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Background. A brain-machine interface (BMI) is a device or experimental setup that receives a brain signal, classifies it and then uses it as
a computer command. There is not a consensus on which kind of learning methodology (deep learning, convolutional networks, AI, etc.)
and/or type of algorithms in each methodology, are best to run BMI’s. Objective. The aim of this work was to build a low-cost, portable,
easy-to-use and a reliable Motor Imagery Electro-encephalography (EEG-MI) based BMI; comparing different algorithms to find the one
that best satisfies such conditions. Methods. In this study, motor imagery (MI) EEG signals, from both PhysioNet public data and our own
laboratory data obtained using an Emotiv headset, were classified with four machine learning algorithms. These algorithms were: Common
spatial patterns (CSP) combined with linear discriminant analysis (LDA), Deep neural network (DNN), convolutional neural network (CNN)
and finally Riemannian minimum distance to mean (RMDM). Results. The mean accuracy for each method was 78%, 66%, 60% and 80%
respectively. The best results were obtained for the baseline vs Motor Imagery (MI) comparison. With global-training public data, an
accuracy between 86.4% and 99.9% was achieved. With global-training lab data, the accuracy was above 99% for the CSP and RMDM
cases. For lab data, the classification/prediction computing time per event were 8.3 ms, 18.1 ms, 62 ms and 9.9 ms, respectively. In the
discussion a comparison between the results presented here and state-of-the-art of methodologies and algorithms for BMI’s can be found.
Conclusions. The CSP and RMDM algorithms resulted in fast (computing time) and effective (success rate) tools for their implementation
as deep learning algorithms in BMIs.
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1. Introduction

About 15% of world’s population has medical disabilities of
some kind. That is approximately around one billion peo-
ple worldwide [1]. As an example, one out of 20,000 people
is diagnosed with Amyotrophic Lateral Sclerosis (ALS), a
neuro-motor disability that degenerates motor neurons reduc-
ing their ability to communicate with muscles [2]. There are
8 million people with motor disabilities or motor limitations
in Mexico [3]. Of those, 2.6 million have motor disabilities,
of which 38.5% are due to some comorbidity [4]. Motor dis-
ability is one of the subtypes of disabilities that most limit the
quality of life of those affected by them.

A brain-machine interface (BMI) or brain-computer in-
terface (BCI) is a communication system that allows di-
rect interaction between an electronic device and brain ac-
tivity. It could be designed through different technologies,
such as EEG, MEG, ECoG, EMG, etc., [5,6]. People with
stroke, cerebral palsy, muscular dystrophy, spinal cord dam-
age, amputated limbs, and mostly with any motor disabil-
ity, could be physically or socially rehabilitated using some
BMI. This would allow them to control a robotic prosthesis,
electric wheelchair, computer cursors, or simply communi-

cate through a binary system interpretable as “yes” or “no”
responses. In less severe cases such as hemiparesis for exam-
ple, even proper detection of imagined movements (or motor
imagery, MI) could help improve their relationship with the
world. This through a reinforcement system that tells patients
how well they are imagining a given task. It has been demon-
strated that the mere imagination of the realization of their
movements during training, produces a significant improve-
ment in the performance of professional athletes [7].

BMIs are programmed with algorithms that perform sev-
eral functions. The main and most relevant are classifiers.
Their function is to discriminate data into different classes.
A class is the semantic group an event belongs to, defined as
loose as one need it to be. For example, an image recognition
system that can identify cats and dogs would have 2 classes:
Cats and Dogs. And an event is a data point corresponding
to one class. On supervised learning, events must be labeled
with its corresponding class. On unsupervised learning they
do not need to be labeled. There are several and very dif-
ferent classifiers based on their calculations and technology
based on machine learning (ML) techniques [5,6,8,9]. The
ones considered for this work are listed as follows.
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CSP, Common Spatial Pattern is an algorithm that gets
spatial filters from covariance matrices of a given data set. It
is considered a feature extraction algorithm because it needs
a decision-maker to classify [10-13]. LDA or Linear Dis-
criminant Analysis projects the data on the hyperplane that
maximizes the distance between the means of each class and
minimizes the dispersion on the new plane. In the case of
scikit learn [14], it does so by maximizing the Mahalanobis
distance, starting from a Bayes rule. LDA has been used
as EEG classifier [15-20] and together with CSP [21] it has
achieved a mean accuracy of 80%.

ANN or Artificial Neural Network, also called multi-
layer perceptron, is an array of nested perceptrons, capable
of learning from examples through iterative corrections on
each layer weights. It employs the backpropagation algo-
rithm, which compares the output of each iteration with the
expected output and minimizes an error function [22]. Each
perceptron is a mathematical function inspired by how neu-
rons in the brain work. DNN, Deep Neural Networks get
their name from the depth of their structure and by having
several layers. The intermediate layers between the input and
output layers are called the hidden layers. There is no clear
definition of how many layers a network needs to be consid-
ered deep, however, there is consensus in considering at least
4 layers. [23] Deep learning is known for getting good re-
sults despite just taking raw data as input,i.e., it automates
the feature extraction process. Also, note that the percep-
tron is a linear machine and the maximum non-linearity it
possesses is limited by the activation function. However, by
assembling several layers of perceptirons, the net obtains a
very important non-linear capacity, since it can model more
complex functions and classify data that do not have a lin-
early separable distribution. It has been widely used for EEG
classification [24-28].

CNN or Convolutional Neural Networks get their name
from the convolutions performed between restricted regions
of the neural layer and a kernel, which are a matrix of
weights. The result of such convolutions are passed to an
activation function. The operation is carried out by taking
small steps along the entire layer until all the neurons are
covered. It has given very good results on image classifica-
tion and computer vision [29-31]. It has also shown good re-
sults on MI classification [20,32-36]. RMDM or Riemannian
Minimum Distance to Mean classifier starts from the Mini-
mum Distance to Mean (MDM) algorithm, which compares
events in an euclidean space through the distance between
them. The Euclidean distance is defined asδE(a, b) = |a−b|
wherea andb are points in the space. Suppose a simple case
with 2 classes, the “rest” class equal to0 and a classC. Let
σ0 be the mean-variance of the events labeled as0, σC the
mean-variance of the events labeled asC, σk the variance
of the eventk, andδ(·, ·) the distance function. MDM clas-
sifiers will simply compare ifδ(σC , σk) > δ(σ0, σk) → k
belongs to classC. If the opposite is true,k is assigned to
class0. RMDM compare instead the Riemannian distance,
or geodesic, from an eventC to the Riemannian or Cartan

mean, representing a kind of center of mass, in a differen-
tiable manifold made up from the setS(++) of N × N co-
variance matrices, whereN is the dimension of the feature
space [37,38].

Finally, there are different approaches to train a classifier.
One is to teach them with part of the data from the volun-
teers under study. This is called ‘per-subject training’. Other
option is to use all the data from all the volunteers for train-
ing. That is named ‘global training’. Care must be taken to
avoid overfitting in the second scenario. That is, using the
same data used to learn to perform predictions on the data.
That forces the resulting model to fit the shape of that dataset
exclusively and results will always be very “successful”. But
the truth is, that the rate of success will only be achieved
in that data set used to develop the classifier, and it will not
be successful at all with other data sets, making results un-
reproducible.

Nowadays, clinical BMIs present limited classification
capabilities, usually limited to 2 or 3 classes. There have
been several studies looking into improving classification ac-
curacy on multiclass cases or improving the computing time
required to detect MI in real-time. But clearly further work
is needed yet to improve BMI’s ease of use. The aim of this
work was to build a low-cost, portable, easy-to-use and re-
liable EEG-MI based BMI; comparing the classifiers men-
tioned above to find the one that best satisfies such condi-
tions. Their use would allow people with disabilities to im-
prove their life quality. Different classifiers developed with
other technologies and the ones developed here are compared
latter in the discussion. Finally, and only for results presented
in this paper, parameters such as: accuracy, computing time,
kind of training, EEG channels number and sampling fre-
quencies, were considered and a recommendation on which
algorithms produced the best results made.

2. Materials and methods

For this project, own laboratory data together with public
EEG data were used to compare the efficacy of the imple-
mented algorithms.

2.1. Public Data

The public EEG Motor Movement/Imagery PhysioNet
Dataset [39] was used. It is available at https://physion
et.org/content/eegmmidb/1.0.0/.

2.1.1. Volunteers

Data from 109 subjects in the dataset were available, but only
data from 92 subjects was used. Data from volunteers: 14,
34, 37, 41, 51, 64, 69, 72, 73, 74, 76, 88, 92, 100, 102, 104,
109 were excluded since those had fewer events or trimmed
events. This was decided to keep the number of events per
subject as homogeneous as possible. Data were recorded at
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the Wadsworth Center BCI Research and Development Pro-
gram [40]. No more information about the volunteers was
provided by PhysioNet website.

2.1.2. Data acquisition

Each subject in this database underwent 14 runs (actions)
which could either be Baseline measurements or Tasks:

1. Baseline, eyes open, 2. Baseline, eyes closed, 3.Task 1
(open and close left or right fist), 4. Task 2 (imagine opening
and closing left or right fist), 5. Task 3 (open and close both
fists or both feet), 6. Task 4 (imagine opening and closing
both fists or both feet), 7. Task 1, 8. Task 2, 9. Task 3, 10.
Task 4, 11. Task 1, 12. Task 2, 13. Task 3, Task 4.

“Baseline” (BL) EEG recording are those in which a sub-
ject is not performing any special activity: physical or mental.
The subject is simply asked to remain relaxed and seated in
a comfortable position. For simplicity, this study only used
baseline 1 information (with eyes opened).

The recording of the baseline measurements lasted 1
minute each, and 2 minutes for each task. On each task,
the subject was asked to perform 5 or 6 times each of the
2 possible moves. Either imagination or the real moves. For
example, in Task 1, the subject was asked on 5 occasions to
open and close his right fist for 6 seconds; and on 6 times
was asked to open and close his left fist for 6 seconds. Each
of this 11 times was a 6 second event from Task 1.

Each Task lasted for 2 minutes, and each Baseline run for
1 minute. 3 s events were considered to mimic the data acqui-
sition structure from our lab data (see explanation in the lab
data acquisition in following sections). Therefore, Baseline
runs were formed by 20 events and Task runs were formed by
45 events. As PhysioNet’s dataset sampling frequency was
160 Hz, the first 3 s of each run corresponded to 480 data
points (events). For simplicity, calculations from the authors
just used information from these initial 3 s for each run. Also,
and for simplicity, in this work authors just used information
from Baseline 1, and runs from Task 2 (runs number 4, 8 and
12) which corresponded to imaging of opening and closing
left or right fists. Each of these 6-second intervals when the
volunteer imagined or executed a move, was considered an
event. So, for each of the 92 subjects there were 45 events
of each task. Again, for simplicity, only the data from Task 2
(actions number 4, 8, and 12) were considered, which corre-
sponded to imaging opening and closing the left or the right
fist. And the events were trimmed, taking only the first 3 sec-
onds of each. The latter to match them up with the length
of the events in the Lab Data (see the details of laboratory
data in the following sections). Likewise, the entire Baseline
recording was divided into 3-second sections. So, 20 baseline
events per subject were obtained.

Ideally, when training a machine learning model, the
number of events per class should be similar. As data in Base-
line and Task runs were imbalanced in favor of Task runs,
a data augmentation procedure was used. ‘New’ Baseline
events were generated by joining the final half of an event

with the initial half of the contiguous one. Thus, instead of
having only 20 events per subject, we now had 39 events per
subject. This produced a total of 3588 baseline events (con-
sidering the 92 subjects), and 4140 Task 2 events, of which
2086 corresponded to the left fist and 2054 to the right fist.

2.1.3. EEG

A 64 channel EEG (unknown brand) was used, with a
sampling frequency of 160 Hz. Electrodes were placed
according to the international 10-10 system, excluding:
Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and
P10. Data were then recorded using the BCI2000 system
(http://www.bci2000.org), on a PC with “1.4-GHz Athlon
processor, 256 Mb RAM, IDE I/O subsystem, and Data
Translation DT3003 data acquisition board, running Win-
dows 2000” [41]. Time sequences were provided in edf files.

2.2. Lab Data

This dataset was generated in our laboratory, at the Facul-
tad de Ciencias F́ısico Mateḿaticas, Beneḿerita Universidad
Autónoma de Puebla, Mexico.

2.2.1. Volunteers

EEG data were obtained from a sample of 30 right-handed
male volunteers without a clinical diagnose of psychiatric,
psychological, or neurological pathologies. Ages ranged be-
tween 18 and 31 years old. They were students and faculty
members of the physics department. Everyone claimed to
have slept more than 6 hours the night before experimenta-
tion and were not under the effect of psychoactive drugs or
under any kind of medical treatment.

2.2.2. Data acquisition

This protocol was mainly based on the work of Brunneret
al. [42], Lee and Choi [43] and Wuet al. [44]. Experimen-
tal runs were made in a well-lit laboratory, with little noise
and no noteworthy odors, seeking to reduce external stim-
uli that could affect the experiment. Volunteers were asked
to sit so that they were comfortable one meter away from a
screen showing a sequence of images related to a task, (pre-
sentation in Microsoft PowerPoint (http://www.office.com).
The screen was the one of a laptop with a LED display,
1920 × 1080 resolution, and 60 Hz frequency. The protocol
is presented here:

• Solid green left arrow: Raise left arm.

• Faint green left arrow: Imagine raising left arm.

• Solid blue right arrow: Raise right arm.

• Faint blue left arrow: Imagine raising right arm.

• Cross, either: Lower arm/ Imagine lowering arm Rest.
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FIGURE 1. Experimental paradigm of a cycle run. Each run consists of 4 tasks: rest, real movement, rest, motor imagery.

2.2.3. Runs

First, a 30 second run was made to record eye-open base-
lines. A complete cycle was defined as a complete set of
rest - movement - rest - imagination.I.e., cross - solid ar-
row - cross - faint arrow. All this with a total duration of 12
seconds as shown in Fig. 1. A uniform pseudorandom suc-
cession was generated with Python NumPy of 48 cycles, 24
for each side of the body, presented to volunteers in 3 blocks
of 16 cycles each. This protocol generated a total of 10 min-
utes and 6 seconds of EEG recording per subject. Finally, a
total of 300 baseline events and 720 events of each motor im-
agery side were used. To handle the data imbalance, a data
augmentation technique was applied to the baseline events.
A new event from the last and first half of contiguous events
was made. This allowed authors to get up to 590 baseline
events, closer to the 720 of each of the other classes.

2.2.4. EEG

Data were acquired with an Emotiv EPOC+ headband EEG
(https://www.emotiv.com/epoc/). Sampling frequency of
128 Hz, 14 electrodes standardized according to the interna-
tional 10-20 system (AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4). It had built-in notch filters of 50 and
60 Hz. EmotivPRO v1.8.1 commercial software was used as
a PC-Emotiv interface connected via built-in Bluetooth.

2.3. BMI Architectures

In this study, the accuracy of each classification model
was compared on 4 comparison groups: left MI/right MI
(LMIvsRMI), left MI/baseline (LMIvsBL), right MI/baseline
(RMIvsBL), and the 3-class left MI/right MI/baseline
(LMIvsRMIvsBL). For both, training and validation, each
event was 3 seconds long, corresponding to 384 EEG sam-
ples in the lab data case.

Both, global and per-subject training, were performed
with each of the BMI’s to compare the efficacy of each clas-
sifier with big and small data and with their generalization
capability.

2.3.1. Programming hardware and software

The different machine learning models were run on
a commercial PC, with 32 GB RAM, 3.4 GHz In-
tel Core i7 - 6700 CPU, NVIDIA GeForce GTX 1070
GPU, running Windows 10. BMÎA´s were coded in
Python (https://www.python.org/) using the Keras frame-
work (https://keras.io/), sklearn (https://scikit-learn.org/), and
pyRiemann libraries (https://pyriemann.readthedocs.io).

2.3.2. CSP + LDA

Raw data were set in an ExNxT matrix, re-referenced to the
common average reference (CAR), and then balanced and
normalized. Following this, data was band-passed and fil-
tered by a Butterworth 6-order filter with an 8 to 30 Hz
window. CSP was computed using the MNE package
(https://mne.tools/), with the Ledoit-Wolf method for covari-
ances estimation. 6 CSP were used as feature vector input of
each LDA classifier.

2.3.3. DNN

Data were first centered between [-1,1] by the sklearn’s max-
AbsScaler function. A fully connected deep neural network
(DNN) with 9 hidden layers was used. The kernel initial-
izer was the same along the net: Random Uniform between
(-0.05, 0.05), using 42 as seed. Leaky ReLU with alpha=0.3
was used as the activation function in the inner layers, to pre-
vent the death of neurons with negative values as output, con-
serving a small gradient; and Softmax was placed in the out-
put layer because it could be used with any number of classes.
Nesterov-accelerated Adaptive Moment Estimation
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FIGURE 2. CNN architecture. The CNN BMI consisted of one temporal layer in which a horizontal kernel (box in red) extracted the time
domain features from the time series of each channel. Then a spatial layer in which a vertical kernel extracted the features related to the
position of the channels in a time window. After this, Max pooling was performed to summarize the previous learning, and finally data were
flattened and passed through a fully connected layer.

(Nadam) was used as the optimizer, because a rapid conver-
gence method was needed to not extend much the training
time [45], with learning rates between1×10−6 and1×10−9,
and cross-entropy as the loss function. 30% of dropout on
each layer was considered. The training was done in about
30 to 100 epochs, empirically tuned taking care of both un-
derfitting and overfitting by comparing the training accuracy
with the validation accuracy.

2.3.4. CNN

A convolutional neural network (CNN) with the architecture
proposed in Doseet al. [34] was used for this BMI. It con-
sisted of two convolutional layers of 40 neurons each. The
first one included no padding, with a30× 1 kernel. The sec-
ond included a zero padding with a1 × 64 kernel. In both
cases, the default (1,1) stride was used. The next step was a
15 × 1 max pooling with zero padding, then data was flat-
tened. The next layer was a fully connected layer with 80
neurons. Finally, the output layer contained 2 neurons. How-
ever, the kernel sizes of the layers were adapted when training
the lab data as follows:24×1, 1×14, and4×1 respectively.
The kernel initializer and the activation functions maintained
the same conditions as with DNN.

The intuition behind this array was based on letting the
CNN do the feature extraction. The first convolutional layer
was expected to work as a spatial filter among the channels.
Whereas the second one, made a temporal filter among the
samples. So, its input were the raw data in matrix form of
NxT, in which N was the number of electrodes and T was the
samples of each event. Then, “filtered” data were flattened
and passed through an additional neuron layer for the main
classification. The structure is sketched in Fig. 2.

2.3.5. RMDM

This classifier was based on the work of Congedoet al. [38].
Events were bandpass filtered by a Butterworth 6-order fil-

ter with an 8 to 30 Hz window. Filtered data resulted in an
ExNxT matrix, in which E was the number of events, N was
the number of channels and T was the number of samples.
This matrix was the input to the RMDM. The Riemannian
mean of each class and the distance from every event to the
means, were computed with the help of the pyRiemann li-
brary. Then, a 5-fold cross-validation of the scores was per-
formed.

3. Results

A summary of the mean accuracy obtained with the different
classifiers is presented in Table I. It presents results separated
by algorithms, public or lab data and wither global or each-
subject training was used. Each row represents a classifica-
tion group (LMIvsRMI, LMIvsBL, RMIvsBL, or LMIvsR-
MIvsBL) using a specific algorithm.

Figure 3 Presents a graphical representation of accuracy
vs. classes. This was done to assess the relationship between
lab and public datasets. It is presented in the same format
as Table I, subdivided through the different algorithms, to be
able to see which was the best classifier on each case.

The comparison between results when performing global
and/or per-subject training is presented in Fig. 4.

4. Discussion and conclusions

The main findings of this work were that the mean accu-
racy for each classifier was 78%, 66%, 60% and 80%, for
CSP, DNN, CNN and RMDM, respectively. The best results
were obtained in baseline vs MI. With global-training public
data, an accuracy between 86.4% and 99.9% was achieved.
With global-training lab data, the accuracy was above 99%
just for the CSP and RMDM cases. For lab data, the clas-
sification/prediction computing times per event were 8.3 ms,
18.1 ms, 62 ms and 9.9 ms, for CSP, DNN, CNN and RMDM,
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FIGURE 3. Accuracy vs. classes. The vertical axis presents the accuracy (%). There are 4 blocks corresponding to the 4 algorithms used, and
2 sub-blocks corresponding to the 2 datasets used,i.e., the public or lab data. Each color represents a classification group: LMI is for Left
Motor Imagery, RMI for Right Motor Imagery, and BL for Baseline. The black dots represent the outliers beyond the quartiles considered
on the boxplot.

TABLE I. Results summary. Summary of global and per-subject results with the 4 algorithms on lab and public data. The best result by row
is highlighted in bold.

Lab data Public data

Algorithm Classes Mean Acc per Mean Acc Mean Acc per Mean Acc

subject (%) Global (%) subject (%) Global (%)

CSP+LDA

LMI/RMI 48.1± 6.7 49.7± 3 51.4± 8.2 49.8± 1.7

LMI/BL 99.7± 1.3 100 95.1± 14.3 97.9± 0.3

RMI/BL 99.8± 1.2 99.9± 0.2 95.1± 13.7 98.1± 0.3

LMI/RMI/BL 61.6± 4.5 64.1± 1.6 69.1± 11.1 73.4± 1.3

DNN

LMI/RMI 65.6± 3.5 50.2± 1.3 70.2± 4.2 71.4± 1.2

LMI/BL 68.8± 4.5 56.5± 1.8 72.5± 3.7 86.4± 0.4

RMI/BL 81.5± 2.7 56.6± 1.7 73± 12.1 86.9± 0.4

LMI/RMI/BL 54.5± 4.1 29.3± 1.6 54.2± 3.1 73.6± 1.3

CNN

LMI/RMI 50.6± 2.9 50.1± 0.2 52.3± 6.5 59.5± 0.4

LMI/BL 56.8± 8.8 56.6± 1.7 59.5± 11.7 98.4± 0.2

RMI/BL 60.1± 13.5 43.4± 1.7 61± 10.7 98.3± 0.5

LMI/RMI/BL 33.7± 3.9 56.6± 1.7 44.2± 9.7 74.7± 0.3

RMDM

LMI/RMI 51.1± 8.1 50.7± 2.4 53.8± 13.4 57.9± 1.9

LMI/BL 100 100 97.1± 11.2 99.9± 0.1

RMI/BL 100 99.9± 0.2 97± 11.4 99.9± 0.1

LMI/RMI/BL 63.3± 6.2 63.6± 4 72± 13.1 77.5± 0.9
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FIGURE 4. Results by training type. The right block shows the results of the training done per subject. The left block corresponds to the
training in which a global approach was taken. The blue color corresponds to the public data and the orange to lab data.

TABLE II. Computing time. Average computing time per event and by algorithm on training and prediction.

Average training time/event (ms) Average classification time/event (ms)

Algorithm Lab data Public data Lab data Public data

CSP+LDA 14.2± 0.3 55.3± 1.2 8.3± 0.2 34.4± 0.8

DNN 20.7± 0.7 212.5± 2.5 18.1± 1.2 117.8± 7.3

CNN 85.1± 1.3 524.1± 3.2 62± 3.6 373.2± 11.7

RMDM 17.5± 0.3 98.5± 0.7 9.9± 0.4 46.2± 1.2

respectively, which shows the viability of using these algo-
rithms in a real-time BMI.

All the four algorithms had some trouble discerning be-
tween left and right motor imagery, but almost all had good
performances classifying motor imagery versus baseline, re-
gardless of laterality, in both public and lab data. It is im-
portant to note that, for the four algorithms, the per-subject-
training mean error was about 10% higher than the global
training error. This was due to the high variance in the results
among volunteers; for just one subject the accuracy was 20%,
while that of the rest remained close to 99%. This amplitude
is blurred in global training, where internally the classifier
considers these differences.

In addition, if it the data imbalance is only considered,
lab data were expected to have at least 50% accuracy on left
vs right MI, 44.2% on both left MI vs baseline and right MI
vs baseline, and 28.4% on 3-class classification. On the other
hand, for public data, the expectations were 49.6%, 36.8%,
36.4%, and 26.6%, respectively. Of course, for practical rea-
sons, the actual expectation should be above 50% for these
classifiers to be useful.

4.1. Computing time

Table II presents the average computing time per event. The
training time depended heavily on the hardware used and the
GPU used here was an average commercial element. Consid-

ering about 5000 events on a 2-class problem, it took about
45 minutes for CNN to be ready, which was the longest. The
fastest algorithm was CSP, taking less than 5 minutes to be
ready. However, the most important part was the prediction
time to identify if it could be used in an actual real-time BMI.
When considering the lab data, with a sampling frequency
of 128 Hz (every 8 ms a sample was taken). If each event
were 3000 ms long, even the slowest algorithm, CNN, could
have made 48 predictions in the time of an event. At most, it
could miss 7 samples out of 384 from an event. The fastest
classifier, CSP, could make 361 predictions. DNN 165, and
RMDM 303 predictions. So, these results show that any of
the BMI’s presented here, were viable for clinical use within
a 3 s window.

4.2. Classifiers evaluation

The highest classification accuracy was obtained by RMDM
in both public and lab data. Particularly, on MI vs. Baseline,
classification reached values above 97%. For lab-data per-
subject RMI vs BL achieved a 100% accuracy, this means it
was able to detect MI on each subject for every event. CSP
performed closely with 99.8%± 1.2% in the same category,
and with more than 95% on MI vs BL. Of course, consid-
ering they took the data from only 30 people, they may be
overfitted and further work is needed to test them with new
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FIGURE 5. Motor imagery classifiers vs. accuracy. This is a representation of the mean accuracy obtained by MI classifiers in the literature.
The data were taken from all the cited studies on this work. The last blue bar represents the average accuracy obtained in this study considering
the 4 algorithms, the 4 classification groups, as well as global training. Source: Prepared by the authors based on [16-21,25-28,32-36,43,46-
55].

data. Unfortunately, on the left MI vs. right MI classification,
they were not able to make a discriminant prediction. Prob-
ability values were so low that they were not better than just
guessing. Only in the public global case, RMDM got an ac-
ceptable 57.9%± 1.9% at best. This could imply a need for
more data to improve the results. However, as stated before,
the similitude between results on lab and public data shows
the algorithm’s consistency while working with both few and
big data. Even in the multiclass case, both CSP and RMDM
did well with results between 61.6%± 4.5% and 77.5%±
0.9%. DNN and CNN gave very similar and conservative re-
sults. However, they produced better results classifying LMI
vs RMI than the previous 2 classifiers. Although for lab data
they obtained mainly around 50% accuracy, in public data
they showed an improvement up to 71.4%± 1.2%. Spe-
cially DNN, consistent with the suitability of the DL for large
amounts of data, with the advantage that it practically did not
require preprocessing and could handle raw data. Figure 2-4
showed that both had a significant difference for global train-
ing results between public and lab data, but in the training
per subject, there was no substantial difference. This could
be due to the fact that the amount of data from a single user
was not so extensive, so that it did not exploit the benefits
of deep neural networks. Likewise, both obtained satisfac-
tory results for MI vs baseline classification, and CNN gave
98.4%± 0.2% and 98.3%± 0.5% accuracies in the global
public case.

4.3. Comparison results with State-of-the-art results

In the literature, MI classifiers present accuracies above 60%
± 1.8%, based on [16-21,25-28,32-36,43,46-55]. Most of
them took data from 2 to 10 subjects and used 64 to 128 EEG
channels, as shown in Figure 5. For studies using Emotiv as

an EEG, accuracy has been found to be even higher (above
80%± 10.6%), such as in [21, 25, 46-48]. However, the av-
erage accuracy of the whole study in our case was about 70%.
Nevertheless, if just public data were the considered by us, a
decision most of the literature experiments have followed, the
accuracy would be circa 81%.

For CSP, the literature sets the accuracy bar around 80%
± 7.7% [11,21,46,47,52], and for LDA around 72%± 5.4%
[16-21], as shown in Figs. 5 and 6. Here, the accuracy im-
proved on the MI vs Baseline case to results higher than
97.9%± 0.3%. It is interesting to note that the accuracy
threshold on lab data was 99.7%± 1.3%, practically 2 points
more than the one on public data. This could raise some con-
cerns about overfitting. But the consistency on getting high
accuracies in both cases confirmed the utility of this algo-
rithm and its independence on high amount of data to perform
well.

Turning to the subject of neural networks, the litera-
ture presents a boom of studies implementing this technol-
ogy, and surprisingly, obtaining good results maintaining
around 80% accuracy even in the classification of 2 types of
MI, and around 60% for the multiclass case. [20,25-28,32-
36,43,44,48,51] Considering only the case of public data and
global training, to make a fairer comparison, in this work an
average accuracy of 81% was achieved.

4.4. Limitations

Since CSP looks to maximize the variance among classes, it
could be concluded that there was not sufficiently distinctive
variability among MI signals, or at least not distinct enough
to be linearly separated by LDA. This could be attributed to
the leak of MI-sensitive EEG channels, such as C3 and C4 on
Emotiv. But it was immediately refuted by contrasting with
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FIGURE 6. MI preprocessing algorithm vs. accuracy. Here preprocessing used in state-of-the-art literature results is compared with the mean
accuracy obtained independently of the implemented classifier. Source: Prepared by the authors based on [16-21,25-28,32-36,43,46-55].

the PhysioNet results, which EEG which did include elec-
trodes on the central zone of the scalp, even C1, C2, C5, and
C6.

The similarity in the results of CSP and RMDM can be
explained considering that both methods were based on find-
ing the covariance matrices of each class. To achieve an im-
provement, it was necessary to guarantee high variability be-
tween classes. This could be done through the method of
obtaining the covariance matrices, or increasing the spatial
resolution of the equipment, or using a different EEG ref-
erencing according to the spatial relationship of the classes.
One could also think of separating the electrodes, using only
those on the right side of the head in the left MI tasks and
vice versa. But the challenge would then be to translate the
data so that the interface was able to include this separation
in the implementation.

Nowadays understanding about the inner workings of
neural networks, does not yet allow us to precisely define
what do each filter and/or kernel imply. When it came to im-
age recognition, there was a linear analogy to turn to, consid-
ering such weights as filters that detected angles and shapes.
But when it came down to EEG signals, there was no similar
analogy to turn to. In a certain way, neural networks were
seen as black boxes whose fine-tuning required an artisanal
process, modifying the hyperparameters until the architecture
that generated a correct model was achieved. With little or

no preprocessing, to expect satisfactory performance on EEG
using neural networks large amounts of data was required.

4.5. Future work

In general, global training produced higher accuracies. This
showed a viable path for the development of DL-based BMIs.
That is, doing global training to initialize the classifier net-
work, but then calibrating it through transfer learning with
data from the particular subject to adapt the interface. Sub-
sampling public data to match it with the lab data shape (14
channels and fs=128 Hz) could be done, and train then the
algorithm with the sum of both datasets as input. The use of
specially designed EEG for BMI with few electrodes (about
4) in strategic regions that guarantee the right spatial resolu-
tion for MI tasks should be explored. The most promising
results were obtained with RMDM and CSP so when used
combined, taking CSP as the covariance matrices for RMDM
could rise the accuracy, and would take advantage of the best
features of each algorithm. But more data is needed, ideally
taken from different subjects, to verify and solve the overfit-
ting on these classifiers. And more research is needed to re-
duce the events’ time and take the BMI closer to a real-time
solution.
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4.6. Conclusions

The overall mean accuracy was better for the case with public
data and global training. But when considering individual re-
sults, the training per subject gave promising results in most
cases, although the high variability between subjects drasti-
cally increased the error. Concerning the case of lab data, the
results with CNN were not optimal, but with DNN they were
acceptable. In contrast, CSP and RMDM results were excel-
lent and demonstrated the feasibility of their implementation
for an BMI.

It is important to consider the minimum signal level Emo-
tiv allows is 8400µV (pp), so its floor noise must be around

8 mV; on the other hand, the floor noise of a typical data ac-
quisition board is about 1 mV. Therefore, the SNR of the Phy-
sioNet data must be higher than Emotiv’s. This has an impact
on the feature extraction and, consequently, on the classifica-
tion of the obtained signals. Finally, here authors presented
a portable, affordable, and easy-to-use option, in contrast to
clinical equipment. A solution able to detect one MI stimulus
accurately, and 2 different MI stimuli with significantly less
accuracy though. However, under the 3 s time window per
event limitation, it cannot be considered a real-time solution
yet.

1. Organizacíon Mundial de la Salud,Informe Mundial Sobre
la Discapacidad. Resumen. (2011) http://apps.who.
int/iris/bitstream/handle/10665/70672/
WHONMHVIP 11.03 spa.pdf?sequence=1

2. Consejo Nacional para el Desarrollo y la In-
clusión de las Personas con Discapacidad,La
Esclerosis Lateral Amiotŕofica ELA. (2018)
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