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Characterizing errors for quantum Fourier transform on IBM quantum
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The performance of today’s quantum computers are affected by noise. This effect can be analyzed in the result of simple quantum algorithms
in real quantum computers. The noise can be characterized as a decoherence error or a systematic error, the last could be corrected by a
unitary rotation. In this article we propose two methods to model a systematic error, in the Quantum Fourier Transform algorithm (QFT).
The first method uses the isotropic index presented in Ref. [1] and needs to reconstruct the density matrix of the experimental state, while
the second method, although less general, only needs to reconstruct the reduced density matrices for each qubit. In both methods, a unitary
transformation is proposed, which approximates the experimental result to the expected theoretical state. As an example, the QFT algorithm
is analyzed for two qubit states, in quantum IBM Q computeribmq santiago.
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1. Introduction

These days, circuit model-based quantum computers require
some type of active error correction, because states in theo-
retically advantageous quantum algorithms acquire errors as
they are prepared, manipulated by gates, and measured, re-
ducing efficiency. For this reason, the characterization and
correction of errors is of vital importance to obtain an accept-
able result [2]. Although there are quantum error correction
methods, as Fault-tolerant quantum error protocols [3], these
are expensive from a computational point of view. In the cur-
rent situation,i.e. a noisy intermediate-scale quantum era, it
is important to characterize and analyze error models, for a
possible future corrections.

The central idea of the article, is to use the isotropic index
proposed in Ref. [1], that separates the model error into one
part related to unitary deviation, due systematic errors, from
another part which represents the loss of information. This
last errors, due to decoherence, cannot be corrected without
redundancy, while in principle systematic errors could be.

Two methods are proposed to model systematic errors.
The first method determines the density matrix of the exper-
imental output of an qubit state, which requires about4n

projective measurements (Quantum state tomography) and
uses the isotropic index to find a unitary rotation, while the
second method uses only3n projective measurements. This
last method is less general and works only for algorithms in
which the output expected state, of each input basis state, is
completely separable in all qubits.

With this intention, we analyze a particular algorithm: the
Quantum Fourier Transform (QFT) [4], finding the unitary
rotation that models the systematic error. The (QFT) is an im-
portant part of some quantum algorithms, such as the famous
Shor’s factorization algorithm [5] and the quantum phase es-
timation algorithm [6]. However, the effect of noise on (QFT)
is less studied. [7,8].

This article is divided into three main sections. After
the introduction, in Sec. 2, we present the Quantum Fourier
Transform Algorithm (QFT), and its matrix model represen-
tation. In Sec. 3, we discuss both correction methods for gen-
eral quantum algorithms. We explain how the unitary matrix
model is determined for ann qubit state. Finally, in Sec. 4
we present, as an example, the experimental results of run-
ning theQFT algorithm for a two qubit system on IBM Q
machine:ibmq santiago, and some conclusions.

2. The quantum fourier transform algorithm

2.1. QFT Algorithm

The Fourier transform is used in a wide range of classical
problems from signal processing to complexity theory. The
QFT is the quantum generalization of the Discrete Fourier
Transform (DFT) where the inputs are the amplitudes on a
computational basis of a wave function. It is part of many
quantum algorithms, most notably Shor’s factoring algorithm
[5] which makes use of the QFT for period finding.

The classical DFT maps an input vector(x0, ..., xN−1) to
the output vector(y0, ..., yN−1) according to Eq. (1):

yk =
1√
N

N−1∑

j=0

xjω
jk
N , (1)

where

ωjk
N = e(

2πi
N )jk. (2)

Meanwhile theQFT acts on an input puren-qubit quan-
tum state|x〉

|x〉 =
N−1∑

j=0

xj |j〉 , (3)
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FIGURE 1. Two qubit QFT circuit for input state|00〉. Illustration
given by [9].

whereN = 2n, and{|j〉} is the standard computational ba-
sis, and maps it to the output state|y〉 according to

|y〉 = UQFT |x〉 =
1√
N

N−1∑

j=0

N−1∑

k=0

ωjk
N xj |k〉 , (4)

whereωjk
N is the same as the classical case, Eq. (2).

2.2. Circuit implementation

Experimental quantum computers nowadays generally use a
small set of universal quantum gates in order to generate
quantum circuits. The quantum IBM computer (IBM Q) is no
exception and only works with certain quantum gates, which
made translating the matrix in Eq. (4) to quantum gates an
essential task.

As an example, for a two qubit state, the quantum gate
representation of the algorithm requires a few basic gates:
the Hadamard transform and a controlled rotation of angle
π/2 around thez axis,Rz, whose matrix representations are
shown in Eq. (5) and (6), respectively.

H =
1√
2

[
1 1
1 −1

]
, (5)

CRz(π/2) = I ⊗ |0〉 〈0|+ Rz ⊗ |1〉 〈1| , (6)

whereRz is

Rz =
[

1 0
0 e

πi
2

]
, (7)

the QFT circuitUQFT = (I ⊗ H).cRz.(H ⊗ I) is shown in
Fig. 1.

3. Systematic error model

3.1. Error model using the density matrix and the
isotropic index

In order to model the systematic error, the first step is to re-
construct the resulting density matrixρexp, measuring the ex-
perimental projections from the data obtained from IBM Q,
using Quantum State Tomography (QST) [4]. To recover the
density matrix state, measurements must be made in the three
basis (axes) of space,X,Y and Z whose matrices are de-
fined:

X=
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z=

[
1 0
0 −1

]
. (8)

For example, for any2 qubit state its matrixρ is given by

ρ =
1
4

3∑

i=0

3∑

j=0

tr(ρσi ⊗ σj)σi ⊗ σj , (9)

whereσ0 = I, σ1 = X, σ2 = Y ,σ3 = Z and the values of
tr(ρσi ⊗ σj) are obtained, measuring the state several times
in order to approach the expected value by the statistical av-
erage.

3.2. Isotropic index

The isotropic index is useful to separate the global loss of
information, called weightω, from the misalignmentA with
respect to a reference pure state. While nothing can be done
about the loss of information, the misalignment (coming from
systematic errors), could be corrected, hence the importance
of separating these two type of errors.

Considering the pure reference state|ψ〉, ρψ = |ψ〉 〈ψ| and
the decomposition of a stateρ after a noisy process,

ρ = ω
I

2n
+ (1− ω)ρ̂, (10)

the double index is defined as:

• The isotropic weight

ω = 2nλ, (11)

whereλ is the smallest eigenvalue ofρ,

• and the isotropic alignmentA,

A = Fid(ρ̂, ρψ)− Fid(ρ̂, ρψ⊥), (12)

where Fid is the fidelity between states [4], andρψ⊥ =
I − ρψ/2n − 1 is the isotropic mixed state orthogonal
to |ψ〉.

The misalignment takes values in the interval [-1,1], where 1
means the resulting state is completely aligned with the ref-
erence stateρψ and -1 means the resulting state is completely
misalignedi.e. aligned withρψ⊥ . Moreover,ω takes values
in the interval [0,1]: whenρ is a pure stateω = 0, and when
the loss of information is total,ω = 1.

Consider now the state|ψ〉 as the reference state of the re-
sulting theoretical state from the application ofQFT to some
basis state, andρexp the obtained experimental matrix state
from the same input state. Decomposing theρexp

ρexp = ω
I

2n
+ (1− ω)ρ̂, (13)

it is always possible to obtainω andρ̂.
In the particular case wherêρ is a pure state,i.e., ρ̂ =

|φ〉 〈φ|, one could partially correct the error with a unitary
matrix that takes|φ〉 to the state|ψ〉.
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FIGURE 2. Representations of the states in Bloch’s Sphere.

Unfortunately, generally the statêρ is not a pure state, so
it is necessary to find the pure state|φ〉, closest tôρ, and with
maximal alignment with it,i.e., |φ〉 should satisfy Eq. (14)

∃ |φ〉 /maximum ofA(ρ̂, |φ〉), (14)

whereA is the alignment index. These states can be graphi-
cally seen in Fig. 2.

In order to find|φ〉 that satisfied the requirement, opti-
mization methods were used. Once|φ〉 was found, a rotation
matrix U that takes|φ〉 to theoretical|ψ〉, is easy to write
out, for any basis initial state. It is a corresponding matrixUi

and|φ〉i for each input canonical basis state|i〉. Hence, the
complete model is defined as a control unitary rotationUc,
andn ancillary qubits, that simultaneously correct then ba-
sis states, and so any input state. An example ofUc for two
qubits Hilbert space, is given in Sec. 4 (see Fig. 3). Although
this method is more exact, it has a high computational cost
since the resulting state needs to be measured in all4n lo-
cal projections, wheren is the number of qubits. In Sec. 3.3
we will analyze another method that manages to estimate the
necessary correction by measuring only3n projections.

3.3. Error model using only3n projection’s

Since determining the density matrixρexp using the QST
method is computationally expensive, another method is pro-
posed to avoid this step. The idea is to find the pure state|φ〉,
closest to theρexp measuring only those projections relevant
for the correct functioning of the algorithm. This is, those
that maximally differentiate each of the states resulting from
the application of the QFT, on each of the2n initial basis
states.

Fortunately, in the case of the QFT algorithm, the theo-
retical output state for each input basis state is separable on
all qubits. Although the mixed stateρexp is generally not, we
assumed the hypothesis that the error is expected to affect in
such a way that the resulting state stays close to the theoreti-
cal one, and we shall discuss if this assumption proved right
experimentally. We assume that a good estimate in this case

is to find the reduced density matrix ofρexp in each qubiti,
ρi
exp, i.e., measuring the projectionsX, Y, Z, of this qubit, in

total3n measurements.
Once we have obtained the reduced density matrices of

each qubiti, the eigenvector with the highest eigenvalue is
extracted|φ〉i without optimization. In the case of a one qubit
matrix state, the decomposition in Eq. (13), ρ̂ is a pure state
and is always the most aligned.

Similarly to the previous method, the unitary rotation ma-
trices are determined for each input basis stateU = U1 ⊗
U2...Un, that takes the state|ψ〉 to |φ〉. Finally the totalUc

matrix is defined similarly to previous method as in Fig. 3.
As an example, the resulting unitary matrix for two qubits

on IBM Q computeribm santiago, are shown in the next
section and the results are compared to those of the first
method.

4. Analyzing experimental results

The procedure will be explained for one of the basis input
state of the algorithm|01〉, the other basis state were treated
similarly.

Running the QFT algorithm in IBM Q computer
ibm santiago, we estimate the resulting probabilities of
measuring the projections in all basis. The mean values are
obtained from8192 shots for each projection, and shown in
Tables I and II.

TABLE I. Experimental results for the basis input state|01〉 in
ibmq santiago, measuring a single qubit.

Basis 0 1

IX 4103 4089

IY 7923 269

IZ 2230 1866

XI 162 3934

Y I 2274 1822

ZI 4115 4077

TABLE II. Experimental results for the basis input state|01〉 in
ibmq santiago, measuring two qubits.

Basis 00 01 10 11

XX 202 120 3981 3889

XY 231 182 7266 513

XZ 158 147 4272 3615

Y X 2299 2166 1874 1853

Y Y 4350 101 3587 154

Y Z 2433 2016 2023 1720

ZX 2213 2052 2039 1888

ZY 4078 111 3875 128

ZZ 2204 1996 2167 1825
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TABLE III. Optimal pure state|φ〉 for ibmq santiago.

|φ〉00 |φ〉10 |φ〉11
0.565 0.559 0.586

0.450 + 0.031i -0.480 - 0.006i -0.026 - 0.453i

0.485 - 0.010i 0.534 + 0.021i -0.498

0.488 - 0.063i -0.414 + 0.015 0.015 + 0.450i

FIGURE 3. Unitary correctionUc for any input state.

4.1. Experimental results with the isotropic index

Performing the QST on this data we obtained the experimen-
tal reconstructed density matrix foribmq santiago, which
was deemed too large to fit this article.

The theoretical output state corresponding to input|01〉 is
|ψ〉01 = |−〉⊗ |+y〉, where|+y〉 = |0〉+ i |1〉. For this state,
the pure state|φ〉01 with the maximum alignment withρexp

is found:

|φ〉01 =




0.524
0.003 + 0.484i
−0.519 + 0.064i
−0.057− 0.463i


 . (15)

Finally the unitary rotation matrixU01 is calculated
which maps the state|φ01〉 to the output theoretical state
|ψ〉01. Similarly, the pure states|φ〉ij obtained for the other
input basis states are presented in the Table III.

This procedure was performed for the four resulting
states, obtaining the four unitary transformations. Using two
ancillary qubits, a unitary transformationUc is defined that
controls which element of the unitary set should be applied,
so that the model works for any input state. This model is
shown in Fig. 3.

In order to model the decoherence, a total Depolarizing
Chanel is applied on the theoretical state|ψ〉, and the result-
ing state

ρDch = ω′
I

4
+ (1 + ω′) |ψ〉 〈ψ| , (16)

is compared with the transformation of the experimental state
underU : ρ′ = UρexpU†. Although the decoherence error
generated by the computer does not have to fit with a cho-
sen Depolarizing Channel, this simple error model does not
change the alignment of the states and can estimate the effect
of decoherence.

FIGURE 4. Fidelities Ec. (17) for the method using the isotropic
index.F1 in white bar,F2 in gray bar, andF3 in black bar.

TABLE IV. Fidelities, Eq. (17) of the second method, using4n

projections, foribmq santiago .

Input state F1 F2 F3

|00〉 0.87940 0.88928 0.99213

|01〉 0.90030 0.90551 0.99236

|10〉 0.87870 0.88957 0.99553

|11〉 0.88217 0.89308 0.99589

Finally in Table IV and as shown in Fig. 4, the results
are compared. This comparison is done by calculating the
fidelity in each stepF1, F2, F3 defined as:

F1 = Fid(ρexp, |ψ〉),
F2 = Fid(ρ′, |ψ〉),
F3 = Fid(ρ′, ρDch), (17)

where |ψ〉 is the expected theoretical state andρ′ =
UρexpU†.

4.2. Experimental results Using only3n projections

In contrast with the previous method, now we look for an es-
timate of the state|φ〉, closer to the stateρexp without the
explicit representation of the density matrix, using only3n
projective measurements. Those projections are chosen so
that the unitary matrix brings the stateρexp closer to the par-
ticular basis state, and as far as possible from the other three
basis states. The idea is to look for the pure state that is most
aligned with each of the reduced one qubit matrices. With
this purpose we measured the projectionsX, Y, Z in each of
the qubits, and found the one qubit reduced matrices. To
get the pure state with most alignment, no optimization is
needed, because for one qubit matrices the principal eigen-
vector|φi〉 (the eigenvector with maximal eigenvalue) is the
state with most alignment, getting|φ〉 = |φ〉1 ⊗ |φ〉2.
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FIGURE 5. Fidelities Eq. (17) for the method using3n projections.
F1 in gray bar,F2 in white bar, andF3 in black bar.

TABLE V. Fidelities, Eq. (17) of second method, using3n projec-
tions, foribmq santiago.

Input state F2 F3

|00〉 0.88471 0.98792

|01〉 0.90541 0.99226

|10〉 0.88857 0.99460

|11〉 0.89133 0.99426

Finally the desired separable unitary rotation for each ba-
sis stateU = U1 ⊗U2 is found, and similarly to the previous
method a Depolarizing Chanel is applied on the theoretical
state|ψ〉, and the resulting stateρDch = ε(|ψ)〉 is compared
with the transformation of the experimental state underU :
ρ′ = UρexpU†. The fidelity betweenρDch andρ′ is shown
for the four input states in Table V and shown in Fig. 5.

5. Conclusions

In this paper we have managed to study the performance of
the Quantum Fourier Transform algorithm in a real quantum
computer. The loss of information due decoherence effects,
could be corrected by adding redundancy as in quantum cor-

recting codes, but in general could be computationally expen-
sive.

We propose two methods to model systematic errors: the
first method uses the isotropic index that separates the loss of
information, by decoherence, from the systematic error, that
potentially could be correctable determining a unitary trans-
formation that could correct any input state. The method
needs to reconstruct the density matrix from4n measure-
ments, and uses the alignment to determine the unitary cor-
rection matrix for each input basis state. Meanwhile, in the
second method it is only necessary to measure3n projections,
taking advantage of the fact that the theoretical output of the
QFT algorithm of each basis state, is separable in all qubits.
The first method, although very expensive from a computa-
tional point of view, is more general and can be used to model
systematic errors of any algorithm, the second can be only
used for algorithms with separable output states as theQFT .
Even though the theoretical output state of the QFT algorithm
is separable, experimental errors can introduce some entan-
glement. Nonetheless, the experimental result is expected to
be reasonably close to being separable for minor errors. As
can be seen in Figs. 4 and 5, the results are very similar which
seems to support this assumption.

As can be seen in these same figures, in actual IBM Q
computers, the unitary errors are much less relevant than
the decoherence errors. Nevertheless, this method could be
used as calibration via software, using theUc matrix, once
it is determined experimentally, regardless other methods are
needed to correct decoherence error.

Even though this analysis shows correcting systematic er-
rors at the current state of the art IBM Q computers is of
minor importance, this models could be used to visualize
(Fig. 5) the weight of the different types of errors that af-
fect quantum computation and could prove especially useful
in educational contexts.
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