k⊥)s = k̃0 sin θ at θ = π/2, as can be seen in
Eq. (B.13) of the Appendix B. This means that the factor of the exponential is not a smooth function around the stationary
point now, which will prevent a direct application of the method. The main idea to overcome this difficulty is to subtract and
add the conflicting pole, as shown in Eqs. (B.15) and (B.25) of the Appendix B. Thereby, we obtain two integrals: one with
the divergence removed in the vicinity of the stationary point and another containing the singularity, which can be directly
evaluated. The first integral leads to the ordinary stationary phase contributions and the second one gives contributions that are
identified as axially symmetric cylindrical waves [13]. The final results for the integralsH, I andJ , obtained in full detail in
the Appendix B, are

H(x, z0; ω) = k̃0
eik̃0r

ir





sin2 θeik̃0z0| cos θ|

| cos θ| − 1√
2

(
sin θ − sin2 θ

)





+

√
2

πik̃0r sin θ

k̃2
0

i
eik̃0r sin θ π

2
erfc

[
−i

√
ik̃0r (1− sin θ)

]
, (22)

J (x, z0; ω) =
eik̃0r

ik̃0r





eik̃0z0| cos θ|

| cos θ| − 1√
2

(
sin θ − sin2 θ

)





+

√
2

πik̃0r sin θ

πeik̃0r sin θ

2i
erfc

[
−i

√
ik̃0r (1− sin θ)

]
, (23)

I(x, z0; ω) =
eik̃0r

ir
eik̃0z0| cos θ| , (24)

whereerfc(z) denotes the complementary error function. The contributions in curly brackets arise from the terms including
the subtracted pole, they are are well behaved atθ = 0, π/2, π and describe the standard spherical waves.

On the other hand, the terms from the erfc function in square brackets arise from the pole itself and describe wave propaga-
tion corresponding to the amplitude1/(r sin θ)1/2 exp[ik̃0(r sin θ)] × exp (−ik̃0t) = 1/z1/2 exp[ik̃0z] × exp (−ik̃0t). This
is clearly a solution of the Helmholtz equation in cylindrical coordinates in the far-zone, thus giving the name of cylindrical
waves to this contribution.

The crucial point is that the amplitude of the cylindrical waves is modulated by theerfc function, with argument

i
√

i

√
k̃0r (1− sin θ) = iΛ ≡ i

√
i s, (25)

which will provide us with a quantitative way of appraising the relevance of the cylindrical waves. To this end, we now discuss
the behavior of the function

erfc(iΛ) =
1

i
√

π
eik̃0r(1−sin θ)Z(eiπ/4s), (26)
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that we rewrite in terms of the the Faddeeva plasma disper-
sion functionZ(Λ) discussed in some detail in the Appendix
C. Up to an irrelevant normalization constant, we define the
function

F (s) = |Z(eiπ/4s)|2/(2π) , (27)

which controls the amplitude of the electromagnetic fields
of the cylindrical waves and can be readily calculated from
Eq. (C.7). As can be seen from the following numerical val-
uesF (0) = 0.5, F (1) = 0.112, F (3) = 0.0174, . . . and
F (s À 1) → 0, F (s) is a rapidly decreasing function ofs.
In this way, whens À 1 the cylindrical wave contribution
can be neglected, whereas fors → 0 the functionF (s) con-
tributes maximally and the cylindrical waves should be taken
into account.

If we recall thatρ = r sin θ, s2 can be rewritten as
s2 = k̃0(r−ρ) and can be interpreted as a measure of how far
the observer with coordinates(r, θ, φ) is from the interface.
In other words,s2 determines how far is the spherical radius
r from the cylindrical radiusρ at the observation point. This
property enables us to define what we call the discarding an-
gle θ0, which provides a condition to estimate when we can
neglect or not the cylindrical wave contribution, according to
the magnitude ofF (s). We proceed as follows.

For a given observation distancer0, such thatk̃0r0 is
large enough to describe the far-field regime, we choose as
an arbitrary cutoff point the values = s0. At the cutoff we
define the discarding angleθ0 such that

s0 =
√

k̃0r0(1− sin θ0). (28)

More precisely, we can distinguish the upper hemisphere
(UH) θ ∈ [0, π/2] from the lower hemisphere (LH)θ ∈
[π/2, π] by writing

θUH
0 = arcsin

(
1− s2

0

k̃0r0

)
,

θLH
0 =

π

2
+ arccos

(
1− s2

0

k̃0r0

)
, (29)

respectively. Let us observe that both discarding angles are
very close to the interface (θ = π/2) in the far-field regime.

For a given observation distancer0, the rapidly decreas-
ing behavior ofF (s) allows us to adopt the following crite-
rion for estimating the relative weight of the spherical versus
the cylindrical waves:

For s > s0, (0 < θ < θUH
0 and θLH

0 < θ < π)

cylindrical waves are neglected.

For s < s0, (θUH
0 < θ < θLH

0 )

cylindrical waves are taken into account. (30)

In our case we takes0 = 1, where the functionF (s) has
decreased about five times with respect to its maximum at

s = 0. Let us emphasize thats0 can be arbitrarily chosen
much larger than one, which will provide a more stringent
cutoff.

In other words, for a fixedr0 and a chosens0 = 1, the
discarding anglesθ0 define two regions, as shown in Fig. 1.
The regionV1, where θ ∈ [0, θUH

0 ) ∪ (θLH
0 , π], is such

that s > 1, while in its complement, the regionV2 where
θ ∈ [θUH

0 , θLH
0 ], we haves < 1.

To fix ideas let us consider now the UH and examine what
happens when we fix the angle and explore the consequences
changing the observation distance to a larger valuer> > r0,
i.e., we go farther into the radiation zone. Suppose that in
the regionV1 we consider the angleθ1 < θUH

0 , where we

haves1 =
√

k̃0r0(1− sin θ1) > 1 according to our choices.
Then, keepingθ1 fixed and going to a larger distancer> > r0

would only increase the value ofs> =
√

k̃0r>(1− sin θ1)
such thats> > s1 > s0 = 1. That is to say, all observa-
tion points inV1 with r > r0 will have s > s0 = 1 and the
cylidrical waves will not be relevant there.

On the other hand, the regionV2 shows a mixed behavior.
Again, let us consider an angleθ2 > θUH

0 where we have

s2 =
√

k̃0r0(1− sin θ2) < 1 by construction. Nevertheless,
an increase in the observation distance tor> can revert the
situation yielding a values> > 1. To this end it is enough to
taker> > r0/s2. That is to say, the regionV2 contains the
intermediate region where the cylindrical waves are relevant,

FIGURE 1. Diagram showing the regionsV1 andV2 determined
through the discarding anglesθUH

0 andθLH
0 . The regionV1, where

only the spherical waves (undulated pink arrows) are taken into ac-
count is defined byθ ∈ [0, θUH

0 )∪ (θLH
0 , π]. The regionV2 (white

hatched region), defined byθ ∈ [θUH
0 , θLH

0 ], contains the interme-
diate region (s < s0 = 1) where both cylindrical waves (undulated
black waves) and spherical waves have to be taken into account.
Nevertheless, going further into the radiation zone for each obser-
vation point in the intermediate region one can makes > s0 = 1,
thus making the cylindrical waves unobservable.
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RADIATION FROM A DIPOLE PERPENDICULAR TO THE INTERFACE BETWEEN TWO PLANAR SEMI-INFINITE. . . 7

but going further into the radiation zone these waves can be safely neglected. A similar situation occurs in the LH, which we
do not discuss in detail here.

From the function erfc

[
−i

√
ik̃0r(1− sin θ)

]
appearing in the Eqs. (22) and (23) we identify the analogous of the Sommer-

feld numerical distanceS in the standard dipole radiation, which is determined by rewriting the complementary error function
as erfc(−i

√
S) [13]. Thus we have

S = ik̃0r(1− sin θ) = is2, (31)

which varies with the angleθ for a fixed observation distancer. This quantity is closely related to the discarding angleθ0

according to

|S| = 1− sin θ

1− sin θ0
. (32)

Going back to the calculation of the electromagnetic field in the far-field approximation, we now write the corresponding
expressions for the electromagnetic potentials obtained from plugging the results (22-24) into the Eqs. (16-18). In the case of
the regionV1 we have

A0(x; ω) = − p

n2
ik̃0 cos θ

eik̃0(r−z0 cos θ)

r
− 1

n2

θ̃2p

4n2 + θ̃2
k̃0

sin2 θ

| cos θ|
eik̃0(r+z0| cos θ|)

ir
, (33)

Aa(x; ω) =
p

4n2 + θ̃2

[
−2θ̃ik̃0

(
εabxb

r

)
+ θ̃2 iω

| cos θ|
(

xa

r

)]
eik̃0(r+z0| cos θ|)

r
, (34)

A3(x; ω) = −iωp
eik̃0(r−z0 cos θ)

r
, (35)

where we dropped terms of higher order. On the other hand, in the intermediate regionV2, (s < 1) the contribution of the
cylindrical waves near the interface is apparent. The electromagnetic potential now is

A0(x; ω) = ∓ p

n2
ik̃0ξ

eik̃0(r∓z0ξ)

r
− 1

n2

θ̃2p

4n2 + θ̃2
k̃0

eik̃0r

ir

(
ik̃0z0 − ξ

8

)

− 1
n2

θ̃2p

4n2 + θ̃2
k̃2
0

√
2

πik̃0r
eik̃0r


 π

2i
+

√
πik̃0r

2
ξ


 , (36)

Aa(x; ω) =
p

4n2 + θ̃2

[
−2iθ̃k̃0

εabxb

ρ

eik̃0(r+z0ξ)

r
+ θ̃2iω

xa

ρ

eik̃0r

r

(
ik̃0z0 − ξ

8

)

−θ̃2ωk̃0
xa

ρ

√
2

πik̃0r
eik̃0r


 π

2i
+

√
πik̃0r

2
ξ





 , (37)

A3(x; ω) = −iωp
eik̃0(r∓z0ξ)

r
, (38)

where we again dropped terms of higher order. The minus (plus) sign in the first term of the right-hand side in Eq. (36) corre-
sponds to the UH (LH), respectively. We have also performed a first order power expansion aroundπ/2 in the complementary
error function arising from Eqs. (22) and (23) in terms of the variableξ < 1 given by

ξUH ≡ π/2− θUH , ξLH = θLH + π/2, (39)

for the UH and LH, respectively. Let us observe that for both hemispheres we haveξ > 0 and also that(1− sin θ) = ξ2/2. In
analogous way it is convenient to introduce the corresponding variableξ0 related to the discarding angleθ0 just by replacing
ξ → ξ0 andθ → θ0 in Eq. (39). Using also Eq. (29) we obtainξ0 =

√
2/(nωr0). In this way|S| = ξ2/ξ2

0 < 1 for both
hemispheres. The expansion in powers ofξ is only valid in the intermediate zone where we haveξ ¿ ξ0.
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8 O. J. FRANCA AND L. F. URRUTIA

3.2. The electric field

Since Faraday law yieldsB =
√

ε n̂ × E in the far-field approximation we need to calculate only the electric fieldE(x; ω)
to get a complete description of the radiation regime, wheren̂ · B = 0 is satisfied. The components of the electric field are
calculated through

E(x; ω) = −ik̃0n̂A0(x; ω) + iωA(x;ω) . (40)

3.2.1. The regionV1

Substituting in Eq. (40) the previous expressions forAµ(x;ω) in the regionV1 we obtain the following electric field:

Ea(x; ω) =

[
−f⊥(θ, z0, ω)

zxa

r2
+

2θ̃n

4n2 + θ̃2
eik̃0z0| cos θ| ε

abxb

r

]
ω2p

eik̃0r

r
,

E3(x; ω) =
[

sin2 θ f⊥(θ, z0, ω)
]
ω2p

eik̃0r

r
, (41)

with

f⊥(θ, z0, ω) = e−ik̃0z0 cos θ + sgn (cos θ)
θ̃2

4n2 + θ̃2
eik̃0z0| cos θ|. (42)

Heresgn denotes the sign function with the additional conditionsgn(0) = 0. It is possible to verify that̂n ·E = 0 as required
for the electric field in the far-zone regime. The main feature in the components of the electric field (41) is the presence of
two different phases in the exponential related to the source variablesx′ = z0 ẑ, which are specified bycos θ and| cos θ| as

shown in Eq. (42). The first exponential contributes with the termexp
[
ik̃0 (r − z0 cos θ)

]
having the characteristic phase

of dipole radiation in standard electrodynamics [35, 37]. On the other hand, the contributions arising from the new terms
involving the MEP, which are proportional tõθ and θ̃2, yield the exponentialexp

[
ik̃0 (r + z0| cos θ|)

]
. As we will show in

the next subsection, the modifications in the power spectrum of the dipolar radiation in our setting arise precisely due to the
contributionz0| cos θ| in the phase of the electric field. The dependence on the sign ofcos θ enforces two cases, which we
denote as Case(−) and Case(+). The former case occurs when| cos θ| = − cos θ , i.e. whenθ ∈ (θLH

0 , π] is in the LH.
In this situation the three components of the electric field will have the same phase and we do not expect significant changes
with respect to the usual angular dependence of the dipolar radiation because the phase of the electric field is that of standard
electrodynamics. By contrast, the Case(+) takes place when| cos θ| = cos θ, which is realized forθ ∈ [0, θUH

0 ) in the UH.
In this case the electric field presents two different phases which will interfere yielding new effects different from those in the
usual dipolar radiation.

Finally, we analyze the functionf⊥(θ, z0, ω) given by Eq. (42), which codifies the different phases of the electric field
(41). For the Case(+), f⊥ takes the following form

f+
⊥ (θ, z0, ω) = f⊥(θ, z0, ω)|UH = e−ik̃0z0 cos θ +

θ̃2

4n2 + θ̃2
eik̃0z0 cos θ. (43)

On the other hand, for the Case(−), the functionf⊥ is

f−⊥ (θ, z0, ω) = f⊥(θ, z0, ω)|LH =
4n2

4n2 + θ̃2
e−ik̃0z0 cos θ. (44)

In the following we show that the factors̃θ2/(4n2 + θ̃2), 4n2/(4n2 + θ̃2) and2θ̃/(4n2 + θ̃2) correspond to some reflection and
transmission coefficients at the interface. Let us start with the radiation fields in the UH by considering the general expression
for the reflected electric field discussed in the Appendix B of Ref. [48], where the authors calculate the GF of a planar interface
separating two semi-infinite TIs. The reflective part of such GF is written as

Gij(x,x′; ω) =
∫

d2k⊥
(2π)2

eik⊥·R⊥Rij(k⊥, kz, z, z′) , (45)

which connects the electric field componentsEi directly with the current densityjk through the equation

Ei(x;ω) = −4πiω

∫
d3x′Gik(x,x′;ω)jk(x′; ω) . (46)
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In our case onlyj3 = −iωpδ(x′)δ(y′)δ(z′ − z0) is different from zero so that the only contributions toRij come fromRi3,
which can be read from Eqs. (B8), (B10) and (B12) of Ref. [48] for an incident TM polarized plane wave, and which we
rewrite here

R13(k⊥, kz, z, z0) =
ieikz(z+z0)

2kz

[
−kxkz

k2
RTM,TM +

ky

k
RTE,TM

]
, (47)

R23(k⊥, kz, z, z0) =
ieikz(z+z0)

2kz

[
−kykz

k2
RTM,TM − kx

k
RTE,TM

]
, (48)

R33(k⊥, kz, z, z0) =
ieikz(z+z0)

2kz

[
k2
⊥

k2
RTM,TM

]
. (49)

Incidentally, the above equations show that the TM and TE polarizations are mixed as a consequence of the MEE. The explicit
expressions for the reflection coefficients are given in Eqs. (44)-(46) of Ref. [48]. The notation in Ref. [48]{k, kp, kz} is

equivalent to ours{k̃0, |k⊥|,
√

k̃2
0 − k2

⊥}, respectively. In this way, the components of the electric field are

E1(x;ω) = −4πiω2p

∫
d2k⊥
(2π)2

eikzz0

2kz

[
−kxkz

k2
RTM,TM +

ky

k
RTE,TM

]
eik⊥·R⊥eikzz, (50)

E2(x;ω) = −4πiω2p

∫
d2k⊥
(2π)2

eikzz0

2kz

[
−kykz

k2
RTM,TM − kx

k
RTE,TM

]
eik⊥·R⊥eikzz, (51)

E3(x;ω) = −4πiω2p

∫
d2k⊥
(2π)2

eikzz0

2kz

[
k2
⊥

k2
RTM,TM

]
eik⊥·R⊥eikzz. (52)

To compute the far-field approximation of the electric field written above, which is necessary to compare with our expressions
(41) and (42), we make use of the angular spectrum representation method which we briefly review [49]. For fields satisfying
the Helmholtz equation(∇2 + κ2)E = 0, with κ2 = εω2, which can be written as

Ei(x, y, z) =
∫

d2k⊥Êi(kx, ky, z)eik⊥·x⊥ , (53)

one can show that

Êi(kx, ky, z) = Êi(kx, ky, z = 0)e±ikzz, kz =
√

κ2 − k⊥2, Im(kz) ≥ 0, (54)

choosing the+,− signs according toz > 0 or z < 0, respectively. Substituting Eq. (54) into Eq.(53) yields the so-called
angular spectrum representation of the electric field. One of the notable consequences of this approach is that the far-field
approximation of the electric field is given in terms of the functionÊ(kx, ky, z = 0). According to Ref. [49] we have

Ek̃0r→∞
(x

r
,
y

r
,
z

r

)
= −2πik̃0szÊ

(
kx = k̃0sx, ky = k̃0sy, z = 0

)eik̃0r

r
,

sx = sin θ cosϕ, sy = sin θ sin ϕ, sz = cos θ, kz = k̃0sz = k̃0 cos θ.

(55)

Our next step is to identify the respective functionsÊi(kx, ky, z = 0) in each of the components (50)-(52), so that we can
apply the relation (55). Making the required substitutions we find that

Êi(kx, ky, z = 0) = −i
ω2p

2πkz
eikzz0

[ ]i

, (56)

where each square bracket[ ]i denotes the corresponding one in Eqs. (50)-(52). Substituting in Eq. (55) yields

E1
k̃0r→∞ =

[xz

r2
RTM,TM − y

r
RTE,TM

]
pω2 eik̃0r

r
eik̃0 cos θz0 , (57)

E2
k̃0r→∞ =

[yz

r2
RTM,TM +

x

r
RTE,TM

]
pω2 eik̃0r

r
eik̃0 cos θz0 , (58)

E3
k̃0r→∞ =

[
−|x⊥|

2

r2
RTM,TM

]
pω2 eik̃0r

r
eik̃0 cos θz0 ,

|x⊥|2
r2

= sin2 θ. (59)
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10 O. J. FRANCA AND L. F. URRUTIA

Comparing the above results with our expressions (41) and (42) for f+
⊥ yields the identifications

RTM,TM =
θ̃2

4n2 + θ̃2
, RTE,TM = − 2θ̃n

4n2 + θ̃2
. (60)

Carrying the analogous calculation for the LH withf−⊥ , we read the transmission coefficients

TTM,TM =
4n2

4n2 + θ̃2
, TTE,TM = RTE,TM . (61)

We immediately verify thatRTM,TM + TTM,TM = 1 as expected. Let us observe that the expressions for the transmission
and reflection coefficients obtained from our calculation can be verified from the general expressions (43)-(46) in Ref. [48],
after the following restrictions are made:ε1 = ε2 = ε = n2, µ1 = µ2 = 1, kz1 = kz2 = kz and∆ = θ̃.

3.2.2. The intermdiate zone in the regionV2

Let us recall that for any observation point inV2 with s < s0 = 1 we can go farther into the radiation zone and finds> > 1,
thus eliminating the cylindrical waves. In this subsection we deal only with the region havings < s0 = 1. This region
corresponds to what is normally called the intermediate region in the literature [13] and is characterized by the condition that
the Sommerfeld numerical distanceS = is2 satisfies|S| < 1, in spite ofk̃0r being large. Clearly this is possible because we
are in the limitθ → π/2, (ξ → 0), i.e. very close to the interface.

A precise characterization of the intermediate zone in the UH is provided as follows: According to our criterion (30), which
is written there for an arbitrarys0, we chooses0 = 1 as the specific value for this parameter. Then, forr0 in the radiation zone

(k̃0r0 À 1) the discarding angleθ0 is determined such thats0 =
√

k̃0r0(1− sin θUH
0 ). For anglesθUH

0 < β < π/2 we have

0 < sβ =
√

k̃0r0(1− sinβ) < s0. Within this angular range we still can move further into the radiation zone torβ , within
the intervalr0 < rβ < r0 (s0/sβ), where cylindrical waves are still present and which define the intermediate zone.

So, in this region the electric field is

Ea(x; ω) =

[
∓ξ

xa

ρ
e∓ik̃0z0ξ +

2θ̃ n

4n2 + θ̃2

εabxb

ρ
eik̃0z0ξ

]
pω2 eik̃0r

r
,

E3(x; ω) =

[
e∓ik̃0z0ξ

r
± θ̃2

4n2 + θ̃2
k̃0ξ

(
iz0

r
+

π

2

√
2

πik̃0r

)]
pω2eik̃0r, (62)

where we have dropped termsO(ξ2). The variableξ was previously defined in Eq. (39) for each hemisphere. Also we verified
that n̂ · E = 0 using the approximationssin θ ≈ 1 andcos θ ≈ ξ, which are adequate for the regionV2. From Eq. (62) we
observe the presence of cylindrical waves, codified in the term proportional toeik̃0r/

√
r [6], where we notice thatr ≈ ρ close

to the interface. They are also present in the standard case of dipolar radiation when two different electromagnetic media are
separated by a planar interface. Nevertheless, in our case they only contribute when at least one of the media is magnetoeletric,
i.e. whenθ̃ 6= 0 defines the interface. This is because we have chosen two non-magnetic media with the the same permittivity
ε, which means that setting̃θ = 0 yields an infinite media with no interface at all. The subject of cylindrical waves in dipole
radiation has been exhaustively discussed in the literature been a highly controversial topic. An authoritative discussion of this
case, including an historical perspective, can be found in Subsec.4.10 of Ref. [13].

We finalize this section by presenting plots for the real part of the electric fields (41) and (62) in their corresponding regions
V1 andV2. These plots will provide a quantitative behavior of the electromagnetic field and reinforce the space splitting exposed
in Fig. 1. Figures 2a) and 2b) show thex andy components, respectively, and Figs. 2c) and 2d) are devoted to thez component.
All the figures represent the real part of the electric field (equivalent to the time dependent field att = 0) in thex − z plane.
Here the interface is constituted by a normal insulator withε = 4 andϑ2 = 0 in the UH and a medium withε = 4 andϑ1 = 5
in the LH to make evident the new effects. The dipole has a strengthp = 2.71 × 103 eV−1, a frequencyω = 1.5 eV and
is located atz0 = 25 eV−1 (an explanation of this parameters choice will be given in the Subsec. 4.1 immediately below).
The field patterns for thex andz components in Figs. 2a), 2c) and 2d) show different behaviors at both sides of the interface.
Indeed, in the upper semi-space the effect of the interference between the two phases of the electric field associated to the
Case(+) is quite appreciable. Regarding the lower semi-infinite space, the features of the Case(−) are visible, because one
observes clearly the absence of an interference pattern and the same behavior of an electric dipole field. Remarkably they
component in Fig. 2b), which is different from zero in comparison with the usual electric dipole radiation, results proportional
to θ̃ and does not exhibit an interference pattern due the vanishing of the first term of Eq. (41) at thex− z plane.
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FIGURE 2. The electric field pattern (real part) in thex − z plane for a vertically oriented point dipole with single frequencyω = 1.5

eV, strengthp = 2.71 × 103 eV−1 and located atz0 = 25 eV−1 close to a magnetoelectric interface, for the regionV1 where only the
spherical waves are significant. Here the UH is a normal insulator withε = 4 andϑ2 = 0 and the LH is a medium withε = 4 andϑ1 = 5.
The plots a) and b) are thex andy components respectively. The plots c) and d) are thez components in the UH with discarding angle
θUH
0 ' 1.53918 ' 88.19◦ and in the LH with discarding angleθLH

0 ' 1.60241 ' 91.81◦ respectively.

Recalling from Eq. (62) that only thez component of the electric field contributes to the cylindrical waves, we need to
employ the discarding angles given by Eqs. (29) to split the space into the regionsV1 andV2 of Fig. 1. Figure 2c) illustrates
this splitting for thez component in the UH for angles in the rangeθ ∈ [0, θUH

0 ) with θUH
0 ' 1.53918 ' 88.19◦ and Fig. 2d)

shows the same but in the LH for angles in the range(θLH
0 , π] with θLH

0 ' 1.60241 ' 91.81◦. Conversely, Figs. 3a) and 3b)
show the behavior of thez component in the UH for angles in the rangeθ ∈ [θUH

0 , π/2) and in the LH for angles in the range
θ ∈ [π/2, θLH

0 ], respectively. Here the appearance of the axially symmetric cylindrical waves is clear, although our plots show
that they are confined to a finite distance range and decay rapidly for large distances parallel to the interface. The discarding
angles are not to scale for the purpose of making evident the appearance of cylindrical waves. Our approximation yields zero
for thex andy components of the electric field in the regionV2.
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FIGURE 3. The electric field pattern (real part) in thex − z plane for a vertically oriented point dipole with single frequencyω = 1.5 eV,
strengthp = 2.71 × 103 eV−1 and located atz0 = 25 eV−1 close to a magnetoelectric interface, for the regionV2 where the spherical
waves and the cylindrical waves are significant. Here the UH is a normal insulator withε = 4 andϑ2 = 0 and the LH is a medium with
ε = 4 andϑ1 = 5. The plots a) and b) are thez components in the UH and in the LH respectively. The discarding angles areθUH

0 = 88.19◦

andθLH
0 = 91.81◦, which are not to scale for the purpose of making evident the presence of cylindrical waves.

4. Angular distribution, total radiated power
and energy transport

4.1. The parameters

With the purpose of illustrating our results with some numer-
ical estimations we need to fix the parameters defining our
setup. Our choice is motivated by the fact that current mag-
netoelectric media are of great interest in atomic physics and
optics, therefore we think as a dipolar source an atom with
a given dipolar momentp, whose emission spectrum goes
from the near infrared to the near ultraviolet. Furthermore,
the magnetoelectric coupling is usually very small (of the or-
der of the fine structure constant for TIs), so that appreciable
effects will appear near the interface. In this way we have
chosen the distance between the dipole and the observer to
be lesser than 1 mm. For all cases in the following numerical
estimations, with the exception of Fig. 6, we take the fre-
quencyω = 1.5 eV (362.7 THz orλ = 826.6 nm) in the near
infrared, the observer distancer = 667 eV−1 (0.131 mm),
and the dipole location atz0 = 25 eV−1 (4.94 µm). The
far-field condition is well satisfied withnωr ≈ 1000 n. The
remaining free parameters arẽθ andn, which characterize
the medium. This setup provides a microscopic antenna in
front of a magnetoelectric medium. The additional boundary
conditions at the interface drastically modify the dominant
dipolar radiation. These changes can be directly observed
by measuring the angular distribution of the radiation, which
looks feasible having in mind similar techniques developed in
Refs. [50,51]. Another possibility is to observe the modified
radiative lifetime of the atom, which must change due to the

dominance of the modified dipolar radiation [52]. These ef-
fects have been already demonstrated in experiments [53,54].

4.2. Angular distribution for the radiation in the region
V1

In this subsection we obtain the angular distribution of the
radiated power associated to the electric field given by Eqs.
(41) for the regionV1. Recalling that the electromagnetic
fields satisfyn̂ · E = 0 andB =

√
ε n̂ × E we obtain the

standard Poynting vector in a material media withµ = 1,

S =
1
4π

E×H =
√

ε

4π
‖E‖2n̂, (63)

wheren̂ coincides with the direction of the phase velocity
of the outgoing wave. According to Refs. [35, 37], the time-
averaged power radiated per unit solid angle solid by a local-
ized source is

dP

dΩ
=

r2

2
Re

[
E(x; ω)×H∗(x; ω)

4π

]

=
nr2

8π
E(x; ω) ·E∗(x; ω). (64)

The result for our dipolep is

dP

dΩ
=

nω4p2

8π
sin2 θ

{
1 + Υ sgn2 (cos θ) + 2Υ sgn

× (cos θ) cos
[
k̃0z0 (| cos θ|+ cos θ)

]}
, (65)
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FIGURE 4. Angular distribution of the radiated powerdP(+)/dΩ. a) Polar plot withθ̃ = 0.22, n = 1.87, b) Polar plot withθ̃ = 0.5,
n = 2. c) Polar plot withθ̃ = 1, n = 2. The scale is normalized by multiplyingdP(+)/dΩ by 4π/ω4p2. The remaining parameters
ω = 1.5 eV, r = 667 eV−1, z0 = 25 eV−1 are common to this and all subsequent figures.

whereΥ = θ̃2/(4n2 + θ̃2). Some comments regarding this
angular distribution are now in order. The expression (65)
is an even function of the MEP̃θ as well as of the angleθ.
Furthermore, the last term in Eq. (65) arises from the in-
terference between the two different phases exhibited by the
electric field in Eq. (41) and could or could not contribute
depending on the sign ofcos θ.

At this stage it is important to emphasize that our result
in Eq. (65) shows thatΥ sets the scale in the magnitude
of the power radiated in the regionV1. This parameter has
the relevant property of being bounded within the interval
0 < Υ < 1 , independently of the values which̃θ and n
might take. This will severely constrain the response of the
ϑ-medium with respect to the output produced by an electric
dipole in an infinite media with refraction indexn . We refer
to the latter reference setup as the standard electrodynamics
(SED) case, which is obtained settingθ̃ = 0 in Eq. (65) yield-
ing the well known dipolar angular distribution [35].

Now, we analyze the angular distribution of the radiated
power (65) for the Case(−) discussed in Sec.3.2.1., when
the electric field has a single phase. Making this choice in
Eq. (65), we obtain

dP(−)

dΩ
=

nω4p2

8π
sin2 θ

(
1−Υ

)
. (66)

Notice that the factor(1 − Υ) = 4n2/(4n2 + θ̃2) is al-
ways positive which confirms a basic property of the radi-
ated power. We observe that the angular dependence of the
radiated power remains unchanged with respect to the SED
case, confirming what we found at the level of the electric
field in Figs. 2a) and 2d). Nevertheless, the magnitude of
the radiation turns out to be smaller for a fixed angle, which
provides a fundamental difference with respect to this refer-
ence setup. Surprisingly, in the highly hypothetical situation
whereΥ → 1, the radiation in the LH would be completely
canceledi.e. the setup would behave as a perfect mirror.

On the other hand, for the Case(+), when the electric
field includes two different phases, we obtain the angular dis-
tribution

dP(+)

dΩ
=

nω4p2

8π
sin2 θ

×
[
1 + Υ + 2Υ cos

(
2k̃0z0 cos θ

)]
, (67)

which present additional contributions to the angular distri-
bution with respect to those in SED. They arise from the last
term in Eq. (67). Furthermore, as opposed to the previous
case, the angular distribution now depends explicitly on the
dipole positionz0. Let us observe that the minimum value
−1 of cos(2k̃0z0 cos θ) produces the factor(1 − Υ) in the
square bracket, which was discussed above.

The behavior of the angular distribution (67) is shown in
Fig. 4. In each case, the electric dipole is located atz0 > 0
and the interface corresponds to the line (3π/2− π/2) defin-
ing z = 0. The Fig. 4a) is plotted for theϑ-medium TbPO4
with n = 1.87 [55] and θ̃ = 0.22 [56]. After comparing
with the SED case we appreciate only weak signals of inter-
ference. The Fig. 4b) corresponds to an hypothetical mate-
rial with θ̃ = 0.5 andn = 2. Finally, in Fig. 4c) we see a
clear enhancement in the interference pattern for our electric
dipole radiating in front of an another hypothetical material
with θ̃ = 1 andn = 2. An increasing value of the parameter
θ̃ in Fig. 4 makes evident the interference effects, which are
expected to be more pronounced in the vicinity ofθ = π/2
where the last term in Eq. (67) oscillates maximally. This
interference effect agrees with our results plotted in Figs. 2a)
and 2c).

Even though the method of images does not generalize to
the time dependent case, a qualitative interpretation for the
radiation patterns described above can be given by extend-
ing to the quasi-static approximation the characterization of
a point charge located in front of a magnetoelectric medium
in terms of electric and magnetic images presented in detail
in Ref. [57]. In this way, the full description of the MEE of a
dipole located in front of a planar medium includes electric
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FIGURE 5. a) Illustration of the Case (−), where the radiation
(black thick arrows) has a single phase, which is the one of stan-
dard ED, when the observerO1 is in a different semi-space with
respect to the dipolep atz0. b) In the Case (+) (observerO2 in the
same semi-space of the dipole) the radiation seen byO2 includes
two different phases: the one arising fromp atz0 and the other that
comes from the imagesp′ andm at−z0. Recall that we have two
non-magnetic media withε1 = ε2, which yield no refraction at the
interface.

and magnetic image dipoles. Let us first deal with the Case
(−), which corresponds to the situation when the electric
dipole and the observer are in different semi-spaces,i.e. the
dipole is located atr0 = (0, 0, z0) with z0 > 0 and the ob-
server’s angleθ is in the LH. The MEE is mimicked by in-
troducing an image dipolep′ and an image magnetic dipole
m both located atr0, i.e. in the same semi-space and in the
same position of the electric dipolep. So, the observer will
measure the same phase of the radiation fromp, p′ andm,
which is given by choosing| cos θ| = − cos θ in the phase
of the electric field (41). This sign choice affects the angu-
lar distribution (65) by canceling the interference term, as
Eq. (66) shows. Therefore, the angular dependence of the
radiation that the observer detects will not present a substan-
tial difference from that of SED, as Figs. 2a) and 2d) can
also confirm. Let us recall that we have chosen the two non-
magnetic media having the same permittivity, which elimi-
nates the optical refraction and reflection phenomena when
passing from one magnetoelectric medium to the other. On
the other hand, the Case(+) can be understood in a similar
way. Here both objects, electric dipole and observer, are in
the same semi-space and the observer’s angleθ is in the UH.
Again we emulate the MEE by inserting an image dipolep′

and the same image magnetic dipolem [57], both localized
at−r0. In this way, the observer will detect radiation with
two different phases: one from the source electric dipole and
another from the image objectsp′ andm, which corresponds
to the choice| cos θ| = + cos θ in the phase of the electric
field (41). The plus sign selection impacts significantly the
angular distribution (65) because the interference term is now
non-zero and contributes to observable quantities as shown in
Eq. (67) together with Figs. 2a), 2c) and 2d). This interfer-
ence arises between the radiation coming from bottom to top,

generated by the image objects, and the direct signal from the
dipole source and generates a different angular dependence in
the UH when compared with the electric dipolar radiation of
SED. Both cases are schematically illustrated in Figs. 5a) and
5b), respectively.

4.3. Power radiated in the regionV1

In order to compare the magnitude of the radiation in theϑ-
medium with respect to the SED case it is convenient to in-
troduce what we call the enhancement factorR(±) defined as
R(±) = 2P(±)/P0, whereP0 = nω4p2/3 is the total power
radiated by an electric dipole in the SED case [35].

Next we calculate the power radiated for the angular dis-
tributions (66) and (67) in the regionV1. Let us begin with
the angular distribution of the Case(−) given by Eq. (66).
Integrating over the solid angleΩ for θ ∈ (θLH

0 , π] and
φ ∈ [0, 2π], we find the radiated power

P(−)=
P0

2

(
1−Υ

) [
1+

9
8

cos θLH
0 − 1

8
cos 3θLH

0

]
. (68)

A good estimation of the enhancement factor is obtained
writing θ0 = π/2 + ξ0 and recalling thatξ0 < 1. We ob-
tain

R(−) =
(
1−Υ

) (
1 +

3ξ0

2

)
. (69)

which can be larger (smaller) than one according toΥ <
3 ξ0/2 (Υ > 3 ξ0/2 ), respectively. In the hypothetical limit
θ̃ À 2n we haveΥ = 1 and there is no radiated power in the
LH, which tells us that the setup behaves like a perfect mirror
as discussed in the previous section.

Now, we repeat the calculation for the angular distribu-
tion of the Case(+) given by Eq. (67), which is more
interesting. After integrating over the solid angleΩ for
θ ∈ [0, θUH

0 ), the power radiatedP(+) is

P(+) =
P0

2

(
1 + Υ

) [
1− 9

8
cos θUH

0 +
1
8

cos 3θUH
0

]

+
P0

2
3Υ

{
sin(2κ)

4κ3
− cos(2κ)

2κ2

+
cos θUH

0 cos(2κ cos θUH
0 )

2κ2

−
[
1 + κ2 − κ2 cos(2θUH

0 )
]
sin(2κ cos θUH

0 )
4κ3

}
,

κ ≡ k̃0z0. (70)

The main difference with respect to the power radiated in the
LH is that nowP(+) depends on the position of the dipole
through the variableκ. The power radiatedP(+) is positive
definite and due to the term in braces we expect to find new
effects in comparison with the previous Case(−). Moreover,
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FIGURE 6. Plot ofP(+)/P0 as a function ofκ for different choices
of Υ. The enhancement factor isR(+) = 2P(+)/P0.

from Eq. (70) and retainingn andω fixed we find the follow-
ing interesting limits forz0

P(+) (z0 →∞) =
P0

2

×
(
1 + Υ

)(
1− 9

8
cos θUH

0 +
1
8

cos 3θUH
0

)
, (71)

P(+) (z0 → 0) =
P0

2

(
1 + 3Υ

)

×
(

1− 9
8

cos θUH
0 +

1
8

cos 3θUH
0

)

+
P0

2
2
5
Υ κ2

(
5 cos3 θUH

0 − 3 cos5 θUH
0 − 2

)
,

κ ¿ 1. (72)

The Eq. (72) tells us that there are no divergences in Eq. (70)
when the electric dipole is very close to the interface. Since
for all practical purposeθUH

0 is very close toπ/2, we obtain a
very good approximation ofP(+) in the intricate Eq. (70) by
settingθUH

0 = π/2, which yields the simplified expression

P(+)=
P0

2

(
1+Υ

[
1 +

3 sin (2κ)
4κ3

− 3 (cos 2κ)
2κ2

])
. (73)

As we can calculate from Eq. (73), the enhancement factor
R(+) = 2P(+)/P0 has the following properties. The maxi-
mum occurs when the dipole is at the interface (κ = 0) and
yieldsRmax

(+) = (1 + 3Υ). Also we found an absolute mini-
mum located atκ ≈ 2.88 whereRmin

(+) = (1 + 0.83Υ). The
limit for very largeκ is R∞(+) = (1 + Υ). In the Fig. 6 we
plot the ratioP(+)/P0 in the approximation of Eq. (73), as a
function ofκ for different choices of the parameterΥ, which
provides a qualitative confirmation of the behavior ofR(+)

discussed above.

4.4. Energy transport in the intermediate region ofV2

In this subsection we discuss the energy flux in the regionV2

whens > s0 = 1 and the spherical and cylindrical waves
coexist as shown in Eq. (62). This region was fully charac-
terized previously in the paragraph before Eq. (62).

As pointed out in Ref. [47], the separation of the electric
field (62) in these two components is not significant since

they do not constitute independent solutions of Maxwell
equations. Recalling Eq. (63) for the time-averaged Poynting
vector〈S〉 we obtain

〈S〉UH
V2

= n̂
np2ω4

8π

{
1
r2

[
1 +

4θ̃2n2

(4n2 + θ̃2)2

]

+
ω1/2

r3/2

θ̃2

4n2 + θ̃2

√
nπ ξ

}
+O(ξ2), (74)

〈S〉LH
V2

= n̂
np2ω4

8π

{
1
r2

[
1 +

4θ̃2n2

(4n2 + θ̃2)2

]

− ω1/2

r3/2

θ̃2

4n2 + θ̃2

√
nπ ξ

}
+O(ξ2), (75)

to first order inξ. In the above linear expansion we require

nωz0ξ ¿ 1. (76)

We observe that these fluxes are independent of the position
of the dipole. In Eqs. (74) and (75) we encounter two differ-
ent terms: one modulated byr−2 which contains the energy
flux coming from the spherical wave contribution, and an-
other one proportional tor−3/2 that encodes the interference
between the spherical and cylindrical waves. The contribu-
tion of the cylindrical wave itself is of orderξ2 which we
have consistently neglected in our approximation.

Two remarks are now in order: (i) For a fixed set of pa-
rameters, Eqs. (74) and (75) yields〈S〉UH

V2
−〈S〉LH

V2
> 0. (ii)

The full expression for the energy flux must be positive def-
inite, but we are dealing only with a linear approximation in
Eq. (75). This forces us to establish an additional bound for
the validity of our results. The dangerous contribution is in
〈S〉LH

V2
, where the relative minus sign might produce a neg-

ative value. Recalling thatξ0 =
√

2/(nωr0), defined after
Eq. (39), we rewrite the resulting condition from Eq. (75) as

ξ

ξ0
<

1√
2π

(4n2 + θ̃2)2 + 4n2θ̃2

θ̃2(4n2 + θ̃2)

(r0

r

)1/2

<
1√
2π

1 + Υ−Υ2

Υ
≡ Q(Υ), θ̃ 6= 0, (77)

sincer > r0 in the intermediate zone. Recalling that0 <
Υ < 1, the functionQ(Υ) is a decreasing function having
its minimum valueQ(Υ = 1) = 0.40. This means that for
any valueξ/ξ0 < 0.40, the energy fluxes are always positive
in the whole range ofΥ since the inequality (77) is always
satisfied.

On the contrary, when0.40 < ξ/ξ0 ≡ ζ < 1 we have
to determine the maximum allowed valueΥmax by solving
Q(Υmax) = ζ, so that the energy fluxes are positive only in
the range0 < Υ < Υmax. Let us notice that the lowest values
observed for̃θ are of the order of the fine structure constant
α = 1/137, which effectively replaces the theoretical lower
limit Υ = 0 by the more realistic oneΥmin = 1.3×10−5/n2.
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TABLE I. The energy flux very close to the interface (ξ = 10−3) between a normal insulator (n = 2 (1.87), ϑ̃ = 0, µ = 1) and different
magnetoelectrics with the samen andµ. The radiating dipole hasp = 2.71 × 103 eV−1, ω = 1.5 eV andz0 = 25 eV−1. The observer
distance isr = 667 eV−1.

ϑ-medium n θ̃ Υ 〈S〉UH [eV4] 〈S〉LH [eV4] 〈S〉SED [eV4]

TlBiSe2 2 11α 4.0×10−4 6.64 6.64 6.63

TbPO4 1.87 0.22 3.5×10−3 6.21 6.21 6.18

Hyp. I 2 0.5 1.5×10−2 6.74 6.73 6.63

Hyp. II 2 1 5.9×10−2 7.03 6.97 6.63

Hyp. III 2 5 6.1×10−1 8.53 7.89 6.63

Next we perform some numerical estimations of Eq. (75)
shown in Table I. There we refer to the setup described in the
beginning of Sec. 2, for the case where medium 1 is a reg-
ular insulator withn = 2 (1.87), µ = 1 andϑ = 0, while
medium 2 corresponds to different magnetoelectric media
with the same refraction index and permeability and whose
value of θ̃ is indicated in the third column. Since we are
interested only in the magnetoelectric response of the real
materials listed in Table I it is enough to say that TbPO4 is
an antiferromagnet exhibiting a linear MEE, whose relevant
properties have been extensively studied in Ref. [55,56]. On
the other hand TlBiSe2 has been experimentally identified as
a TI admitting MEPs given bỹθ = (2n + 1)π [58–60]. Its
electronic properties are presented in [61]. The remaining en-
tries correspond to hypothetical materials aiming to illustrate
the effects of increasing the strength of the MEE. For this rea-
son we take them with the same refraction indexn = 2. We
compare these fluxes with the magnitude of〈S〉SED writ-
ten in the last column. We recall the dipole characteris-
tics p = 2.71 × 103 eV−1 (10−21 C · cm), ω = 1.5 eV,
z0 = 25 eV−1 and the observer distancer = 667 eV−1.
In this caseξ0 = 3.2 × 10−2. We present the magnitude of
the Poynting vector〈S〉V2 for both hemispheres evaluated at
ξ = 10−3, which we choose as a representative value satisfy-
ing the condition (76) with nωz0ξ = 7.5 × 10−2, as well as
ξ/ξ0 = 3.1 × 10−2, for n ≈ 2. This latter number indicates
that the condition (75) is fulfilled for all values ofΥ in this
case.

5. Summary and conclusions

We discuss the radiation produced by a point-like electric
dipole oriented perpendicular to and at a distancez0 from
the interface which separates two planar semi-infinite non-
magnetic magnetoelectric media with the same permittivity,
whose electromagnetic response obeys the modified Maxwell
equations (4) and (5) of ϑ-electrodynamics. The choiceε1 =
ε2 is made to highlight and isolate the purely magnetoelec-
tric effects on the radiation, which depend on the parameter
θ̃ = α(ϑ2−ϑ1)/π. As a consequence of a careful calculation
of the far-field approximation in the electric field we discover
the additional generation of axially symmetric cylindrical
(surface) waves close to the interface, as shown in Eqs. (62).

The analysis of the cylindrical waves leads us to introduce
two discarding anglesθUH

0 andθLH
0 , defined in Eq. (29) and

shown in Fig. 1, which allow to distinguish two separate
regimes: i) the regionV1, (0 < θ < θUH

0 , θLH
0 < θ < π),

where only the spherical waves are relevant and ii) the region
V2, (θUH

0 < θ < θLH
0 ), where both the cylindrical and the

spherical waves must be taken into account. The behavior of
the electric field in regionV1 andV2 is illustrated in Figs. 2
and 3, respectively.

Due to the presence of theϑ-media we find modifications
in the angular distribution of the radiation given by Eq. (65)
and illustrated in Fig. 4. Noticeable interference effects are
manifest in the upper hemisphere when the observer is in the
same region of the dipole. On the contrary, no interference
occurs when the observer and the dipole are not in the same
region, in which case the angular distribution looks similar
to that of a dipole in a homogeneous media, except for im-
portant changes in its magnitude. Such different interference
effects say that the system distinguishes whether the electric
dipole and the observer are in the same semi-space or not,
corresponding to the Cases(+) and (−) respectively, dis-
cussed at the end of Subsec. 4.2.

Starting from the far-field approximation of the electric
field we have correctly identified the Fresnel coefficients at
the interface by making use of the angular spectrum repre-
sentation [49] together with the results of Ref. [48] dealing
with wave propagation in layered topological insulators.

The modifications of the angular distribution in the re-
gionV1 produce new expressions for the total radiated power
P(±), which were calculated in Eqs. (68) and (70). The
result P− for the lower hemisphere is independent of the
dipole’s locationz0 and shows a behavior similar to the stan-
dard electrodynamics configuration, but modulated by two
amplitudes. The amplitude depending on the discarding an-
gle θ0

LH is very close to one, because for all practical pur-
posesθ0

LH = π/2. The second amplitude depends onΥ
and induces an unexpected behavior yielding an enhancement
factorR(−) that can be less than one in some cases. Fur-
ther, in the limiting case whenΥ → 1 the radiation in the
lower hemisphere would be completely canceled, such that
the setup behaves as a perfect mirror. The result forP(+) is
more intricate since the dependence uponz0 now survives in
the angular distribution of Eq. (65). Again, the discarding
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angle is very close toπ/2 and we take this approximation to obtain some general features of the enhancement factor. We find
the maximum valueR(+) = 1 + 3Υ, when the dipole is located at the interface (z0 = 0). In the limitκ = nωz0 very large we
haveR(+) → 1+Υ. Also we find an absolute minimum atκ ≈ 2.88 whereR(+) = 1+0.83Υ. Thus, in this case we have an
enhancement factor larger than one, which nevertheless is limited to the maximum value ofRmax

(+) = 4, independently of our

choice of the parameters̃θ andn of the medium. In Fig. 6 we plot the ratioP(+)/P0 as a function ofκ, for different choices of
Υ, whereP0 stands for the total power radiated by the dipole in standard electrodynamics.

Regarding the regionV2, we have carefully characterized along the text the conditions under which the cylindrical waves
arise. The cylindrical waves are present in the whole interval0 < ξ < ξ0, |s| < 1 so that|S| = ξ2/ξ2

0 < 1 for both
hemispheres in this region. Our linear approximation inξ, carried out in Eqs. (74) and (75), is only valid whenξ ¿ ξ0, and
the effect of theϑ-medium is again codified in the parameterΥ. As expected, the effects of the magnetoelectric become more
evident for largẽθ. The fluxes in both hemispheres are larger than in the standard electrodynamics configuration and the excess
of radiation in the upper hemisphere with respect to the lower hemisphere is evident in Table I.

In order to stress their similarities and differences we give some comparison between the dipolar radiation studied in this
work which includes a magnetoelectric medium, and that produced in the presence of two standard insulators with a planar
interface and different permittivitiesε(x) = Θ(z)ε2 + Θ(−z)ε1 with ε1 6= ε2 andϑ1 = ϑ2 = 0. In the latter case the radiation
of a vertically oriented dipole picks up only the TM polarization as shown in Refs. [44,49]. In our case we have identified these
contributions to the electric field through the corresponding transmissionTTM,TM and reflectionRTM,TM coefficients in Eqs.
(60) and (61). However, due to the magnetoelectric effect, the electric field gets an additional input arising from the mixing
of TM and TE modes described by the reflection coefficientRTE,TM in Eq. (60). While in purely dielectric configuration
these coefficients have an angular dependence, in our case they turn out to be constants depending only on the parameters
of the media. This is a consequence of our choiceε1 = ε2, which forbids the existence of reflection and refraction at the
interface. On the other hand, both configurations share the generation of axially symmetric cylindrical waves at the interface of
the two media, as shown in Subsec. 3.2.2 and particularly in Fig. 3. Again, in our case the physical origin of such cylindrical
waves relies on the change in the magnetoelectric polarizability across the two media and not because of a difference in the
permittivity constant as it happens in the purely dielectric configuration.

Let us emphasize once again that our methods can be applied to study the radiation in all materials whose macroscopic
electromagnetic response is described byϑ-electrodynamics. This includes any magnetoelectric medium, which can be found
among a wide range of ferromagnetic, ferroelectric, multiferroic materials and topological insulators, for example. Our results
contribute to the list of uncovered consequences of the magnetolelectric effect, which still remains far from experimental
confirmation. Generally speaking, the parameterα̃ ≡ αϑ/π (in Gaussian units) which sets the scale for the magnetoelectric
effect via the constitutive relations (3) is very small. Then is is clear that to enhance such effects, materials with much higher
magnetoelectric polarizabilities are required. Besides those values previously mentioned in the text, some typical values are:
2.8 × 10−2 for MgO/Fe [62] and7.2 for Gd2O3/Co [63]. Nonetheless, the search for a giant magnetoelectric polarizability
continues recently in composite materials reaching values as high as9.0×102 for BaTiO3/Co60Fe40, for example [64]. Among
the numerous technological applications envisaged as a consequence of the magnetoelectric effects we mention just a few:
electric field control of magnetism, low-energy-consumption non-volatile magnetoelectronic memory devices, high sensitivity
magnetometers, microwave frequency transducers and spintronics for future photonic devices [65–67]. Nevertheless, all these
possibilities crucially depend on finding materials with higher and higher magnetoelectric polarizabilities.

Appendix

A. The electromagnetic potential and the integralsH, I andJ
In this appendix we derive the electromagnetic potentialAµ due to the vertically oriented dipole, together with the integrals
in Eqs. (19), (20) and (21) of Sec. 3.1. The procedure is based on the Appendix of Ref. [42]. To this aim we begin from the
expression (10) in the frequency-space and from the current defined in Eq. (15). Let us start with the componentA0(x; ω),
which takes the form

A0(x; ω) = − ip

ε

∫
dz′

∞∫

0

k⊥dk⊥√
k̃2
0 − k2

⊥

J0(k⊥ρ)ei
√

k̃2
0−k2

⊥|z−z′|δ′(z′ − z0)

− i

ε

θ̃2p

4n2 + θ̃2

∫
dz′

∞∫

0

k3
⊥dk⊥(

k̃2
0 − k2

⊥
)3/2

J0(k⊥ρ)ei
√

k̃2
0−k2

⊥(|z|+|z′|)δ′(z′ − z0), (A.1)
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after making the convolution of the GF (14) with the current (15). In obtaining the above relation we have expressed the area
elementd2k⊥ = k⊥dk⊥dϕ in polar coordinates and we have chosen thek⊥x axis in the direction of the vectorx⊥ = (x, y, 0).
This defines the coordinate systemS to be repeatedly used in the following. Next we writek⊥ · x⊥ = k⊥ρ cosϕ with
ρ = ‖x⊥‖ =

√
x2 + y2 and recall that the angular integral ofexp(ikρ cosϕ) provides a representation of the Bessel function

J0(k⊥ρ) [68]. The first integral in Eq. (A.1) can be carried out by recalling the Sommerfeld identity [6,8,43]

i

∞∫

0

k⊥dk⊥√
k̃2
0 − k2

⊥

J0(k⊥R⊥)ei
√

k̃2
0−k2

⊥|z−z′| =
eik̃0R

R
, (A.2)

whereR =
√

ρ2 + (z − z′)2. Then, we impose the coordinate conditions appropriate to the far-field approximation

‖x‖ À ‖x′‖, R⊥ = ‖ (x− x′)⊥ ‖ ' ‖x⊥‖ = ρ, |z − z′| ' |z|, (A.3)

which yields the well-known result of standard ED,eik̃0R/R → eik̃0(r−n̂·x′)/r, with n̂ being a unit vector in the direction of
x and where‖x‖ = r [35, 37]. Substituting this approximation into the first integral of Eq. (A.1) and integratingδ′(z′ − z0)
we obtain

A0(x;ω) = −p

ε
ik̃0 cos θ

eik̃0(r−z0 cos θ)

r
− 1

ε

θ̃2p

4n2 + θ̃2

∫
k3
⊥dk⊥

k̃2
0 − k2

⊥
J0(k⊥ρ)ei

√
k̃2
0−k2

⊥(|z|+z0). (A.4)

Therefore, after makingn2 = ε and identifying the integralH defined in Eq. (19) we find the expression (16).
For convenience we proceed now to calculate simultaneously the componentsA1(x; ω) andA2(x; ω), which can be written

together as

Aa(x;ω) = − 2θ̃p

4n2 + θ̃2
εa b3

0 Ib(x, z0; ω)− θ̃2p

4n2 + θ̃2
Qa(x, z0; ω), (A.5)

where we define the integrals

Ia(x, z0;ω) = −
∞∫

0

k2
⊥dk⊥√
k̃2
0 − k2

⊥

ei
√

k̃2
0−k2

⊥(|z|+z0)J0(k⊥ρ) va, (A.6)

Qa(x, z0;ω) =

∞∫

0

k2
⊥dk⊥

k̃2
0 − k2

⊥
ei
√

k̃2
0−k2

⊥(|z|+z0)J0(k⊥ρ) va , (A.7)

with va = (cos ϕ, sin ϕ, 0). Herea, b = 1, 2 andka = (k⊥, 0). Choosing the coordinate systemS we findI2 = 0 andQ2 = 0,
which tells us that both vectorsI andQ point in the direction ofx⊥. Thus we can write

I(x, z0; ω) = x⊥
i

ρ

∂

∂ρ

∞∫

0

k⊥dk⊥√
k̃2
0 − k2

⊥

J0 (k⊥ρ) ei
√

k̃2
0−k2

⊥(|z|+z0), (A.8)

Q(x, z0; ω) = −x⊥
i

ρ

∂

∂ρ

∞∫

0

k⊥dk⊥
k̃2
0 − k2

⊥
J0 (k⊥ρ) ei

√
k̃2
0−k2

⊥(|z|+z0) , (A.9)

where we identify the integralsI andJ previously introduced in Eqs. (20) and (21). Plugging the latter forms ofI andJ into
Eq. (A.5) we find the expression (17). Finally, we find

A3(x; ω) = ωp

∞∫

0

k⊥dk⊥√
k̃2
0 − k2

⊥

J0(k⊥R⊥)ei
√

k̃2
0−k2

⊥|z−z0| . (A.10)

After employing the Sommerfeld identity (A.2) together with the far-field approximation (A.3) we obtain Eq. (18).
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FIGURE 7. a) The Sommerfeld path of integrationCk⊥ in thek⊥-plane showing the branch cuts originating from the branch points±k̃0

and0. b) A permissible deformationCα of the path of integration obtained by the transformationk⊥ = k̃0 sin α. The branch points in the
α-plane areα±(±k̃0) = ±π/2 andα(0) = 0.

B. Evaluation of the integrals (19)-(21) by the modified steepest descent method

In this appendix we closely follow Ref. [13] and apply a modified steepest descent method to find the far-field approximation
of the integralsH, I andJ whose results are given in Eqs. (22)-(24). This Appendix is divided in two sections. In the first
one, we present in full detail the method by solving the integralH defined in Eq. (19). In the second section we only indicate
a summary of the method leading to the integralsJ andI, respectively.

B.1 The integralH
It will prove convenient to rewriteH in terms of Hankel functions. We start from

J0(x) =
1
2

[
H

(1)
0 (x) + H

(2)
0 (x)

]
, (B.1)

whereH
(1)
0 (x) andH

(2)
0 (x) are the Hankel functions, together with the reflection formulaH

(1)
0 (eiπx) = −H

(2)
0 (x) [69],

which allows us to extend the integration interval in Eq. (19) to−∞. The result is

H(x, z0; ω) =
1
2

∮

Ck⊥

k3
⊥dk⊥

k̃2
0 − k2

⊥
H

(1)
0 (k⊥ρ) ei

√
k̃2
0−k2

⊥(|z|+z0) , (B.2)

whereCk⊥ is the so-called Sommerfeld path of integration defined in Fig. 7a), which avoids the branch cuts dictated by the

Hankel functionH(1)
0 and by the square root

√
k̃2
0 − k2

⊥. At this point is worth mentioning that henceforth we will retain some

dissipation in the medium (1 À Im[k̃0] > 0) for convergence purposes and to avoid troublesome questions of convergence that

arise whenIm[k̃0] = 0. This guarantees thatRe
[
i
√

k̃2
0 − k2

⊥

]
< 0, i.e., the exponential argument will be negative implying

the rapidly exponential decay that assures the convergence of the integralH [13].
First, we apply the conformal transformationk⊥ = k̃0 sin α obtaining [13,47]

H(x, z0;ω) =
k̃2
0

2

∮

Cα

dα
sin3 α

cosα
H

(1)
0

(
k̃0ρ sin α

)
eik̃0 cos α(|z|+z0), (B.3)

whereCα is given in Fig. 7b). Following Ref. [47], now it is convenient to use the asymptotic expansion of the Hankel
function [68]

H
(1)
0

(
k̃0ρ sin α

)
∼

√
2

πk̃0ρ sin α
eik̃0ρ sin α−i π

4 , (B.4)
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FIGURE 8. a) The path of integrationCα with the steepest descent condition (B.7) in the α-plane. The path of steepest descent has the
asymptotesRe(α) = −π/2 + θ, π/2 + θ, and crosses the real axis of theα-plane at the saddle-pointαs = θ. The previous pathCα of
Fig. 7b) is sketched here in the blue dotted line. b) The path of integrationCw in thew-plane obtained by the shiftw = α− θ. The resulting
path of steepest descent now has the asymptotesRe(w) = ±π/2 and crosses the real axis of thew-plane atw = 0.

which is allowed because we are focusing on the far-field approximation required for the analysis of radiation. In this way, we
have

H(x, z0; ω) = k̃2
0

√
1

2πk̃0R⊥
e−iπ/4

∮

Cα

dα
sin5/2 α

cosα
eik̃0ρ sin α+ik̃0 cos α(|z|+z0) . (B.5)

For the moment we restrict ourselves only to the UH (cos θ > 0). The calculation for the LH is sketched after Eq. (B.22). So,
we write|z| = r cos θ andρ = r sin θ, i.e., r =

√
ρ2 + z2. Thereby, we find

H(x, z0; ω) = k̃2
0

√
1

2πk̃0r sin θ
e−iπ/4

∮

Cα

dα
sin5/2 α

cos α
eik̃0r cos(α−θ)+ik̃0z0 cos α . (B.6)

Next we determine the saddle-point of (B.6) by choosing the stationary phase as onlyϕ (α) = ik̃0r cos (α− θ), according to
Ref. [13]. The saddle-pointαs is determined throughϕ′ (αs) = 0, which givesαs = θ. This yields the full stationary phase to
beik̃0r cos θ. At this stage, the steepest descent path is specified on theα-plane by demanding the condition

Im [ϕ (α)] = Im [ϕ (αs)] ⇒ Im
[
ik̃0r cos (α− θ)

]
= Im

[
ik̃0r

]
(B.7)

overCα, as sketched in Fig. 8a).
Now we shift the origin to coincide with the saddle point by settingw = α− θ in H, which yields

H(x, z0;ω) = k̃2
0

√
1

2πk̃0r sin θ
e−iπ/4

∮

Cw

dw
sin5/2 (θ + w)
cos (θ + w)

eik̃0r cos w+ik̃0z0 cos(θ+w) . (B.8)

The reparametrized pathCw, shown in Fig. 8b), now satisfies the following steepest descent condition

Im
[
ik̃0r cos w

]
= Im

[
ik̃0r

]
. (B.9)

The next step is to introduce the conformal transformation [13]

u2

2
= ϕ (0)− ϕ (w) = ik̃0r (1− cosw) , (B.10)
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FIGURE 9. The path of integrationCu obtained by the conformal transformation given in Eq. (B.10) whenπ/2 > θ À 0. The path

of steepest descent is mapped into the real axis of theu-plane. Here the branch points areu0± = u(π/2 − θ) = ±
√

2ik̃0r (1− sin θ),

u±1 = u(−π/2 − θ) = ±
√

2ik̃0r (1 + sin θ) andu2± = u(−θ) = ±
√

2ik̃0r (1− cos θ). The branch cuts converge at∞× eiπ/2 and

∞× e−iπ/2. Whenθ ≈ 0 the branch cuts lie over the blue dotted line of slopeπ/4 and converge at the points∞× eiπ/4 and∞× ei5π/4.

whose purpose is to map the path of steepest descent into the real axis. This requires the change of variablescos w = 1 −
u2/2ik̃0r in Eq. (B.8), after which we obtain

H(x, z0; ω) =
k̃0

i

√
1

2π sin θ

eik̃0r

r

∮

Cu

duF1(u)e−u2/2, F1(u) =
sin5/2 [θ + w(u)] eik̃0z0 cos[θ+w(u)]

cos [θ + w(u)]
√

1− u2

4ik̃0r

. (B.11)

The pathCu is sketched in Fig. 9. Then we look at the behavior ofF1(u) and find that it has poles in theu-plane located atu0

given by
√

1− u2
0

4ik̃0r
= 0, cos [θ + w(u0)] = 0 . (B.12)

We will consider only those poles in the second equation above, because the poles from the first equations will only matter
when seeking for correction terms of higher order thanr−1, which we will not pursue here. Recalling the last change of
variablesw → u we find that the poles are

u0± = ±
√

2ik̃0r (1− sin θ) ≡ ±
√

2Λ, Λ =
√

ik̃0r (1− sin θ). (B.13)

Since our integration path is in the upper-half plane we require onlyu0+.
From Eq. (B.11) we realize thatF1(u) is not a smooth function around the stationary phaseik̃0z0 cos[θ + ω(u)] precisely

due to the pole contribution, which prevents a direct application of the method. The main idea to overcome this difficulty
is to subtract and add the conflicting pole as we will do next [1, 13]. This extraction procedure was mathematically justified
by van der Waerden [70]. Due to the symmetry of the conformal transformationu in Eq. (B.10) we will focus on the upper
u-semi-plane. For this extraction, we need the residue ofF1(u) atu0+ which is

Res (F1; u0+) =

√
k̃0r

i
√

i
. (B.14)

Then, we introduce the function

ψ(u) = F1(u)− Res (F1;u0+)
u− u0+︸ ︷︷ ︸

ψ1(u)

+
Res (F1; u0+)

u− u0+︸ ︷︷ ︸
ψ2(u)

. (B.15)
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In this way,ψ1(u) is analytic atu0+, so that we can apply the standard steepest descent method. Meanwhile,ψ2(u) will contain
the simple pole contribution that will be analyzed later. At this stage we rewriteH in Eq. (B.11) as

H(x, z0; ω) =
k̃0

i

√
1

2π sin θ

eik̃0r

r
[HSD(x, z0; ω) +HP (x, z0; ω)] , (B.16)

where we define

HSD(x, z0; ω) =
∮

Cu

duψ1(u)e−u2/2, HP (x, z0; ω) =
∮

Cu

duψ2(u)e−u2/2. (B.17)

The first contribution provides the standard steepest descent integral, and the second term results from the integration of the
simple pole. For simplicity, we omit the explicit dependence ofHSD andHP in what follows. For the moment, let us focus
onHSD, whose detailed form is

HSD =
∮

Cu

du

{
sin5/2 [θ + w(u)] eik̃0z0 cos[θ+w(u)]

cos [θ + w(u)]
−

√
k̃0r

i
√

i(u− u0+)

}
e−u2/2 . (B.18)

As we mentioned previously, theu-transformation has already mapped the path of steepest descent into the real axis on theu-
plane. Thus, we are able to approximateHSD with standard calculus techniques. Since we are interested only in the dominant
term ofHSD, it is enough to consider the zeroth order term in the expansion ofψ1(u) in its Taylor series aroundu = 0 (w = 0),
because most of the contribution arises from its vicinity due to the presence of the Gaussian functione−u2/2. Performing this,
we obtain

HSD =

{
sin5/2 θeik̃0z0 cos θ

cos θ
− 1√

2 (1− sin θ)

}√
2π , (B.19)

where we have already introduced the expression ofu0+ from Eq. (B.13). Substituting back this result in Eq. (B.16), we find

H = k̃0
eik̃0r

ir





sin2 θeik̃0z0 cos θ

cos θ
− 1√

2
(
sin θ − sin2 θ

)



 +

k̃0

i

√
1

2π sin θ

eik̃0r

r
HP . (B.20)

We observe that the first term inside the curly brackets is just the same term without the contribution of the simple pole that
we reported in Ref. [42]. The second contribution appears to introduce divergences atθ = 0, π, due to the term1/

√
sin θ.

However, these singularities are artificial and arise from the insertion of the Hankel functionH
(1)
0 in Eq. (B.1) [13]. One can

trace back these artificial divergences to the branch cuts represented by the ray that starts at the origin of Figs. 7a) and 7b), by
the ray that begins at−θ in Fig. 8b) in thew-plane and by the ray that starts inu2 in Fig. 9 in theu-plane, after the successive
transformations are performed. Nevertheless, one can prove that these divergences are apparent as long as we work within the
far-field approximatioñk0r →∞. It only remains to determineHP . As mentioned above, theu-transformation maps the path
of steepest descent to the real axis on theu-plane. So, we only need to computeHP along that axis. Explicitly, we have that

HP =
π
√

k̃0r√
i

1
iπ

∞∫

−∞
du

e−u2/2

u− u0+
≡ π

√
k̃0r√
i

W̃(u0+) =

√
πk̃0r

i
√

i
Z(Λ), (B.21)

recalling thatu0+ =
√

2Λ is given by Eq. (B.13). We discuss some basic properties of the Faddeeva functionZ(Λ) and the
functionW̃ in the Appendix C.

Substituting Eqs. (B.21) and (C.2) in Eq. (B.20) yields our final expression forH

H=k̃0
eik̃0r

ir





sin2 θeik̃0z0 cos θ

cos θ
− 1√

2
(
sin θ− sin2 θ

)



+

√
2

πik̃0r sin θ

k̃2
0

i
eik̃0r sin θ π

2
erfc

[
−i

√
ik̃0r (1− sin θ)

]
, (B.22)

where the second term shows the presence of cylindrical waves that arise directly from the simple pole contribution as Refs.
[1,13] establish. The expression for̄W is given in Eq. (C.2). Analogously, we obtain the form ofH in the LH, which indicates
that the whole expression valid for both hemispheres is obtained by replacingcos θ with | cos θ| in Eq. (B.22), yielding Eq. (22).
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For the sake of completeness we show that Eq. (22) converges aroundπ/2. To deal withθ = π/2 we find it convenient to set
θ = π/2− ξ in the UH and expand (22) in a power series ofξ aroundξ = 0. We obtain

H(ξ → 0) ' k̃0
eik̃0r

ir

{
ik̃0z0 − ξ

8

}
+

√
2

πik̃0r
k̃2
0e

ik̃0r


 π

2i
+

√
πik̃0r

2
ξ


 +O(ξ2), (B.23)

where we observe that the divergence disappeared. Lack of space prevent us to write down the proofs thatH(θ = 0) = 0 =
H(θ = π).

B.2 The integralsJ and I

After introducing the Hankel functionH(1)
0 (k⊥ρ) in Eq. (21) we observe thatJ has almost the same form as (B.2) except for

thek2
⊥ extra factor in the integrand. Performing the same chain of transformations from thek⊥-plane to theu-plane as done in

the Appendix B.1 we obtain

J (x, z0;ω) =
eik̃0r

ik̃0r

√
1

2π sin θ

∮

Cu

duF2(u)e−u2/2, F2(u) =
sin1/2 [θ + w(u)] eik̃0z0 cos[θ+w(u)]

cos [θ + w(u)]
√

1− u2

4ik̃0r

, (B.24)

where again we restrict ourselves to the UH. Notice thatF2(u) differs form F1(u) only in the exponent of the function
sin[θ + ω(u)], which is a consequence of the distinct powers ofk⊥ in the definitions ofH andJ . Since the singularities
are the same, the separation of the pole yields

ζ(u) = F2(u)− Res (F2; u0+)
u− u0+︸ ︷︷ ︸

ζ1(u)

+
Res (F2; u0+)

u− u0+︸ ︷︷ ︸
ζ2(u)

, (B.25)

with u0+ given by Eq. (B.13). Sinceζ1(u) is already analytic, we approximate its integral through the standard steepest
descent method. Meanwhile,ζ2(u) will contain the contribution of the simple pole. In this way, we rewriteJ as

J (x, z0;ω) =
eik̃0r

ik̃0r

√
1

2π sin θ
[JSD(x, z0;ω) + JP (x, z0; ω)] , (B.26)

where

JSD(x, z0;ω) =
∮

Cu

du ζ1(u)e−u2/2, JP (x, z0;ω) = HP (x, z0; ω) =
∮

Cu

du ζ2(u)e−u2/2. (B.27)

The equality betweenJP andHP follows becauseRes (F2; u0+) = Res (F1;u0+). The remaining calculation ofJSD follows
the same steps as that ofHSD (B.18) in the Appendix B.1 and leads finally to Eq. (23), which can be shown to be convergent
atθ = 0, π/2, π. The expansion ofJ in the UH near the interface yields

J (ξ → 0) =
eik̃0r

ik̃0r

(
ik̃0z0 − ξ

8

)
+

√
2

πik̃0r
eik̃0r


 π

2i
+

√
πik̃0r

2
ξ


 + O(ξ2) . (B.28)

The calculation ofI, defined in Eq. (20) follows similar steps. After introducing the Hankel functionH
(1)
0 (k⊥ρ) and perform-

ing the chain of transformations from thek⊥-plane to theu-plane previously described we obtain

I(x, z0; ω) =
eik̃0r

ir

√
1

2π sin θ

∮

Cu

duF3(u)e−u2/2, F3(u) =
sin1/2 [θ + w(u)] eik̃0z0 cos[θ+w(u)]

√
1− u2

4ik̃0r

, (B.29)

in the UH. Then, we realize that the only poles remaining inF3(u) are those arising from the square root in the denominator.
Nevertheless we neglect them since, as previously mentioned in the Appendix B.1, these poles will only matter when we seek
for correction terms of higher order thanr−1, which is not intended in this work. Therefore, this integral does not need a pole
extraction in contrast with the former integralsH andJ . Following the same steps previously carried out forHSD in the
Appendix B.1 we obtain Eq. (24). The expansion ofI in the UH near the interface is given by

I(ξ → 0) =
eik̃0r

ir
(1 + ik̃0z0ξ + O(ξ2)). (B.30)
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C. Some properties of the functionZ(Λ)

The functionZ(Λ) is known as the Faddeeva (plasma dispersion) function [1, 71] and has been much studied in the literature
[14,15,72–74]. Let us recall the definition

Z(Λ) ≡ 1√
π

+∞∫

−∞
dx

e−x2

x− Λ
= i
√

π e−Λ2
erfc(−iΛ), (C.1)

where the last relation in Eq. (C.1) in terms of the complementary error function is taken from Refs. [1,68], and yields

W̃(u0+) =
1

i
√

π
Z(Λ) = iπe−ik̃0r(1−sin θ)erfc

[
−i

√
ik̃0r (1− sin θ)

]
. (C.2)

The functionW̃(u0), already introduced in Eq. (B.21), can be written in terms of the alternative expressions for the plasma
dispersion function:ω(Λ) defined in Ref. [68] andZ(Λ) defined in Ref. [71], as follows

W̃(u0+) = W̃(
√

2Λ) = ω(Λ) =
1

i
√

π
Z(Λ), Λ =

√
ik̃0r (1− sin θ), (C.3)

whereΛ = x + iy is a complex variable, withx, y being real numbers.

The functionZ(Λ) satisfies the useful expressionZ(Λ∗) = −
[
Z(−Λ))

]∗
, together with

Z(Λ) = iπ1/2e−Λ2 − Λ
∞∑

n=0

π1/2(−Λ2)n/(n + 1/2)!, |Λ| → 0, (C.4)

Z(Λ) = iπ1/2σ(Λ)e−Λ2 − 1
Λ

∞∑
n=0

Λ−2n(n− 1/2)!)/π1/2, |Λ| → ∞. (C.5)

Here σ(Λ) = 0, 1, 2 when y > 0, y = 0, y < 0, respectively. From Eq. (C.3) we write Λ =
√

is = eiπ/4s, s =√
k̃0r (1− sin θ) , and we require to calculateZ(eiπ/4s) which we could read from Ref. [71]. However we find a misprint in

the expression forZ(e−iπ/4s) given there. The correct result is

Z(se−iπ/4) = iπ1/2eis2
[
1 +

√
2e−i3π/4 [C(t)− iS(t)]

]
, t =

√
2/π s, (C.6)

whereC(t) andS(t) are the Fresnel functions and with the identifications = ρ. Finally we obtain

|Z(seiπ/4)|2 = 2π

[
1
2

+ C2(t) + S2(t)− C(t)− S(t)
]

. (C.7)
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