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Effect of fractional analysis on magnetic curves
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In this present paper, the effect of fractional analysis on magnetic curves is researched. A magnetic field is defined by the property that its
divergence is zero in three dimensional Riemannian manifold. We investigate the trajectories of the magnetic fields called as t-magnetic,
n-magnetic and b-magnetic curves according to fractional derivative and integral. As it is known, there are not many studies on a geometric
interpretation of fractional calculus. When examining the effect of fractional analysis on a magnetic curve, the conformable fractional
derivative that best fits the algebraic structure of differential geometry derivative is used. This effect is examined with the help of examples
consistent with the theory and visualized for different values of the conformable fractional derivative. The difference of this study from
others is the use of conformable fractional derivatives and integrals in calculations. Fractional calculus has applications in many fields such
as physics, engineering, mathematical biology, fluid mechanics, signal processing, etc. Fractional derivatives and integrals have become an
extremely important and new mathematical method in solving various problems in many sciences.
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1. Introduction

Magnetic curves have many applications in physics and dif-
ferential geometry and play an important role in these ar-
eas. When a charged particle enters a magnetic field, the
Frenet vectors of this particle are affected by this magnetic
field and with this effect a force which is called the Lorenz
force occurs. Thus, the particle starts to follow a trajectory in
this magnetic field thanks to Lorenz force. This trajectory is
called a magnetic curve. The motion of a particle entering the
magnetic field with the effect of the Lorenz force is explained
as; if the tangent vector field T is parallel to the magnetic
field, the Lorentz force will be zero, so the particle moves
parallel to the magnetic field. If the tangent vector field T is
perpendicular to the magnetic field, the Lorentz force is max-
imum and the particle moves in a circle in the magnetic field.
If the tangent vector field T is at a constant angle with the
magnetic field, the particle follows a helical trajectory under
the influence of the Lorentz force, [1]. These curves have at-
tracted the attention of many authors in different disciplines.
For this reason, many studies have been carried out by con-
sidering these curves in different ways [2–9].

On the other hand, fractional analysis means derivative
and integral accounts that are not integers. The phrase frac-
tional derivative first appears in a letter sent by Leibniz to
L’Hospital in 1695, [10]. In this letter, Leibniz is asked
L’Hospital a question, ”Can integer order derivatives be ex-
tended to fractional order derivatives?” Afterwards, this sub-
ject, which attracted the attention of many mathematicians,
took part in many studies [11–16]. Today, the subject of frac-
tional analysis become very popular and study by many re-
searchers in different fields [17–20]. Since it is believed to
be the better modelling the physical systems with fractional

order derivative, they have many studies on this subject. Be-
cause, the classical derivative is beneficial to model the phys-
ical systems locally but the fractional order derivative is bene-
ficial to model physical systems globally. Fractional analysis
have many applications in many branches of science in recent
years. The study of this subject by many mathematicians is
led to the emergence of many different definitions of frac-
tional derivatives and integrals. Riemann-Liouville, Caputo,
Cauchy, and conformable fractional derivatives and integrals
are just a few of these definitions. Different fractional deriva-
tive and integral definitions naturally brought with them dif-
ferent properties. For example, the derivative of zero is not
constant for many types of fractional derivatives, except for
the conformable fractional derivative and Caputo fractional
derivative. Moreover, except for the conformable fractional
derivative, other fractional derivatives do not have features
such as the derivative of the product, the derivative of the quo-
tient, or the chain rule, as in the classical sense [21]. In ad-
dition, the conformable fractional derivative is the local frac-
tional derivative, unlike the Riemann-Liouville and Caputo
fractional derivative. Conformable fractional derivative has
many critical aspects, as it is equivalent to a simple change
of variables for differentiable functions [22]. However, the
effect of conformable fractional derivatives and integrals on
some physical phenomena is worth investigating. It will be
interesting that fractional derivatives do not have a geomet-
ric interpretation as in the classical sense. However, there
are many mathematicians investigating the effect of fractional
calculus on differential geometry [23–25].

In this study, the effects of conformable fractional deriva-
tives and integrals on magnetic curves are investigated. In
addition, a geometric inference is tried to be obtained with
the help of examples. Moreover, we are visualize their im-
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ages for different fractional values using the Mathematica
program. The difference of this study from others is the use
of conformable fractional derivatives and integrals in calcu-
lations. Fractional derivatives and integrals are more preci-
sion than ordinary derivatives and integrals because they give
more accurate results. So, fractional calculus has applications
in many different fields such as physics, engineering, mathe-
matical biology, etc. This article is a complicated study that
includes differential geometry, physics and fractional analy-
sis fields. So, we hope that it will contribute to those working
in these fields.

2. Preliminaries

2.1. Basic definitions and theorems of differential geom-
etry

In section definitions and theorems, the curves inR3 will be
introduced in a nutshell.
Definition 1. Let the curvex(s) be given in n-dimensional
Euclidean space with(I, α) coordinate neighborhood. The
arc length of the curvex froma to b, is calculated as

s =

a∫

b

‖x′(s)‖dt, s ∈ I,

which is the length between the pointsx(a) andx(b) of the
curve. The parameters is said to be arc-length.
Theorem 1. Let x = x(s) be a regular unit speed curve
in the Euclidean3−space wheres measures its arc length.
Also, letT = x′ be its unit tangent vector,N = T ′/‖T ′‖ be
its principal normal vector andB = T ×N be its binormal
vector. The triple{T,N,B} be the Frenet frame of the curve
x. Then the Frenet formula of the curve is given by


T ′(s)
N ′(s)
B′(s)


=




0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0







T (s)
N(s)
B(s)


 , (1)

whereκ(s) =
∥∥d2x/ds2

∥∥ andτ(s) = 〈dN/ds, B〉 are cur-
vature and torsion ofx respectively[26].
Definition 2. Let x : I ⊂ R → E3 be a unit speed curve in
Euclidean3-spaceE3. If anyU fixed direction with the unit
tangent vector of the curvex makes a fixed angle, the curvex
is called the general helix [27]. The most well-known char-
acterization of the helix curve isτ/κ = constant (Lancret
theorem)[26].
Definition 3. Let x : I ⊂ R → E3 be a unit speed curve in
Euclidean3-spaceE3. If anyU fixed direction with the prin-
cipal unit normal vector of the curvex makes a fixed angle,
the curvex is called the slant helix. Izumiya and Takeuchi
obtain a necessary and sufficient condition for a curve to be
slant helix: a curve is an oblique propeller if its geodetic cur-
vature and the principal normal satisfy the expression

κ2

(κ2 + τ2)3/2

( τ

κ

)′
(2)

is constant function[28].

2.2. Basic definitions and theorems of conformable frac-
tional calculus

In this part, some basic definitions and theorems of con-
formable fractionally derivative and integral are given.
Definition 4. Let us give a functionf : [0,∞) →R. Then the
conformable fractional derivative forf of orderα is defined
by

Dα(f)(s) = lim
ε→0

f(s + εs1−α)− f(s)
ε

for all s > 0, 0 < α < 1. If f is α-differentiable in
some(0, a), a > 0 and lims→0+ f (α)(s) exist, then define
f (α)(0) = lims→0+ f (α)(s), [29].
Theorem 2. Let f : [0,∞) → R be a function. If a func-
tion f is α-differentiable ats0 > 0, 0 < α < 1, then f is
continuous ats0, [29].

Accordingly, it is easily visible that the conformable frac-
tional derivative provides all the properties given in the theo-
rem below.
Theorem 3. Let f, g : [0,∞) → R be α-differentiable at
eachs > 0, 0 < α < 1. Then

(1) Dα(af + bg)(s) = aDα(f)(s)+ bDα(g)(s), for all a,
b ∈ R.

(2) Dα(sp) = psp−α, for all p ∈ R.

(3) Dα(λ) = 0, for all constant functionsf(s) = λ.

(4) Dα(fg)(s) = f(s)Dα(g)(s) + g(s)Dα(f)(s).

(5) Dα( f
g )(s) = f(s)Dα(g)(s)−g(s)Dα(f)(s)

g2(s) .

(6) If f is a differentiable function, thenDα(f)(s) =
s1−α df(s)

ds , [29].

Theorem 4. Let f, g : [0,∞) → R be α−differentiable at
s0 > 0, 0 < α < 1. If (f ◦ g) is α−differentiable and for all
s with s 6= 0 andf(s) 6= 0, the equation

Dα(f ◦ g)(s) = f(s)α−1Dαf(s)Dα(g)(f(s)),

is provided,[30].
Definition 5. Let f : [a,∞) → R be a function. The expres-
sion

Ia
αf(s) = Ia

1 f(sα−1f) =

s∫

a

f(x)
x1−α

dx

is called a conformable fractional integral, whereα > 0,
[30].
Theorem 5. Let f : [a,∞) → R be a function. Then for all
s > 0 the following equation exists,[30]

DαIa
αf(s) = f(s).
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2.3. Basic definitions and theorems of magnetic field and
curves

In this subsection, some basic definitions and theorems of
magnetic field and magnetic curve are introduced.

Let M be a(n ≥ 2)-dimensional oriented Riemannian
manifold. The Lorenz force of a magnetic fieldF on M is
defined to be a skew symmetric operatorφ given by

g(φ(X), Y ) = F (X, Y ), (3)

for all X, Y ∈ χ(M), whereχ(M) is the space of vector
fields. The magnetic trajectories ofF are curvesx on M
which satisfy the Lorenz equation

∇x′x
′ = φ(x′). (4)

The mixed product of the vector fieldsX, Y, Z ∈ χ(M) is
defined by

g(X × Y,Z) = dvg(X, Y, Z). (5)

Let V be a Killing vector field onM andFv = ıvdvg be the
corresponding Killing magnetic field, whereı is denoted the
inner product. Then, the Lorentz force of theFv is

φ(X) = V ×X. (6)

Consequently, the Lorentz force equation may be written as

∇x′x
′ = V × x′. (7)

A unit speed curvex is a magnetic trajectory of a magnetic
field V if and only if V can be written alongx as

V = ω(s)T (s) + κ(s)B(s), (8)

where the functionω(s) associated with each magnetic curve
will be called its quasislope measured with respect to the
magnetic fieldV , [31].
Proposition 1. Letx : I ⊂ R →M3 be a curve in a 3D ori-
ented Riemannian Manifold(M3, g) andV be a vector field
along the curvex. One can take a variation ofx in the direc-
tion of V , say, a mapΓ : I × (−ε, ε) → M3 which satisfies
Γ(s, 0) = x(s), (dΓ/ds)(s, k) = V (s). In this setting, we
have the following funtions:

(1) The speed funtionv(s, k) = ‖(dΓ/ds)(s, k)‖ ,

(2) The curvature functionκ(s, k) of x(s),

(3) The torsion functionτ(s, k) of x(s). The variations of
those functions atk = 0 are

V (v) =
(

dv

dk
(s, k)

)
|k=0= g(∇tV, T )v, (9)

V (κ) =
(

dκ

dk
(s, k)

)
|k=0= g(∇2

T V, N)

− 2κg(∇T V, T ) + g(R(V, T ), N), (10)

V (τ)=
(

dτ

dk
(s, k)

)
|k=0 =

(
1
κ

g(∇2
T V +R(V, T )T, B)

)

s

+κ(∇T V,B)+τg(∇T V, T )+g(R(V, T )N, B), (11)

whereR is the curvature tensor ofM3, [31].
Proposition 2. Let V (s) be the restriction tox(s) of a
Killing vector field, sayV of M3, then,[31]

V (v) = V (κ) = V (τ) = 0.

Definition 6. Letx : I ⊂ R→M3 be a curve in 3D oriented
Riemannian space(M3, g) andF be a magnetic field onM.
We call the curvex is a T-magnetic curve if the tangent vec-
tor field of the curve satisfy the Lorentz force equation, that
is, [31]

∇x′T = φ(T ) = V × T.

Definition 7. Letx : I ⊂ R→M3 be a curve in 3D oriented
Riemannian space(M3, g) andF be a magnetic field onM.
We call the curvex is a N-magnetic curve if the normal vec-
tor field of the curve satisfy the Lorentz force equation, that
is, [32]

∇x′N = φ(N) = V ×N.

Definition 8. Letx : I ⊂ R→M3 be a curve in 3D oriented
Riemannian space(M3, g) andF be a magnetic field onM.
We call the curvex is a B-magnetic curve if the binormal vec-
tor field of the curve satisfy the Lorentz force equation, that
is, [32]

∇x′B = φ(B) = V ×B.

2.4. Basic definitions and theorems of conformable frac-
tional curves

In this part of the preliminaries section, we present brief in-
formation about conformable curves using conformable frac-
tional derivative.
Definition 9. Let x = x(s) be a curve. Ifx : (0,∞) →R3 is
α−differentiable curve, thenx is called a conformable curve
in R3, [33].
Definition 10. Letx : (0,∞) → R3 be a conformable curve
in R3. Velocity vector ofx is determined by

Dα(x)(s)
s1−α

, (12)

for all s ∈ (0,∞), [33].
Definition 11. Letx : (0,∞) → R3 be a conformable curve
in R3. Then the velocity functionv of x is defined by

v(s) =
‖Dα(x)(s)‖

s1−α
,

for all s ∈ (0,∞), [33].
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Definition 12. Letx : (0,∞) → R3 be a conformable curve
in R3. The arc length functions of x is defined by

s(s0) = I0
α ‖Dα(x)(s0)‖ ,

for all s0 ∈ (0,∞). If v(s) = 1 for all s0 ∈ (0,∞), it’s said
thatx has unit speed,[33].
Conclusion 1.Letx : (0,∞) → R3 be a conformable curve
in R3. The concepts velocity vector, velocity function and arc
length function obtained according to conformable fractional
derivative are equivalent to the standard concepts.
Definition 13. Letx be a conformable curve. IfDα(x)(s) 6=
0 for all s ∈ (0,∞), x is called a conformable regular
curve,[33].
Definition 14. Let x = x(s) be a regular unit speed con-
formable curve in3D Riemannian manifold wheres mea-
sures its arc length. Also, lett = Dα(x)(s)sα−1 be its unit
tangent vector,n = Dα(t)(s)/‖Dα(t)(s)‖ be its principal
normal vector andb = t × n be its binormal vector. The
triple {t, n, b} be the conformable Frenet frame of the curve
x(s). Then the conformable Frenet formula of the curve is
given by




Dα(t)(s)
Dα(n)(s)
Dα(b)(s)




=




0 κα(s) 0
−κα(s) 0 τα(s)

0 −τα(s) 0







t(s)
n(s)
b(s)


 , (13)

whereκα(s) = ‖Dα(t)(s)‖ and τα(s) = 〈Dα(n)(s), b(s)〉
are curvature and torsion ofx, respectively.
Conclusion 2. Let x = x(s) be a regular unit speed con-
formable curve wheres measures its arc length. The follow-
ing relation exists between the curvature and torsion ofx ac-
cording to Frenet frame and the conformable curvature and
torsion ofx according to conformable Frenet frame as

κα = s1−ακ, (14)

τα = s1−ατ. (15)

Conclusion 3. Let x = x(s) be a regular unit speed con-
formable curve wheres measures its arc length. As can be
seen from Eq.(13), whenx is a unit speed curve, the con-
formable derivative has no effect on the Frenet frame, so the
Frenet elements do not undergo any change. However, con-
sidering Eqs.(14) and(15), the curvature and torsion of the x
curve has changed under the conformable fractional deriva-
tive.

3. Main results

3.1. Fractional t-magnetic curves

In this subsection, we define the fractional t-magnetic curve
with a conformable fractional derivative focus. We are also
obtained some characterizations of this curve.

Definition 15. Letx : I ⊂ R→M3 be a conformable curve
in 3D oriented Riemannian space(M3, g) andF be a mag-
netic field onM. If the vector area of the tangent curve of
x with respect to the conformable frame satisfies the Lorenz
force equation, the curvex is called fractional t-magnetic
curve, that is

Dαt(s)
s1−α

= φ(t) = V × t.

Proposition 3. Let x : I ⊂ R → M3 be a unit speed frac-
tional t-magnetic curve in 3D oriented Riemannian space
(M3, g) and F be a magnetic field onM with the con-
formable frame elements{t, n, b, κα, τα}. Then, we have the
Lorenz force according to conformable frame as



φ(t)
φ(n)
φ(b)


=




0 κα(s) 0
−κα(s) 0 Ω1(s)

0 −Ω1(s) 0







t(s)
n(s)
b(s)


 , (16)

whereΩ1 is a certain function.
Proof. Let x : I ⊂ R → M3 be a unit speed fractional
t-magnetic curve in 3D oriented Riemannian space(M3, g)
andF be a magnetic field onM with the conformable frame
elements{t, n, b, κα, τα}. Sinceφ(t) ∈ Sp{t, n, b}, we get

φ(t) = λ1t + µ1n + σ1b

and thus

λ1 = g(φ(t), t) = 0,

µ1 = g(φ(t), n) = g(καn, n) = κα,

σ1 = g(φ(t), b) = 0.

From the above equations, we can write

φ(t) = καn.

Similarly, we can easily calculate that

φ(n) = −καt + Ω1b,

φ(b) = −Ω1n.

This completes the proof.¥
Proposition 4. Let x be a unit speed fractional t-magnetic
trajectory of a magnetic fieldV if and only ifV can be writ-
ten along the curvex as

V = Ω1t + καb. (17)

Proof. Let x be a unit speed fractional t-magnetic trajectory
of a magnetic fieldV. Using Proposition 3 and equation(6),
we can easily see that

V = Ω1t + καb.

This completes the proof.¥

Rev. Mex. Fis.68041401
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Theorem 6.Letx be a unit speed fractional t-magnetic trajectory andV be a Killing vector field on a simply connected space
form

(
M3, g

)
. Then the following equations exist

Ω1 = c, c ∈ R,

(
κ2

α

[
1
2
Ω1 − τα

])′
= 0,

and [
1
κα

(
Ω1κατα − κατ2

α + (1− α) s1−2ακ′α + s2−2ακ′′α + Cκα

)]′
+ κακ′α = 0

whereC is the curvature of the Riemanian spaceM3.
Proof. Let V be a magnetic field in a Riemanian 3D manifold. If theα−th conformable fractional derivative of Eq.(17) is
taken with respect to s and conformable frame formulas are applied, we have

DαV = Dα(Ω1t) + Dα(καb),

DαV = s1−αΩ′1t + (Ω1κα − κατα)n + s1−ακ′αb. (18)

It can be easily seen that ifV (v) = 0 of Proposition 1, the case isg(DαV, t) = 0. So, if this equation is used in the above
equation,

DαV = (Ω1κα − κατα)n + s1−ακ′αb,

is obtained. If the conformable derivative of the above equation with respect tos is taken once again from theα−th order and
conformable frame formulas are applied, we have

D2
αV =

(
s1−αΩ′1κα + s1−αΩ1κ

′
α − s1−ακ′ατα − s1−ακατ ′α

)
n

+ (Ω1κα − κατα) (−καt + ταb) + (1− α) s1−2ακ′αb + s2−2ακ′′αb− s1−ακ′αταn. (19)

If the above equation is adjusted, we get

D2
αV =

(
κ2

ατα − κ2
αΩ1

)
t +

(
s1−αΩ′1κα + s1−αΩ1κ

′
α − 2s1−ακ′ατα − s1−ακατ ′α

)
n

+
(
Ω1κατα − κατ2

α + (1− α) s1−2ακ′α + s2−2ακ′′α
)
b. (20)

Then, if V (v) = 0 in Proposition 1 and Eqs.(9), (10) and(11) are considered in Eq.(18), following equation is obtained

s1−αΩ′1 = 0, (21)

where it is clear thats1−α 6= 0. So, as can be clearly seen

Ω1 = c, c ∈ R.

Thus, the first part of the theorem is proved. Then(18) and(20) are considered withV (κ) = 0 in Proposition 1, we obtain

s1−αΩ′1κα + s1−αΩ1κ
′
α − 2s1−ακ′ατα − s1−ακατ ′α + g(R(V, t)t, n) = 0.

In particular, if M3 has constant curvature C, then

g(R(V, t)t, n) = Cg(v, n) = 0,

and so,
s1−αΩ′1κα + s1−αΩ1κ

′
α − 2s1−ακ′ατα − s1−ακατ ′α = 0,

and
(Ω1κα)′ − 2κ′ατα − κατ ′α = 0. (22)

If the above equation is arranged, we have (
κ2

α

[
1
2
Ω1 − τα

])′
= 0. (23)

Rev. Mex. Fis.68041401
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Thus, the second part of the theorem is proved. Similarly(18) and(20) are considered withV (τ) = 0 in Proposition 1, we
obtain

s1−α

(
1
κα

[
Ω1κατα−κατ2

α+ {1− α} s1−2ακ′α + s2−2ακ′′α + g{R(V, t)t, b}]
)′

+s1−ακακ′α + g(R[V, t]n, b) = 0. (24)

Hence, ifM3 has constant curvature C, theng(R[V, t]t, b) = Cg(V, b) = Cκα andg(R[V, t]n, b) = 0. So, we have the
following equations

s1−α

(
1
κα

[
Ω1κατα − κατ2

α + {1− α} s1−2ακ′α + s2−2ακ′′α + Cκα

])′
+ s1−ακακ′α = 0

and (
1
κα

[
Ω1κατα − κατ2

α + {1− α} s1−2ακ′α + s2−2ακ′′α + Cκα

])′
+ κακ′α = 0.

So, the last part of the theorem is proved and the proof is completed.¥
Corollary 1. Let x be a unit speed fractional t-magnetic curve in3D oriended Riemanian manifold(M3, g). If the function
Ω1 is a zero andκα is non-zero constant function, then the curvex is a helix or circle. Moreover, the axis of the helix is the
vector fieldV.
Proof. We assume thatx be a fractional t-magnetic curve in3D Riemann space withΩ1 is a zero andκα is non-zero constant
function, then from Eq.(23), we get (

κ2
α

[
1
2
Ω1 − τα

])′
= 0

and (−κ2
ατα

)′
= 0.

If necessary algebric operations are done, we obtain

2κ′ατα + κατ ′α = 0,

and
τ ′ακα − τακ′α

κ2
α

= −3κ′ατα

κ2
α

.

Finally, if the above equation is arranged, we get

(
τα

κα

)′
= −3κ′ατα

κ2
α

.

Sinceκα is non-zero constant function, we get (
τα

κα

)
= constant.

¥
Remark 1. The conformable derivative for differentiable functions is equivalent to a simple change of variable. Precisely,
u = xα/α. It should be noted that a criticism of the conformable derivative is that, although conformable at the limitα → 1,
it is not conformableα → 0. From the point of view of the assertion about the equality of the conformable derivative to a
change of variables, one can say that the conformable derivative is not conformable as at the other limitα → 0 becausetα/α
is undefined atα = 0, [22].

3.2. Fractional n-magnetic curves

In this section, we redefine the n-magnetic curve with a conformable fractional derivative focus. We are also obtained some
characterizations of this curve.
Definition 16. Letx : I ⊂ R →M3 be a conformable curve in 3D oriented Riemannian space(M3, g) andF be a magnetic
field onM. If the vector area of the tangent curve with respect to the conformable frame satisfies the Lorenz force equation,
thex curve is called fractional n-magnetic curve, that is

Dαn

s1−α
= φ(n) = V × n.

Rev. Mex. Fis.68041401
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Proposition 5. Letx : I ⊂ R→M3 be a unit speed fractional n-magnetic curve in 3D oriented Riemannian space(M3, g) and
F be a magnetic field onM with the conformable frame elements{t, n, b, κα, τα}. Lorenz force eqations in the conformable
frame are written as 


φ(t)
φ(n)
φ(b)


=




0 κα(s) 0
−κα(s) 0 τα(s)
−Ω2(s) −τα(s) 0







t(s)
n(s)
b(s)


 , (25)

whereΩ2 is a certain function.
Proof. Let x : I ⊂ R → M3 be a unit speed fractional n-magnetic curve in 3D oriented Riemannian space(M3, g) andF be
a magnetic field onM with the conformable frame elements{t, n, b, κα, τα}. Sinceφ(t) ∈ Sp{t, n, b}, we get

φ(t) = λ2t + µ2n + σ2b

and thus

λ2 = g(φ(t), t) = 0,

µ2 = g(φ(t), n) = −g(φ(n), t) = κα,

σ2 = g(φ(t), b) = Ω2.

From the above equations, we can write
φ(t) = καn + Ω2b.

Similarly, we can easily calculate that

φ(n) = −καt + ταb,

φ(b) = −Ω2t + ταb.

This completes the proof.¥
Proposition 6. Let x be a unit speed fractionaln-magnetic trajectory of a magnetic fieldV if and only ifV can be written
along the curvex as

V = ταt− Ω2n + καb. (26)

Proof. Let x be a unit speed fractional n-magnetic trajectory of a magnetic fieldV. Using Proposition 3 and Eq.(6), we can
easily see that

V = ταt− Ω2n + καb.

This completes the proof.¥
Theorem 7.Letx be a unit speed fractional n-magnetic trajectory andV be a Killing vector field on a simply connected space
form

(
M3, g

)
. Then the following equations exist

s1−ατ ′α + Ω2κα = 0,

(α− 1) s1−2αΩ′2 − s2−2αΩ′′2 − s1−ακ′ατα + Ω2τ
2
α = CΩ2,

(
1
κα

[−s1−αΩ′2τα + s2−2ακ′′α − s1−α {ταΩ2}′ + {1− α} s1−2ακ′α
])′

+ κα

(
κ′α − sα−1ταΩ2

)
= 0

whereC is the curvature of the Riemanian spaceM3.
Proof. Let V be a magnetic field in a Riemanian 3D manifold. If theα−th conformable fractional derivative of Eq.(26) is
taken with respect to s and conformable frame formulas are applied, we have

DαV = Dα(ταt)−Dα(Ω2n) + Dα(καb),

DαV =
(
s1−ατ ′α + καΩ2

)
t− s1−αΩ′2n +

(
s1−ακ′α − Ω2τα

)
b. (27)

It can be easily seen that ifV (v) = 0 of Proposition 1, the case isg(DαV, t) = 0. So, if this equation is used in the above
equation, we get

DαV = −s1−αΩ′2n +
(
s1−ακ′α − Ω2τα

)
b,
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is obtained. If the conformable derivative of the above equation with respect tos is taken once again from theα−th order and
conformable frame formulas are applied, we have

D2
αV =

(− (1− α) s1−2αΩ′2n− s2−2αΩ′′2
)
n− s1−αΩ′2 (−καt + ταb)

+
(
(1− α) s1−2ακ′α + s2−2ακ′′α − s1−αΩ′2τα − s1−αΩ2τ

′
α

)
b− (

s1−ακ′ατα − Ω2τ
2
α

)
n.

If the equation is arranged, we obtain

D2
αV = s1−αΩ′2καt +

(
(α− 1) s1−2αΩ′2 − s2−2αΩ′′2 − s1−ακ′ατα + Ω2τ

2
α

)
n

+
(−s1−αΩ′2τα + (1− α) s1−2ακ′α + s2−2ακ′′α − s1−αΩ′2τα − s1−αΩ2τ

′
α

)
b. (28)

Then, if V (v) = 0 in Proposition 1 and Eqs.(9), (10) and(11) are considered in Eq.(27), we have

s1−ατ ′α + καΩ2 = 0. (29)

Thus, the first part of the theorem is proved. Then Eqs.(27) and(28) are considered withV (κ) = 0 in Proposition 1, we obtain

(α− 1) s1−2αΩ′2 − s2−2αΩ′′2 − s1−ακ′ατα + Ω2τ
2
α + g(R(V, t)t, n) = 0.

In particular, if M3 has constant curvature C, then

g(R(V, t)t, n) = Cg(V, n) = −CΩ2

and so,
(α− 1) s1−2αΩ′2 − s2−2αΩ′′2 − s1−ακ′ατα + Ω2τ

2
α = CΩ2. (30)

Thus, the second part of the theorem is proved. Similarly Eqs.(27) and(28) are considered withV (τ) = 0 in Proposition 1,
we obtain

s1−α

(
1
κα

[−s1−αΩ′2τα + {1− α} s1−2ακ′α + s2−2ακ′′α − s1−α {Ω2τα}′ + g(R(V, t)t, b)
])′

+ s1−ακακ′α + g(R(V, t)n, b) = 0. (31)

Hence, ifM3 has constant curvature C, theng(R(V, t)t, b) = Cg(V, b) = Cκα andg(R(V, t)n, b) = 0. So we obtain following
(

1
κα

[
Ω2κατα − κατ2

α + {1− α} s1−2ακ′α + s2−2ακ′′α + Cκα

])′
+ κα

(
κ′α − sα−1Ω2τα

)
= 0.

Thus, the last part of the theorem is proved and the proof is completed.¥
Corollary 2. ConsideringΩ2 is a non-zero constant function, we easily see that the fractional n-magnetic curve is a curve in
the Euclidean 3-space.
Corollary 3. Letx be a unit speed fractional n-magnetic curve in 3D oriented Riemann manifold

(
M3, g

)
. If the functionΩ2

is non-zero constant, then the curvex is a slant helix. Moreover, the axis of the slant helix is the vector fieldV .
Proof. We assume thatx is a fractional n-magnetic curve in Euclidean 3-space with non-zero constant functionΩ2, then from
(29), (30) and(31), we have

Ω2 = −s1−α τ ′α
κα

= s1−α κ′α
τα

.

If the above equation is arranged, we get
κ2

α + τ2
α = constant.

If necessary arregements are made, we obtain

τ ′ακα − κ′ατα = −Ω2

(
κ2

α + τ2
α

)
,

and

Ω2 =
κ2

α

κ2
α + τ2

α

(
τα

κα

)′
.

These complete the proof.¥
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3.3. Fractional b-Magnetic Curves

In this section, we define the b-magnetic curve with a conformable fractional derivative focus. We are also obtained some
characterizations of this curve.
Definition 17. Letx : I ⊂ R →M3 be a conformable curve in 3D oriented Riemannian space(M3, g) andF be a magnetic
field onM. If the vector area of the tangent curve with respect to the conformable frame satisfies the Lorenz force equation,
the x curve is called fractional b-magnetic curve, that is

Dαb

s1−α
= φ(b) = V × b.

Proposition 7. Let x : I ⊂ R → M3 be a unit speed fractional b-magnetic curve in 3D oriented Riemannian space(M3, g)
and F be a magnetic field onM with the conformable frame elements{t, n, b, κα, τα}. So, Lorenz force according to the
conformable frame is written as




φ(t)
φ(n)
φ(b)


 =




0 Ω3(s) 0
−Ω3(s) 0 τα(s)

0 −τα(s) 0







t(s)
n(s)
b(s)


 , (32)

whereΩ3 is a certain function.
Proof. Let x : I ⊂ R → M3 be a unit speed fractional b-magnetic curve in 3D oriented Riemannian space(M3, g) andF be
a magnetic field onM with the conformable frame elements{t, n, b, κα, τα}. Sinceφ(t) ∈ Sp{t, n, b}, we get

φ(t) = λ3t + µ3n + σ3b

and thus

λ3 = g(φ(t), t) = 0,

µ3 = g(φ(t), n) = Ω3(s),

σ3 = g(φ(t), b) = 0.

From the above equations.,we can write
φ(t) = Ω3n.

Similarly, we can easily calculate that

φ(n) = −Ω3t + ταb,

φ(b) = −ταn.

This completes the proof.¥
Proposition 8. Let x be a unit speed fractional b-magnetic trajectory of a magnetic fieldV if and only if V can be written
along the curvex as

V = ταt + Ω3b. (33)

Proof. Let x be a unit speed fractional b-magnetic trajectory of a magnetic fieldV. Using Proposition 3 and Eq.(6), we can
easily see that

V = ταt + Ω3b.

This completes the proof.¥
Theorem 8.Letx be a unit speed fractional b-magnetic trajectory andV be a Killing vector field on a simply connected space
form

(
M3, g

)
. Then the following equations exist

s1−ατ ′α = 0,

κ′ατα − 2ταΩ′3 = 0,
(

1
κα

[
κατ2

α − Ω3τ
2
α + {1− α} s1−2αΩ′3 + s2−2αΩ′′′3 + Cκα

])′
+ s1−αΩ′3κα = 0.

Rev. Mex. Fis.68041401



10 AYKUT HAS AND BEYHAN YILMAZ

Proof. Let V be a magnetic field in a Riemanian 3D manifold. If theα−th conformable fractional derivative of Eq.(33) is
taken with respect to s and conformable frame formulas are applied, we have

DαV = s1−ατ ′αt + (κατα − Ω3τα)n + s1−αΩ′3b. (34)

It can be easily seen that ifV (v) = 0 of Proposition 1, the case isg(DαV, t) = 0. So if this equation is used in the above on,

DαV = (κατα − Ω3τα)n + s1−αΩ′3b,

is obtained. If the conformable derivative of the above equation with respect tos is taken once again from theα−th order and
conformable frame formulas are applied, we have

D2
αV =

(
s1−ακ′ατα + s1−ακατ ′α − s1−αΩ′3τα − s1−αΩ3τ

′
α

)
n

+ (κατα − Ω3τα) (−καt + ταb) + (1− α) s1−2αΩ′3b + s2−2αΩ′′3b− s1−αΩ′3ταn.

If the equation is arranged, we get

D2
αV =

(
καταΩ3 − κ2

ατα

)
t +

(
s1−ακ′ατα − 2s1−αΩ′3τα

)
n +

(
κατ2

α − Ω3τ
2
α + (1− α) s1−2αΩ′3 + s2−2αΩ′′3

)
b. (35)

Then, if V (v) = 0 in Proposition 1 and Eqs.(9), (10) and(11) are considered in equation(34), we have

s1−ατ ′α = 0. (36)

Thus, the first part of the theorem is proved. Then equations(34) and(35) are considered withV (κ) = 0 in Proposition 1, we
obtain

s1−ακ′ατα − 2s1−αΩ′3τα + g(R(V, t)t, n) = 0.

In particular, if M3 has constant curvature C, theng(R(V, t)t, n) = Cg(V, n) = 0 and so following equation

κ′ατα − 2Ω′3τα = 0, (37)

is obtained. Thus, the second part of the theorem is proved. Similarly if the Eqs.(34) and(35) are considered withV (τ) = 0
in Proposition 1, we obtain

s1−α

(
1
κα

[
κατ2

α − Ω3τ
2
α + {1− α} s1−2αΩ′3 + s2−2αΩ′′′3 + g{R(V, t)t, b}]

)′

+ s1−αΩ′3κα + g(R[V, t]n, b) = 0.

Hence, ifM3 has constant curvature C, theng(R(V, t)t, b) = Cg(V, b) = Cκα andg(R(V, t)n, b) = 0. So, we have following

(
1
κα

[
κατ2

α − Ω3τ
2
α + {1− α} s1−2αΩ′3 + s2−2αΩ′′′3 + Cκα

])′
+ s1−αΩ′3κα = 0.

Thus, the last part of the theorem is proved and the proof is completed.¥
Corollary 4. Let x be a fractional b-magnetic curve in3D oriented Riemanian manifold(M3, g). If the functionΩ3 is a
constant function, then the curvex is a general helix. Moreover, the axis of the general helix is the vector fieldV.
Proof. We assume thatx be a unit speed fractional b-magnetic curve in Euclidean 3-space withΩ3 is a constant function. Then
from the equation(37), we get

κ′ατα − 2Ω′3τα = 0

and

Ω′3 =
κ′ατα

2τα
.

SinceΩ3 is a constant function, it can be say thatκα is a constant function. In addition, considering the equation(36), the
following equation can be easily seen

τα

κα
= constant.

This completes the proof.¥
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Example 1.Let x be a fractional t-magnetic trajectory of a magnetic fieldV. If the tangent vector field t is perpendicular to the
magnetic field, the Lorentz force is maximum and the moves by the particle for differentα values are given in Figs. 1 and 2 in
the magnetic field.

x(s) =
(
−

∫
s1−α sin s,

∫
s1−α cos s, 4s1−α

)
.

FIGURE 1. Fractional t-magnetic curvex(s) for α → 1(Black), α = 0.9(Blue) andα = 0.7(Red), respectively.

FIGURE 2. Fractional t-magnetic curvex(s) for α = 0.5(Orange), α = 0.3(Purple) andα = 0.1(Green), respectively.
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Example 2.Let x be a fractional t-magnetic trajectory of a magnetic fieldV. From Corollary 1, we can easily see thatΩ1 = 0
andκα is a constant function. The figure of the t-magnetic curve for differentα values are given in Figs. 3 and 4 in the magnetic
field.

x(s) =
(
− 3

49

∫
s1−α sin s,

4
49

∫
s1−α cos s,

5
49

∫
s1−α

)
.

FIGURE 3. Fractional t-magnetic curve x(s) forα → 1(Black), α = 0.9(Blue) andα = 0.7(Red), respectively.

FIGURE 4. Fractional t-magnetic curvex(s) for α = 0.5(Orange), α = 0.3(Purple) andα = 0.1(Green), respectively.
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Example 3. Let x be a fractional n-magnetic trajectory of a magnetic fieldV. From Corollary 3, we can easily see thatΩ2 is
non-zero constant. The moves by the particle for differentα values are given in Figs. 5 and 6 in the magnetic field.

x(s) =
(

9
16

∫
s1−α cos 25s +

25
16

∫
s1−α cos 9s,

9
16

∫
s1−α sin 25s− 25

16

∫
s1−α sin 9s,

15
8

∫
s1−α cos 17s

)

FIGURE 5. Fractional n-magnetic curvex(s) for α → 1(Black), α = 0.9(Blue) andα = 0.7(Red), respectively.

FIGURE 6. Fractional n-magnetic curvex(s) for α = 0.5(Orange), α = 0.3(Purple) andα = 0.1(Green), respectively.

4. Conclusion

In this article, starting from the effect on the curves the ef-
fects of conformable fractional derivatives and integrals on
magnetic curves are investigated. The Frenet frame has been
tried to be formed with the help of conformable derivative
of a unit speed conformable curve. However, as can be seen
from Eq.(14), the Frenet frame of the unit speed curve is not
affected by the conformable derivative, that is, the elements
of the Frenet frame have not undergone any change under the
conformable derivative. By U.G̈ozütok et al. are mentioned
in article [33], the physical properties (velocity, speed, arc-
length) of the unit speed conformable curve do not change

under the conformable derivative. On the other hand, cur-
vature and torsion concepts are one of the most important
factors in determining the characterization of the curve, as
those who work on the theorem of curves, which is one of
the sub-branches of differential geometry, know very well.
Therefore, the difference of this study from the others is that
the curvature and torsion of a curve are obtained depending
on the fractional derivative. As can be seen from Conclusion
2, the curvatures of the conformable curve have changed un-
der the conformable derivative. In this study, this change in
the curvature of the curve is examined and visualized with
various examples to better understand the results.
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