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Hydrogenic impurity effect on optical properties of Wannier-Mott exciton
confined in a spherical quantum dot with Kratzer potential under magnetic field
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Confinement effects of Kratzer potential on a Wannier-Mott Exciton(W-M) are studied in a spherical quantum dot(QD) in the presence of
a static magnetic field. Time independent Schrödinger equation is solved numerically to obtain the energy states. The excitonic transitions
so realized have been used to explore the non-linear optical properties that are important for optical characterization of materials such as the
optical absorption coefficients (ACs) and refractive index changes (RICs). Impact of magnetic field, strength of the laser field and transition
parameters using familiar compact density matrix approach are also analyzed. It has been observed that optical properties get radically
modified under confinement effects. Also, the shift of degeneracy of different excitonic energy levels with the magnetic field in confinement
potential has been reported for the first time for W-M exciton in the spherical quantum dot, the study that may have crucial input to the
literature and myriad of practical implications.
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1. Introduction

Nanomaterials grabbed the most attention of the researchers
due to their completely different properties from bulk mate-
rials. A lot of deliberate research is going on currently due
to promising applications of nanomaterials in diverse fields.
The reason for this inclination is owing to the fact that as we
go in low dimensions as in QDs , without loss of general-
ity, we get single discrete levels instead of the band struc-
ture, and hence become the greatest promising nanomateri-
als for wide variety of electronic applications like solar cells,
transistors, LEDs, medical imaging, quantum computing, and
hence have been explored both theoretically and experimen-
tally [1-7]. QDs properties lie in between bulk semiconduc-
tors and discrete atoms/molecules. QDs can have different
shapes and sizes and rapid progress has been made in fab-
rication techniques of various QDs. We can have spherical,
semi-spherical, disk, ring, or elliptical shapes[8-11]. The size
of the quantum dot is very crucial in the measurement of en-
ergies of the system. Large size QDs emission spectra lie
in the red wavelength region and small size QDs in the blue
region.

Analog to electron-proton bound systems in solid-state
physics, in semiconductor nanomaterials, we have electron
and hole pairs whose bound state is called an exciton, which
is the result of Coulomb interaction. Between confined elec-
tron and hole, the study of exciton in QD breeds a new arena
of application as shown by various researchers in earlier stud-
ies [20].

For semiconductors, we have a high susceptibility value,
which implies less binding energy, so it is fair to con-
sider Wannier-Mott(W-M) exciton with a large radius due to
screening of Coulomb force between electron-hole pair. The
W-M model- [12] has three assumptions i) Parabolic bands
are used instead of real band structure ii)Valance and con-
duction bands wave function’s minute shape is spurned and
iii) In real space, localization of dielectric function is consid-
ered.

Experimentalists successfully observed exciton in QDs in
different materials [13-15], the results of which have been
verified by theoreticians as well. QDs have spectacular opti-
cal and electronic properties and hence their study is signifi-
cant in designing optoelectronic devices. Various factors af-
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fecting the optical properties like the electric field, magnetic
field, impurity factor, different confining potential, tempera-
ture, and hydrostatic pressure etc. [16-19] have been studied
extensively.

QDs demonstrate enhanced response to the external
fields and hence show varied non-linear optical properties
such as absorption coefficients(ACs) and refractive index
changes(RICs). These materials can be used in tunable QD
laser [21] as the energy of excitonic states changes due to
confinement.

Excitonic interactions have been studied in numerous
confining potentials like quantum ring [22], parabolic con-
finement [23-25], Gaussian confinement [26] etc. In the
present paper, we have studied non-linear optical properties
in a Kratzer potential in a spherical QD under the effect of
periodic laser field and magnetic field. Kratzer potential is
very near to realistic experimental potential and has applica-
tions in atomic and molecular physics [27], quantum chem-
istry [28], information theory [29], nuclear physics [25-30].
It is a very elementary interaction potential model in quantum
mechanics, a special case of the general form of Lennard-
Jones potential and closely resembles the Morse potential
[31,32]. The novel properties of QDs arise from shape of
confining potential as it precisely affects the energy and be-
havior of exciton in the laser field.

Due to the importance of Kratzer potential, low-
dimensional studies have captured a lot of attention [33,34] of
many researchers. Batra and Prasad [35] have studied the op-
tical properties of conduction band electrons of spherical QD
in Kratzer potential, in the work, they have shown that not
only parameters of the QD but also the parameters of Kratzer
potential influence optical properties quite drastically. Non-
central Kratzer potential also is now highly pursued poten-
tial in two dimensional and three-dimensional quantum sys-
tems [36]. In a recent paper, we have shown results of the
energy of the W-M exciton in spherical QD in Kratzer poten-
tial and its dependence on the size of QD, potential param-
eter, and permittivity of the medium [38]. So far, electronic
properties have been studied mostly using this potential [37].
However, in this work, we extend our study to excitonic tran-
sitions, as in low dimensional systems, excitons play an im-
perative role in understanding the basic physics of the system.
Compared to Refs. [35,37], here we have considered exci-
tonic transitions in external magnetic field with Kratzer po-
tential confinement and optical response is studied using laser
pulse. The screened Coulomb interaction plays a significant
role in this study as the dielectric constant of the medium
introduces the screening of the above-said force. Many re-
searchers have solved Schrödinger equation of system using
variational [40,41], the Nikiforov-Uvarov [42] or the asymp-
totic iteration method [43]. Due to the trivial behavior of the
system, we have solved the Schrödinger equation using the
finite difference method (FDM) along with perturbation the-
ory [39]. The advantage of the FDM is that it gives quick
accurate results, is low on memory and is more efficient for
the evaluation of eigenstates of complex nanostructures with

particular shapes. Silotia, Joshi and Prasad [44] studied the
energy spectrum and dipole matrix(DM) for a multiple quan-
tum well in the static magnetic field and intense laser pulse
using finite difference method. Nautiyal and Silotia [45] stud-
ied the second harmonic generation in a disk-shaped QD in
the presence of spin-orbit interaction within the framework
of FDM.

Further, we have calculated the optical ACs and RICs for
W-M exciton in a spherical QD in the magnetic field with and
without Kratzer potential and studied the pattern of change
in optical properties(ACs and RICs) in the presence of mag-
netic field using compact density matrix approach that has
been well documented in the available literature. Present
work is the extension of our previous work where we calcu-
lated the ACs and RICs both linear and third-order non-linear
without the strength of the magnetic field and in the present
manuscript, we are calculation ACs and RICs with magnetic
field presence for different excitonic transitions, which may
be helpful for the understanding of favorable transitions for
better optical response to external fields in the future studies
and device designing.

The paper has been organized as follows: Section 2
gives the theoretical understanding essential for this problem,
Sec. 3 gives the details of the results and discussion so ob-
tained and Sec. 4 illustrates the brief conclusion of the find-
ings of this paper.

2. Theoretical mathod

We consider a Wannier-Mott exciton confined in a 3D spheri-
cal quantum dot with confinement potential defined byVc(r).
Using normal mathematical calculations for the centre of
mass and relative motion of the exciton can be separated out
and as is well known that the dynamics of the system is un-
derstood by considering only the relative part of the Hamil-
tonian. For further presentation, we only present results and
equation related to the relative motion of the system. The rel-
ative part of the Hamiltonian for the excitonic system in the
absence of magnetic field using effective mass approximation
is(for details please see [9,20])

H0 =
p2

2µ
+ Vc(r)− e2

εr
(1)

whereH0 denotes the unperturbed Hamiltonian,~p is the mo-
mentum of the W-M exciton,µ is the reduced mass of exciton
given byµ = (m∗

emh∗)/(m∗
e + mh∗) wherem∗

e is the effec-
tive mass of the electron andm∗

h is the effective mass of the
hole, ε is the permittivity of the medium in which exciton
is embedded,e is the charge of electron,r is the separation
between electron and hole.

The total confining potential,Vc(r) = V1(r) + V2(r),
whereV1(r) represents hard spherical confinement potential
and is given by:

V1(r) =
{

0, |r| < R
∞, |r| ≥ R.

,
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whereR is the radius of the QD andV2(r) is having the form
of Kratzer potential which will be defined later on.

From the expression ofV1(r), it is clear that this con-
finement squeezes the excitons and creates a quantum con-
fining region which is identical to a particle confined in a
box. V2(r) is the potential available inside the QD. Next, we
apply a magnetic field in the z-direction, then the interaction
Hamiltonian is given by,

H =
(~p + e

c
~A)2

2µ
+ V2(r)− e2

εr
. (2)

Magnetic field introduces the Zeeman Splitting between the
excitonic energy levels.

~A is the vector potential written as

~A =
(
−1

2
(~r × ~B)

)
, (3)

Using spherical polar coordinatesi.e.

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, (4)

we get the Hamiltonian as:

H =
p2

2µ
+

e2B2r2 sin2(θ)
8µc2

+
eBLz

2µc
+ V2(r)− e2

εr
. (5)

Here, the magnetic field dependent term is treated as a per-
turbation as it’s magnitude is small compared to the other
terms. Hence, the total Hamiltonian can be rearranged into
two terms as

H = H0 + H1, (6)

where,H0 is the unperturbed Hamiltonian given by Eq. (1)
andH1 is the perturbed Hamiltonian given as:

H1 =
e2B2r2 sin2(θ)

8µc2
+

eBLz

2µc
. (7)

Our first task is to find the excitonic levels for unper-
turbed HamiltonianH0 satisfying the following equation
H0 ψnlm = Enlm ψnlm inside the QD. Hereψnlm are un-
perturbed wavefunctions andEnlm are unperturbed energies.

Using spherical polar coordinates and applying method
of separation of variables, the wavefunction is written as

ψnlm(r, θ, φ) = Rnl(r), Ylm(θ, φ) = R(r),

Ylm(θ, φ) =
u(r)

r
, Ylm(θ, φ),

Rnl(r) or R(r) is the radial part of the wavefunction and
Ylm(θ, φ) is the spherical harmonics.

The equation for radial part is reduced to the following
form
−1
2µ

∂2u

∂r2
+

[
V2(r)−e2

εr
+

l(l + 1)
2µr2

]
u(r)=Enlmu(r). (8)

Equation (8) is solved numerically using FDM for calculation
of unpurtubed energy and wavefunction. Heren is principal
quantum number,l is angular quantum number andm is the
azimuthal quantum number. Here, we have considered two
different confining potentials forV2(r) and the solution of
the Schr̈odinger equation with these potentials is divided into
two parts which are given below.

2.1. Case-1: W-M excitons in spherical QD in presence
of hydrogenic or donor impurites

The potential for a hydrogenic impurity located at the centre
of symmetry of spherical QD has the form

V2(r) =
−Z ′

εr
, (9)

where,Z ′ is whole number(Z ′ = 0, 1, 2, . . .). We are solv-
ing for only three values ofZ ′ = 0, 1 and 2.

The Schr̈odinger equation, so obtained for this case can
be reduced to Eq. (8). The equation in presence of spher-
ical confinement cannot be solved analytically forl 6= 0
states, but numerically using FDM. However, for largeR,
(R → ∞), the equation admits an analytical solution, as de-
scribed in Appendix A which match very well for low lying
states with the numerical solution obtained using FDM as the
analytic method is a generalized approximation for largeR
i.e. free system.

2.2. CASE-2: Kratzer Potential

The Kratzer potential is defined as follow

V2(r) = V0

(
a

r
− a2

2r2

)
. (10)

Here,V0 decides the minima of the potential anda known
as the potential parameter determines the position where
dip/minima of potential occur. Asr → ±∞, the potential
asymptotically to zero. The strength of the potential is ad-
justed by changing the ratio ofa andr.

The analytical solution for Schrödinger equation using
this potential is given in Appendix B and they match reason-
ably with the numerical results obtained using FDM. Once
the energy eigenvalues and eigenvectors are found, the effect
of magnetic field can be solved by using the diagonalization
method,i.e., we expand the wavefunction in terms of expan-
sion coefficientsCn asΦ =

∑
n Cn ψn and substitute in the

equation s.t.

HΦ = (H0 + H1)Φ = E′
nlmΦ, (11)

where< ψm|H1|ψn > using Eq. (7) becomes

e2B2

8µc2
< Rnl|r2|Rn′l′ >< Ylm| sin2(θ)|Yl′m′ >

+
eB

2µc
< Ylm|Lz|Yl′m′ > . (12)

The radial and angular matrix elements are evaluated in
Eq. (12) numerically. The dressed wave function after per-
turbation are given by

Φi =
∑

j=1→n

Cijψj , (13)

whereCij defines the coefficients of multiplication.

Rev. Mex. Fis.68050504



4 VARSHA, R. GIRI, M. ARORA, AND V. PRASAD

2.3. Optical properties

The expressions for both linear and third-order non-linear
ACs and RICs are calculated using density matrix formula-
tion. These are dependent on susceptibility of medium which
is a tensor quantity derived from the DM. Let a periodic laser
~E(t), of angular frequencyω, be incident on the QD. In the
frequency domain, the polarization density~P (t) is related to
the electric field by the optical susceptibilityχ(ω) as

P (t) ∼ ε0χ
(1)(ω) ~Ee(ιωt) + ε0χ

(3)(ω) ~Ee(ιωt),

whereε0 is the permittivity of the free space,χ(n) is the nth
order susceptibility of the quantum system.

The analytical expressions of linear and third-order non-
linear ACs and RICs in terms of non-linear susceptibility are

α(1)(ω) = ω

√
µ

εr
Im[ε0χ(1)(ω)],

α(3)(ω) = ω

√
µ

εr
Im[ε0χ(3)(ω)],

∆n(1)(ω)
nr

=
Re[χ(1)(ω)]

2n2
r

,

∆n(3)(ω)
nr

=
Re[χ(3)(ω)]

2n2
r

. (14)

Here nr is refractive index of the medium,∆n(1)(ω)/nr

and ∆n(3)(ω)/nr shows the linear and non-linear relative
changes in the refractive index of the medium.

After solving for linear and non-linear susceptibility co-
efficient, the expression for linear and third-order non-linear
ACs and RICs are as follow [46,47]

α(1)(ω) = ω

√
µ

εr

N |Mij |2~τij

(Eji − ~ω)2 + (~τij)2
, (15)

α(3)(ω) = −ω

√
µ

εr

µcIN

2nr

|Mij |2~τij

((Eji − ~ω)2 + (~τij)2)2

[
4|Mij |2 − (Mjj −Mii)2

×
(

3E2
ji − 4Eji(~ω) + ~2(ω2 − τ2

ij)
E2

ji + (~τij)2

)]
, (16)

∆n(1)(ω)
nr

=
1

2n2
rε0

N |Mij |2(Eji − ~ω)
(Eji − ~ω)2 + (~τij)2

, (17)

∆n(3)(ω)
nr

= −µcIN

4n3
rε0

|Mij |2
((Eji − ~ω)2 + (~τij)2)2

[
4|Mij |2(Eji − ~ω)− (Mjj −Mii)2

×
(

(Eji − ~ω)[Eji(Eji − ~ω)− (~τij)2]
E2

ji + (~τij)2
− (~τij)2 × (2Eji − ~ω)

E2
ji + (~τij)2

) ]
, (18)

whereMij are the dipole transition matrix element between
the ith state and thejth state,c is speed of light in free
space,Eji = Ej − Ei, is the energy difference between
two excitonic states,µ is magnetic permeability of medium,
τji is the relaxation time between two states,εr denoted the
real component of permittivity,N is the number density, and
I = 2ε0nrc|E|2 is the intensity of laser field. The total ACs
and RICs is

α(ω, I) = α(1)(ω) + α(3)(ω, I), (19)

∆n(ω, I)
nr

=
∆n(1)(ω)

nr
+

∆n(3)(ω, I)
nr

, (20)

3. Results and discussion

We have calculated theoretical results for a three dimensional
W-M exciton in a spherical GaAs QD in a static magnetic
field with Kratzer potential confinement and have used laser
field interaction for calculating the ACs and RICs. For the
calculation of different results, we have used following pa-
rametersm∗

e = 0.067me, m∗
h = 0.09me, whereme is

the free electron mass, the dielectric constantε = 12.4,
R = 200 Å, N = 5.0 × 1020 m(−3) and τij = 1.0/0.14
ps(−1), V0 = 228 meV,nr = 3.2 for our study unless men-
tioned other values.

Rev. Mex. Fis.68050504
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TABLE I. Energy eigenvalues for W-M exciton under spherically
confined Kratzer potential for different values of magnetic field.
We haveR = 200Å. Results are expressed in meV with Kratzer
Potential.

nl B = 0T B = 2T B = 5T

1s -82.10 -76.48 -53.12

1p -63.61 -59.90 -43.55

1d -32.15 -26.95 1.19

1f 7.80 13.64 42.41

2s 27.40 33.90 65.84

2p 52.67 56.65 79.05

2d 97.78 102.69 131.26

2f 156.70 161.85 188.70

3s 193.89 200.18 232.05

3p 226.63 230.46 251.44

3d 285.29 289.93 316.36

3f 362.03 366.85 392.04

4s 414.82 420.99 453.60

4p 454.84 458.57 479.24

4d 526.65 531.19 558.50

4f 620.66 625.34 651.80

We have displayed the energies of excitonic levels for 16
states for various magnetic field values in Table I with Kratzer
potential confinement.

The confinement potential and size of QD are antagonists
to each other and hence result in distinct energy levels with
the Kratzer potential confinement. As there is a competition
of attractive and repulsive terms in Kratzer potential, we have
few bound states in the system. As shown in table, increasing
magnetic field, the energy of all levels also increase which is
due to the parabolic dependence on the magnetic field.

Table II, shows the variation of energy of different exci-
tonic levels for distinct hydrogenic impurities. The results are
found in good agreement with the analytical solution given in
Appendix A. The agreement only holds for low-lying states
as this is an approximation without any quantum confine-
ment, so even if we have taken a largeR value, the angular
quantum number (l) still has an impact. We also observe that
the number of states matching with analytic results increases
with an increase ofZ ′. This is due to an increase of attrac-
tive coulombic interaction due to which the system is getting
more bound. It can be noted that coulombic potential has
interesting effects on the energy levels of the system.

Using the linearly polarized periodic laser we have stud-
ied the optical ACs and RICs for different transitions. Fig-
ures 1, 2, 3, and 4 shows the study of the total nonlinear op-
tical properties of the W-M exciton in Kratzer potential at
a magnetic field strength of 2 T with and without the con-
finement in Kratzer potential in which solid curve is for with
Kratzer potential confinement and dotted curves is for with-

TABLE II. Energy eigenvalues for W-M exciton for large radius
R = 5000 Å, a = 20 Å at B = 0 T. Results are expressed in
meV. The numerical results using FDM match well for the low ly-
ing states with the analytical results using Appendix A.

nl V2(r) = 0 V2(r) = −1/εr V2(r) = −2/εr

1s 0.04 -3.40 -13.59

1p 0.08 -0.85 -3.40

1d 0.13 -0.38 -1.51

1f 0.19 -0.20 -0.85

2s 0.16 -0.85 -3.40

2p 0.24 -0.38 -1.51

2d 0.33 -0.19 -0.85

2f 0.43 -0.03 -0.54

3s 0.35 -0.38 -1.51

3p 0.47 -0.17 -0.85

3d 0.60 0.03 -0.54

3f 0.74 0.23 -0.31

4s 0.63 -0.16 -0.85

4p 0.79 0.08 -0.53

4d 0.96 0.34 -0.28

4f 1.14 0.58 0.00

FIGURE 1. Absorption Coefficients and Refractive Index Changes
variation with laser beam intensity for the transitions ns-mp in
Kratzer potential atB = 2 T, with Confinement radiusR is taken as
200Å. Solid lines are with Kratzer potential confinement of exciton
in spherical QD and dotted lines are for without potential confine-
ment of exciton in spherical QD.

out Kratzer potential confinement. We have calculated DM
elements with and without magnetic fields and also compared
their results for various transitions. The intensity of the laser
is varied to highlight the non-linear effects.

Rev. Mex. Fis.68050504
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FIGURE 2. Absorption Coefficients and Refractive Index Changes
variation with laser beam intensity for the transitions ns-np in
Kratzer potential atB = 2 T, with Confinement radiusR is taken as
200Å. Solid lines are with Kratzer potential confinement of exciton
in spherical QD and dotted lines are for without potential confine-
ment of exciton in spherical QD.

FIGURE 3. Absorption Coefficients and Refractive Index Changes
variation with laser beam intensity for the transitions np-nd in
Kratzer potential atB = 2 T, with Confinement radiusR is taken as
200Å. Solid lines are with Kratzer potential confinement of exciton
in spherical QD and dotted lines are for without potential confine-
ment of exciton in spherical QD.

Figure 3 shows the optical ACs and RICs forns−(n+1)p
transitions atB = 2 T i.e. 1s− 2p, 2s− 3p, 3s− 4p with the
help of an infrared laser beam of intensity 5 MW/cm2. Here
Solid lines are with Kratzer potential confinement of exci-
ton in spherical QD and dotted lines are for without potential
confinement of exciton in spherical QD. It is clear that the
2s− 3p transition has drastically modified ACs and RICs

FIGURE 4. Absorption Coefficients and Refractive Index Changes
variation with laser beam intensity for the transitions nd-nf in
Kratzer potential atB = 2 T, with Confinement radiusR is taken as
200Å. Solid lines are with Kratzer potential confinement of exciton
in spherical QD and dotted lines are for without potential confine-
ment of exciton in spherical QD.

with Kratzer potential as compared to1s − 2p and3s − 4p
transitions, we see a blueshift in1s−2p transition and3s−4p
transition shows a redshift with the Kratzer potential con-
finement in the presence of the magnetic field. As with the
presence of Kratzer potential, we see an interplay with the
coulomb and Kratzer term, also the DM element has a signif-
icant role, so it is not fixed that in a particular manner we will
see redshift or blueshift.

Figure 4 shows the ACs and RICs forns − np transition
i.e. 1s − 1p, 2s − 2p, 3s − 3p, 4s − 4p at B = 2 T us-
ing infrared laser beam of intensity 0.5 MW/cm2. Solid lines
are with Kratzer potential confinement of exciton in spherical
QD and dotted lines are for without potential confinement of
exciton in spherical QD.

From Fig. 4, Thens − np excitonic transitions show a
decrease in the amplitude of optical AC and RIC peaks with
the presence of Kratzer potential for along with a redshift in
energy for all the transitionsi.e. 1s − 1p, 2s − 2p, 3s − 3p,
and4s−4p which is expected as resulted from distinct states
on using the confinement potential.

Figure 5 represents the ACs and RICs fornp − nd exci-
tonic transitionsi.e. 1p−1d, 2p−2d, 3p−3d, 4p−4d with the
intensity of laser beam 0.2 MW/cm2, and Fig. 6 displays the
ACs and RICs fornd−nf excitonic transitionsi.e. 1d− 1f ,
2d − 2f , 3d − 3f , 4d − 4f with the intensity of laser beam
0.2 MW/cm2 atB = 2 T.

The Figs. 5 and 6 shows that with the effect of Kratzer
potential confinement, the excitonic optical ACs and RICs
transition peaks occur at low laser beam energy(mid infrared
range)i.e. a redshift is observed from the without Kratzer po-
tential case ofnp−nd andnd−nf transitions. For1p− 1d,
2p− 2d, and3p− 3d (1d− 1f , 2d− 2f , and3d− 3f ) exci-
tonic transition peaks amplitude enhances but the amplitude
of 4p− 4d (4d− 4f ) decreases.

Rev. Mex. Fis.68050504
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FIGURE 5. Absorption Coefficient variation with the energy of
laser beam intensity in the presence of Kratzer potential (a) for
1s− 2p Transition, with different magnetic field strength.

FIGURE 6. Absorption Coefficient variation with the energy of
laser beam intensity in the presence of Kratzer potential for1p−1d
Transition, with different magnetic field strength.

These results explain that the linear ACs and RICs are in-
dependent of intensity changes and nonlinear ACs and RICs
vary with change in intensity. It is very interesting to note
that the size of QD plays an important role in the optical
property for a given transition. For smallR(≤ 100 Å), it
is revealed that Kratzer potential confinement, in general, en-
hances the optical properties for excitonic transitions but in
largeR(≥ 200) Å, it is transition dependent.

These results give an insight into which particular exci-
tonic transitions are favorable. We have also found that the
DM element need not necessarily increase with an increase
in the magnetic field strength, some got decreasede.g. For
R = 100 Å for 1d − 1f transition withB = 0 T, the DM
element is 62.4810 atomic units (a.u.) and withB = 5 T, it is
59.5641 a.u. Similarly, for1p−1d, for B = 0 T, DM element
is 57.9851 a.u. and withB = 5 T, it is 55.3439 a.u. whereas
for 1s− 1p and1s− 2p for B = 0 T DM element is 54.9043

a.u. and 3.2126 a.u. and for B = 5 T, it is 55.4881a.u. and
6.1203 a.u. respectively.

To elaborate more on the difference of strength of the
magnetic field, in Figs. 7 and 8 we have shown ACs for W-
M exciton single transition1s − 2p and1p − 1d in Kratzer
potential for different magnetic field strength and intensity 5
MW/cm2 and 0.2 MW/cm2 for R = 200 Å anda = 100 Å
respectively.

From Fig. 7, we observe a redshift with an increase in the
magnetic field strength which implies lowering of energy gap
with increasing strength of magnetic field between1s to 2p
transition. In Fig. 8 we observe blueshift with an increase
in the magnetic field strength. This explains that the inter-
action of different states with the external magnetic field is
dependent on the principal and angular quantum number of
different states.

4. Summary and conclusion

In this work, we have used Kratzer potential confinement
for the study of electronic levels of Wannier-Mott exciton in
spherical confinement in the presence of magnetic field and
calculated dipole matrix elements for investigation of linear
and non-linear Absorption coefficients and linear and third-
order non-linear refractive index changes using a static laser
field radiation. From the results, we have found the vari-
ous factors affecting energy eigenvalues and eigenfunctions
including the size of the quantum dot, potential parameter,
and magnetic field strength, which gives insight into the con-
trolled energy of exciton levels. The redshift or blueshift in
optical ACs and RICs is dependent on the principal quantum
number as well as on angular quantum number along with the
strength of the magnetic field applied. We also observed that
there are few transitions in which the confinement potential
increases and in some decreases the amplitude of the exci-
tonic ACs and RICs. This understanding of excitonic transi-
tions is very helpful for designing optoelectronic devices and
concludes with the tuning of factors affecting optical prop-
erties. This study is an asset for future work in the field of
optoelectronic devices.
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Appendix A

The Analytical solution for Hydrogenic or donor impurity
[48], for 3D, the potential is

V (r) = −Z

εr
+

l(l + 1)
r2

= −A

r
+

l(l + 1)
r2

, (A.1)

Rev. Mex. Fis.68050504



8 VARSHA, R. GIRI, M. ARORA, AND V. PRASAD

where

A =
(

1
ε

)
. (A.2)

The radial and angular equations are

R′′nl(r) +
2
r
R′nl(r)−

l(l + 1)
r2

Rnl(r)

+2µ

(
E +

A

r

)
Rnl(r) = 0, (A.3)

L2Ylm(θ, φ)− l(l + 1)Ylm(θ, φ) = 0. (A.4)

Using variable transformation

κ =
√

(−8µE) r, ρ =

(√
−µ

2E

)
(A),

δ(δ + 1) = l(l + 1), (A.5)

where for bound states we haveρ > 0 and realκ > 0, and
imposing boundary condition on radial equation above, we
have

R′′(κ) +
2
κ

R′(κ)

+
(−1

4
+

ρ

κ
− δ(δ + 1)

κ2

)
R(κ) = 0. (A.6)

The solution for the above equation is given as

Rnrl(κ) = Gnl exp(−κ/2)κδ
1F1(−nr, 2δ + 2; κ), (A.7)

where
ξ =

2A

nr + δ + 1
, (A.8)

and

Gnl =
[
(ξ)3

(nr + 2δ − 2)!
(nr)!2(nr + 1)

](1/2)

, (A.9)

which after normalization becomes

Rnl(r) =
[

(ξ)2δ+3(nr)!
2(nr + δ + 2)(nr + 2δ + 1)!

](1/2)

× exp(−Gnlr/2)rδL2δ+1
nr

(r), (A.10)

andit′s energy eigenvalues is

Enl =
−2µA2

[2nr + 2l + 2]2
. (A.11)

So, the total wavefunction is given as

ψnlm(r) = GnlRnl(r)Ylm(θ, φ). (A.12)

Appendix B

The Analytical solution for Kratzer potential [48], for 3D, the
potential is

V (r) = − (V0a + 1
ε )

r
+

V0a
2

r2
+

l(l + 1)
r2

= −A

r
+

B

r2
+

l(l + 1)
r2

, (B.1)

where

A =
(

V0a +
1
ε

)
and B = V0a

2. (B.2)

The radial and angular equations are

R′′nl(r) +
2
r
R′nl(r)−

l(l + 1)
r2

Rnl(r)

+ 2µ

(
E +

A

r
− B

r2

)
Rnl(r) = 0, (B.3)

L2Ylm(θ, φ)− l(l + 1)Ylm(θ, φ) = 0. (B.4)

Using variable transformation

κ =
√

(−8µE)r, ρ =

(√
−µ

2E

)
(A),

δ(δ + 1) = 2µB + l(l + 1), (B.5)

where for bound states we haveρ > 0 and realκ > 0 , and
imposing boundary condition on radial equation above, we
have

R′′(κ) +
2
κ

R′(κ) +
[−1

4
+

ρ

κ
− δ(δ + 1)

κ2

]
R(κ) = 0.

(B.6)
The solution for the above equation is given as

Rnrl(κ) = Gnl exp(−κ/2)κδ
1F1(−nr, 2δ + 2; κ), (B.7)

where

ξ =
2A

nr + δ + 1
, (B.8)

and

Gnl =
[
(ξ)3

(nr + 2δ − 2)!
(nr)!2(nr + 1)

](1/2)

, (B.9)

which after normalization becomes

Rnl(r) =
[

(ξ)2δ+3(nr)!
2(nr + δ + 2)(nr + 2δ + 1)!

](1/2)

× exp(−Gnlr/2)rδL2δ+1
nr

(r), (B.10)

andit′s energy eigenvalues is

Enl =
−2µA2

[2nr + 1 +
√

((2l + 1)2) + 8µB]2
. (B.11)

So, the total wavefunction is given as

ψnlm(r) = GnlRnl(r)Ylm(θ, φ). (B.12)
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