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1. Introduction

The Einstein’s special relativity plays a corner stone in mod-
ern physics. As stated in 1905 by Einstein, it is based on two
postulates. The first postulate is about the constancy of the
speed of light: the speed of lightc is the same in all iner-
tial frames of references. The second postulate is about the
invariance form of the laws of physics under Lorentz trans-
formations. As a consequence of this, any theory of space
and time should be compatible with the theory of special rel-
ativity. There are some other aspects that were studied af-
ter the emergence of theory of relativity [1,2]. In Ref. [3],
the Lorentz transformations were re-stated for an observer in
a refracting but non-dispersive medium was proposed, and
some physical consequences were discussed. In Ref. [4],
Laue and Rosen theories of dielectric special relativity were
derived, and argued that both are true but with different range
of applicability. In Ref. [5], the non-local special relativity
is introduced to overcome the difficulties accompanied the
non-local electrodynamics problems.

In the last two decades, the fractional calculus approach
to model or resolve various physical problems has attracted
many researchers. There are a number of definitions or senses
for fractional calculus such as Riemann-Liouville, Caputo,
Riesz and Weyl [6-9]. The most important definitions are
the Riemann-Liouville and Caputo definitions. These defini-
tions have many applications in various fields [10-17]. The
fractional derivative has lately been given a new definition.
This is the first definition to use the limits definition, and it
is called conformable fractional derivative (CFD) [18]. For a
given functionf(t) ∈ [0,∞) → R, the conformable deriva-
tive of f(t) of orderα, denoted asDα

t f(t) with 0 < α ≤ 1,
is defined as [18]:

Dα
t f(t) = lim

ε→0

f(t + εt1−α)− f(t)
ε

= t1−α d

dt
f(t). (1)

This definition is simple in the sense that it meets the general
properties and rules of the traditional derivative, whereas the
other fractional derivatives do not satisfy them. From these
properties the Leibniz, chain rules, and derivative of the quo-
tient of two functions. Because of its ease of use, general
features, and preservation of general properties including the
locality property, the conformable derivative has a wide range
of applications in a variety of fields of science.

In Refs. [19,20], this CFD is re-investigated and new
properties similar to these in traditional calculus were derived
and discussed. The CFD has been used to study various phys-
ical problems with possible nonlinear or diffusive nature. In
Ref. [21], the mass spectroscopy of heavy mesons were inves-
tigated within the frame of conformable derivative searching
for any ordering effect in their spectra that varies with the
fractional order. In Ref. [22], the fractional dynamics of rela-
tivistic particles was studied, and it was found that fractional
dynamics of such particles are described as non-Hamiltonian
and dissipative. Possibility of being Hamiltonian system un-
der some conditions was also presented. In Ref. [23], a new
conformable fractional mechanics using the fractional addi-
tion was proposed and new definitions for the fractional ve-
locity fractional acceleration are given. In Ref. [24], defor-
mation of quantum mechanics due to the inclusion of con-
formable fractional derivative is presented and investigated
with some physical illustrative examples. Recently, Pawar
et.al. [25] introduced Riemannian geometry through us-
ing the conformable fractional derivative in Christoffel index
symbols of the first and second kind. The conformable cal-
culus has been used in making an extension of approxima-
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tion methods to become applicable to conformable quantum
mechanics [26-28], and to find solutions of related differen-
tial equations such as the conformable Laguerre and associ-
ated Laguerre equations [29]. In Ref. [30], the Hamiltonian
for the conformable harmonic oscillator is constructed using
fractional operators termedα-creation andα-annihilation op-
erators.

Later, in Ref. [31], pointed out the conformable deriva-
tive is not fractional but it is an operator. Thus in the present
paper we call it conformable derivative.

The purpose of this paper is to investigate the deforma-
tion of the theory of special relativity within the frame of
conformable fractional derivative. This means that, we will
adopt a new set ofα−Lorentz transformations and use them
to re-state the postulates of special relativity, and to verify the
validity of the invariance principle to various laws or equa-
tions of physics.

2. Theory

Deformation of Lorentz transformations using conformable
derivative is reported in Ref. [24].

Definition Theα− Lorentz transformations between two
inertial framesS andS′ are defined as [24]:

x′α = Γα(xα − vαtα), (2)

t′α = Γα(tα − vα

c2α
xα), (3)

y′α = yα, (4)

z′α = zα, (5)

whereΓα = 1/
√

1− (v2
α/c2α) is theα− deformed Lorentz

factor andvα is the α−relative velocity between the two
frames.

By adjusting theα values, we can see that the influence
of α on theα-Lorentz factor has kept its behavior with the
gradient of its value and that this effect fades whenα = 1.

FIGURE 1. Plot of the relation betweenα-Lorentz factor andβ,
wherevα = βαcα.

We now state the two postulates of conformable special
relativity as follows.

• Postulate 1(Constancy of the speed of light): The speed
of light is the same for allα−inertial frames of refer-
ences.

• Postulate 2(Invariance Principle): The laws of physics
are invariant underα−Lorentz transformations.

The following subsections purpose is to clarify theses two
postulates.

2.1. Theα−velocity addition law

Following [23], we define theα−velocity of an event with
respect to theS andS′ frames as

uα ≡ Dα
t xα = (

t

x
)1−α dx

dt
, (6)

u′α ≡ Dα
t′x

′α = (
t′

x′
)1−α dx′

dt′
, (7)

respectively. To calculate the velocity using Eqs. (2) and (3),
we have

dx′α

dt′α
=

Γα(dxα − vαdtα)
Γα(dtα − vα

c2α dxα)
=

(dxα

dtα − vα)

(1− vα

c2α

dxα)
dtα

.

By interpretingdx′α/dt′α = u′α anddxα/dtα = uα, we thus
obtain

u′α =
(uα − vα)

(1− vα

c2α uα)
. (8)

In caseux = c, we have
(

x′

t′

)α−1

u′x =
((x

t )α−1ux − vα)
(1− vα

c2α (x
t )α−1ux)

=
((x

t )α−1c− vα)
(1− vα

c2α (x
t )α−1c)

, (9)

where we have made use of Eqs. (6) and (7). With the real-
izationx/t = c andx′/t′ = c, we have

cα−1u′x =
(cα−1c− vα)

(1− vα

c2α cα−1c)

=
(cα − vα)
(1− vα

cα )
= cα (cα − vα)

(cα − vα)
, (10)

from which we obtain

cα−1u′x = cα → u′x = c1−αcα = c, (11)

or

u′x = c. (12)

This verifies that theα−Lorentz transformations proposed in
Eqs. (2-5) leads to the constancy of the speed of light.
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2.2. Conformable wave equation

Here, we verify the covariance of the wave equation under theα− Lorentz transformation. Theα− wave equation in1 + 1
dimension is Ref. [24]

Dα
x Dα

x Ψ− 1
c2α

Dα
t Dα

t Ψ = 0. (13)

Using theα−Laplacian [32], then

∇2αΨ− 1
c2α

Dα
t Dα

t Ψ = 0, (14)

where∇2α = Dα
x Dα

x + Dα
y Dα

y + Dα
z Dα

z . Using of the chain rule [20]

Dα
x Ψ = x′α−1Dα

x x′Dα
x′Ψ + t′α−1Dα

x t′Dα
t′Ψ,

and then using theα−Lorentz transformations Eqs. (2) and (3), x′ = Γ(1/α)
α (xα−vαtα)(1/α), t′ = Γ(1/α)

α (tα−[vα/c2α]xα)(1/α),
we have

Dα
x Ψ = (Γ

1
α
α (xα − vαtα)

1
α )α−1x1−α d

dx
Γ

1
α
α (xα − vαtα)

1
α Dα

x′Ψ

+ (Γ
1
α
α (tα − vα

c2α
xα)

1
α )α−1x1−α d

dx
Γ

1
α
α (tα − vα

c2α
xα)

1
α Dα

t′Ψ,

= Γ1− 1
α

α (xα − vαtα)1−
1
α x1−αΓ

1
α
α

1
α

(xα − vαtα)
1
α−1αxα−1Dα

x′Ψ

− Γ1− 1
α

α (tα − vα

c2α
xα)1−

1
α x1−αΓ

1
α
α

1
α

(tα − vα

c2α
xα)

1
α−1 vα

c2α
αxα−1Dα

t′Ψ

= ΓαDα
x′Ψ− Γα

vα

c2α
Dα

t′Ψ. (15)

Operating again onDα
x Ψ by Dα

x , yields

Dα
x Dα

x Ψ = (ΓαDα
x′ − Γα

vα

c2α
Dα

t′)(ΓαDα
x′Ψ− Γα

vα

c2α
Dα

t′Ψ),

= Γ2
αDα

x′D
α
x′Ψ− 2Γ2

α

vα

c2α
Dα

x′D
α
t′Ψ + Γ2

α

v2
α

c4α
Dα

t′D
α
t′Ψ. (16)

From eqs. (4) and (5), it is clear that

y′α = yα → αy′α−1dy′ = αyα−1dy → y′1−α d

dy′
= y1−α d

dy
,

and thus

Dα
y′ = Dα

y . (17)

Therefore,

Dα
y′D

α
y′ = Dα

y Dα
y . (18)

Same procedure yields,

Dα
z′ = Dα

z , (19)

and

Dα
z′D

α
z′ = Dα

z Dα
z . (20)
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For thet dependence of Eq. (16), We implement the chain rule [20]:

Dα
t Ψ = x′α−1Dα

t x′Dα
x′Ψ + t′α−1Dα

t t′Dα
t′Ψ,

= (Γ
1
α
α (xα − vαtα)

1
α )α−1t1−α d

dt
Γ

1
α
α (xα − vαtα)

1
α Dα

x′Ψ

+ (Γ
1
α
α (tα − vα

c2α
xα)

1
α )α−1t1−α d

dt
Γ

1
α
α (tα − vα

c2α
xα)

1
α Dα

t′Ψ,

= −Γ1− 1
α

α (xα − vαtα)1−
1
α t1−αΓ

1
α
α

1
α

(xα − vαtα)
1
α−1αvαtα−1Dα

x′Ψ

+ Γ1− 1
α

α (tα − vα

c2α
xα)1−

1
α t1−αΓ

1
α
α

1
α

(tα − vα

c2α
xα)

1
α−1αtα−1Dα

t′Ψ

= −vαΓαDα
x′Ψ− ΓαDα

t′Ψ. (21)

Thus,

Dα
t Dα

t Ψ = (−vαΓαDα
x′ − ΓαDα

t′)(−vαΓαDα
x′Ψ− ΓαDα

t′Ψ),

= v2
αΓ2

αDα
x′D

α
x′Ψ− 2vαΓ2

αDα
x′D

α
t′Ψ + Γ2

αDα
t′D

α
t′Ψ. (22)

Substituting Eqs. (16),(18),(20)and (22) in Eq. (14), we obtain

Γ2
αDα

x′D
α
x′Ψ− 2Γ2

α

vα

c2α
Dα

x′D
α
t′Ψ + Γ2

α

v2
α

c4α
Dα

t′D
α
t′Ψ + Dα

y′D
α
y′ + Dα

z′D
α
z′

− v2
α

c2α
Γ2

αDα
x′D

α
x′Ψ + 2

vα

c2α
Γ2

αDα
x′D

α
t′Ψ− Γ2

α

c2α
Dα

t′D
α
t′Ψ = 0.

Rearranging,

Γ2
α

(
1− v2

α

c2α

)
Dα

x′D
α
x′Ψ + Dα

y′D
α
y′ + Dα

z′D
α
z′ −

Γ2
α

c2α

(
1− v2

α

c2α

)
Dα

t′D
α
t′Ψ = 0.

UsingΓ2
α(1− [v2

α/c2α]) = 1, we finally obtain

Dα
x′D

α
x′Ψ + Dα

y′D
α
y′Ψ + Dα

z′D
α
z′Ψ− 1

c2α
Dα

t′D
α
t′Ψ = 0,

or

∇′2αΨ− 1
c2α

Dα
t′D

α
t′Ψ = 0,

which shows that theα− wave equation is invariant under theα− Lorentz transformations. In the following three subsections,
we provide three examples that are in support of the second postulate.

2.3. Conformable Schr̈odinger equation

The conformable Schrödinger equation [24] is
(

p̂2
α

2mα
+ Vα(x̂α)

)
Ψ = i~α

αDα
t Ψ. (23)

In 3 + 1-dimensions, we have

− ~
2α
α

2mα
[Dα

x Dα
x + Dα

y Dα
y + Dα

z Dα
z ]Ψ + Vα(x̂α)Ψ = i~α

αDα
t Ψ. (24)

where p̂α = −i~α
α∇α [24]. Applying theα− Lorentz transformation by substituting from Eqs. (16),(18),(20)and (21) in

Eq. (24), we obtain

− ~
2α
α

2mα
[Γ2

αDα
x′D

α
x′Ψ− 2Γ2

α

vα

c2α
Dα

x′D
α
t′Ψ + Γ2

α

v2
α

c4α
Dα

t′D
α
t′Ψ + Dα

y′D
α
y′ + Dα

z′D
α
z′Ψ] + Vα(x̂α)Ψ

= i~α
α[−vαΓαDα

x′Ψ− ΓαDα
t′Ψ].

Thus, the conformable Schrödinger equation is not invariant under theα− Lorentz transformations.
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2.4. Conformable Gordon-Klein equation

We firstly propose the following definition of conformable relativistic energy.
Definition The conformable relativistic energy is defined as

E2α = p2αc2α + m2αc4α. (25)

Quantization can be achieved by substituting for the conformable operators asÊα = i~α
αDα

t and p̂α = −i~α
α∇α [24]. The

conformable Klein-Gordon equation is then

1
c2α

Dα
t Dα

t Ψ−∇2αΨ +
m2αc2α

~2α
α

Ψ = 0. (26)

Substituting Eqs. (16), (18),(20) and (22) in Eq. (26), we have

v2
α

c2α
Γ2

αDα
x′D

α
x′Ψ− 2

vα

c2α
Γ2

αDα
x′D

α
t′Ψ +

Γ2
α

c2α
Dα

t′D
α
t′Ψ + Γ2

αDα
x′D

α
x′Ψ

+ 2Γ2
α

vα

c2α
Dα

x′D
α
t′Ψ− Γ2

α

v2
α

c4α
Dα

t′D
α
t′Ψ−Dα

y′D
α
y′ −Dα

z′D
α
z′ +

m2αc2α

~2α
α

Ψ = 0.

Then,

Γ2
α

c2α

(
1− v2

α

c2α

)
Dα

t′D
α
t′Ψ− Γ2

α

(
1− v2

α

c2α

)
Dα

x′D
α
x′Ψ−Dα

y′D
α
y′ −Dα

z′D
α
z′ +

m2αc2α

~2α
α

Ψ = 0.

Thus, we have

1
c2α

Dα
t′D

α
t′Ψ−Dα

x′D
α
x′Ψ−Dα

y′D
α
y′Ψ−Dα

z′D
α
z′Ψ +

m2αc2α

~2α
α

Ψ = 0, (27)

or,

1
c2α

Dα
t′D

α
t′Ψ−∇′2αΨ−Dα

z′D
α
z′Ψ +

m2αc2α

~2α
α

Ψ = 0. (28)

Thus, the conformable Klein-Gordon equation is invariant under theα− Lorentz transformations.

2.5. Four vector in conformable form

We firstly present the definition of conformable position.
Definition.
1-Theα−covariant notation for positionxα

µ is defined as

xα
µ = (xα

0 , xα
1 , xα

2 , xα
3 ) = (cαtα,−xα,−yα,−zα). (29)

2- Theα−contravariant notation for positionxµ,α is defined as

xµ,α = (x0,α, x1,α, x2,α, x3,α) = (cαtα, xα, yα, zα). (30)

So, the relation betweenxα
µ andxµ,α is given by

xα
µ = gµνxµ,α or xµ,α = gµνxα

µ , (31)

wheregµν is the metric tensor which is in cartesian coordinates given as [25]

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

Thus, the displacement in conformable four vector is given by

Rev. Mex. Fis.68050705



6 AHMED AL-JAMEL, MOHAMED AL-MASAEED, EQAB. M. RABEI, AND DUMITRU BALEANU

1- Theα−covariant displacement

dαxµ = (dαx0, d
αx1, d

αx2, d
αx3) = (cαdαt,−dαx,−dαy,−dαz). (32)

2- Theα−contravariant displacement

dαxµ = (dαx0, dαx1, dαx2, dαx3) = (cαdαt, dαx, dαy, dαz). (33)

The conformable differential line element is then given as

dαxµdαxµ = (c2αd2αt,−d2αx,−d2αy,−d2αz). (34)

Secondly, we present the definition of operators in conformable four vector.
Definition. The dell operator in conformable four vector is defined as
1- Theα−covariant dell operator is given by

∂α
µ = (∂α

0 , ∂α
1 , ∂α

2 , ∂α
2 ) =

∂α

∂(xµ)α
=

(
1
cα

∂α

∂tα
,∇α

)
. (35)

2- Theα−contravariant dell operator is given by

∂µ,α = (∂0,α, ∂1,α, ∂2,α, ∂3,α) =
∂α

∂(xµ)α
=

(
1
cα

∂α

∂tα
,−∇α

)
. (36)

Thus, theα− D’Alembert operator is given by

∂α
µ∂µ,α =

1
c2α

∂2α

∂t2α
−∇2α. (37)

So, usingα− D’Alembert operator, the conformable wave equation and the conformable Klein-Gorden equation are

∂α
µ∂µ,αΨ = 0, (38)

[
∂α

µ∂µ,α +
m2αc2α

~2α
α

]
Ψ = 0, (39)

respectively. Thus, the energy-momentum four vector in conformable form can be obtained as follows:
1- In α−covariant form

Pα
µ = i~α

α∂α
µ = i~α

α

(
1
cα

∂α

∂tα
,∇α

)
. (40)

2- In α−contravariant form

Pµ,α = i~α
α∂µ,α = i~α

α

(
1
cα

∂α

∂tα
,−∇α

)
. (41)

In case independent time of the conformable Schrodinger equation [24], we get

i~α
α

∂α

∂tα
Ψ = EαΨ. (42)

So, Eqs. (40) and (41) become

Pα
µ =

(
Eα

cα
,−p̂α

)
, (43)

and

Pµ,α =
(

Eα

cα
, p̂α

)
, (44)

respectively, wherêpα is calledα−momentum operator [24], in one dimension isp̂α = −i~α
αDα

x and in 3-D isp̂α = −i~α
α∇α.
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2.6. Theα-Lorentz transformation in Minkowski Space

Minkowski space is the most popular mathematical framework on which special relativity is formulated, and it is strongly
related with Einstein’s theories of special relativity and general relativity. It is also called Minkowski spacetime and it is a
combination of three dimensional Euclidean space and time into a four-dimensional manifold [33].

Theα-Lorentz transformation in Minkowski Space is given by
1- In theα−contravariant form

x
′µ,α = αΛµ

νxν,α (45)

where αΛµ
ν is theα−tensor and defined as

αΛµ
ν =

∂α

∂(xν)α

(
x
′µ,α

α

)
=




Γα −Γαβα 0 0
−Γαβα Γα 0 0

0 0 1 0
0 0 0 1


 ,

whereβα = vα/cα and its inverse isxν = ( αΛµ
ν )−1x

′µ,α.
2-Theα−covariant form

x
′α
µ = αΛν

µxα
ν , (46)

where αΛν
µ is given by

αΛν
µ =

∂α

∂(xµ)α

(
x
′ν,α

α

)
=




Γα Γαβα 0 0
Γαβα Γα 0 0

0 0 1 0
0 0 0 1


 .

Proof. Using

x
′α
µ = gµsx

′s,α, (47)

we can writex
′s,α using Theα−Lorentz transformation in contravariant form as Eq. (45)

x
′s,α = αΛs

θx
θ,α. (48)

Substituting in Eq. (47), yields

x
′α
µ = gµs

αΛs
θx

θ,α. (49)

Then, we can writexθ as

xθ,α = gθνxα
ν . (50)

Substituting in Eq. (49), we obtain

x
′α
µ = gµs

αΛs
θg

θνxα
ν . (51)

Thus,gµs
αΛs

θg
θν is the multiplication of three matrices

gµs
αΛs

θg
θν=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







Γα −Γαβα 0 0
−Γαβα Γα 0 0

0 0 1 0
0 0 0 1







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


=




Γα Γαβα 0 0
Γαβα Γα 0 0

0 0 1 0
0 0 0 1


 = αΛν

µ

Taking the inverse ofαΛµ
ν yields

( αΛµ
ν )−1 =




Γα Γαβα 0 0
Γαβα Γα 0 0

0 0 1 0
0 0 0 1


 = gµs

αΛs
θg

θν = αΛν
µ. (52)

Therefore, Eq. (51) is equivalent to Eq. (46).
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2.7. Conformable Dirac Equation

In Mozaffari et al., [34], the Dirac equation using the con-
formable derivative is investigated and it is introduced as

[iγµ∂α
µ −mα]Ψ(xµ,α) = 0, (53)

whereγµ are the famousγ matrices of Dirac equation [35].
Similarly, the Dirac equation is Lorentz covariant, namely,

[iγν∂′αν −mα]Ψ′(x′ν,α) = 0. (54)

However, when we do a Lorentz transformation, the wave
function changes. Because the Dirac equation and Lorentz
transformation are linear, we require that the transformation
betweenΨ andΨ′ be linear too:

Ψ′(x′α) = SΨ(xα), (55)

whereS denotes anx−independent matrix whose properties
must be found. The Dirac equation in Lorentz covariance in-
dicates that theγ matrices are identical in both frames. Using

∂α
µ = αΛν

µ∂′αν . (56)

From Eq. (55) we foundΨ(xα) = S−1Ψ′(x′α) and substi-
tuting in Eq. (53), we obtain

[iγµ∂α
µ −mα]S−1Ψ′(x′α) = 0. (57)

Substituting from Eq. (56) and then multiply withS from the
left, yields

[iSγνS−1 αΛν
µ∂′αν −mα]Ψ′(x′α) = 0. (58)

Comparing Eq. (58) with Eq. (54), we obtain

SγµS−1 αΛν
µ = γν . (59)

So,γµ αΛν
µ = S−1γνS. The inverse Lorentz transformation

must correspond to the inverse ofS [36], namely,

γµ( αΛν
µ)−1 = SγνS−1. (60)

Therefore, we demonstrated that the conformable Dirac
equation is covariant inα-Lorentz transformation. For more
information on theS matrix, one can refer to [35,36].

3. Summary and conclusions

In this paper, we have investigated the deformation of Ein-
stein’s special relativity using the concept of conformable
derivative. Within this frame, theα-Lorentz transformations
were defined, and the two postulates of the theory were ex-
tended and re-stated. Then, the conformable addition of ve-
locity laws were derived and used to verify the constancy of
the speed of light for any fractional orderα. The invari-
ance principle of the laws of physics postulate was demon-
strated for some typical illustrative partial differential equa-
tions of interest, namely, the conformable wave equation, the
conformable Schr̈odinger equation, the conformable Klein-
Gordon equation, and conformable Dirac equation. For a
wave equation where time and space appeared with the same
α-order, it is found that it is invariant underα-Lorentz trans-
formations. Otherwise, it is not.
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