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Hydrophobization of paper intended for packaging
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The proposed manuscript deals with packaging surface paper treatment with plasma enhanced chemical vapor deposition (PECVD) tech-
nique. To do this, paper samples were held on a grounded substrate to be in contact with methane(CH4) plasma created by the upper cathode
to grow hydrogenated carbon films (a − C : H) on top surface of paper. The treatment duration was maintained for5, 10, 15 and20 min
while pressure and power have been kept constant at8× 10−2 and100 W, respectively. After deposition the surface sample has undergone
structural and morphological characterization by Scanning Electron Microscopy (SEM ), Atomic Force Microscopy (AFM ) and Fourier
Transform Infrared Spectroscopy (FTIR) is performed to reveal the bonding structure. The surface wettability of the treated samples was
evaluated by contact angle (CA) measurement. The results ofCA show the change of surface paper from hydrophilic to hydrophobic and
even superhydrophobic with a maximum contact angle equal 156◦.
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1. Introduction

The fascinating water repellents of many biological surfaces,
in particular, plant leaves such as Lotus leaf, in the feath-
ers of birds, such as peacock, and also in cuticle of insects,
whose self-cleaning surface has a contact angle approaching
180◦ inspire us to imitate such functionality in numerous in-
dustrial applications. Indeed, such properties are ensured by
the presence of a special structure and morphology, [1,2] or
by the presence of a thin layer of material by deposition or
etching [3,4] that provides the desired functionality. As with
the lotus leaf, the rose petal has a hydrophobic wax layer,
Dragonflies, with a very thin stable and super-hydrophobic
wings and self-cleaning has recently attracted great interest
for fundamental research as well as practical applications,
such as self-cleaning, impermeability, anti-icing [5-7], wa-
terproof clothes, corrosion prevention, anti-fouling, micro-
electronics, and biomedical applications [8-12]. The first at-
tempt to understand the relationship between wettability and
roughness dates back to (1936) Wenzel [13], he noted that the
hydrophobic character of a material is improved by the pres-
ence of a special surface textures. He attributed this behavior
to the increase in the effective surface, because the liquid per-
fectly matches the contours of the roughness. The morphol-
ogy of the coating surface can be modified and the hydropho-
bic properties can be improved by the introduction of several
materials such as silicone, titanium oxide and other materials
[14-16]. To obtain micro-structured surfaces several methods
can be used [17] including etching, vapor deposition, phase
separation, nanoparticle filling, etc... To modify surface mor-
phology, Hsieh [17] introduced TiO2 nanoparticles in a per-
fluoroalkyl methacrylate copolymer to produce a rough sur-
face. Thieset al. [18] added activated SiO2 nanoparticles
(with a diameter of (10-15 nm) to methyltrimethoxy silane
CH3Si(OCH3)3, and obtained coatings with good hydropho-

bic and mechanical properties. In this article, we have pre-
pared different surface microstructures by surface treatment
using CH4 plasma; the effect of treatment time as well as sur-
face morphology and microstructure on surface hydrophobic-
ity have been investigated.

2. Experimental setup

In this work thin hydrogenated carbon(a − C : H) layers
were deposited on the20×20 mm paper substrate by PECVD
technique., The discharge was ignited byRF (13.56 MHz)
power. After the introduction of the substrates, an Ar plasma
cleaning operation was followed for 5 min at a gas pressure
of 2× 10−2 mbar and aVdc bias of 450 V in order to remove
any contaminants on the surface and to activate the surface,
and then the methane gas was introduced into the reaction
chamber. The main part of the experimental installation is
illustrated in Fig. 1 (a,b) and details can be found elsewhere
in Refs. [19,20]. It consists of an electrode system made up
of flat 10 cm diameter parallel discs, the distance between
electrodes is 12 cm, the hollow upper electrode is connected
to the RF generator (13.56 MHz) and the lower electrode is
grounded once. The gas flow has been changed via the mass
flow controller and maintained at8 × 10−2 mbar inside the
chamber deposition, while the deposition time is varied be-

TABLE I. Experimental parameters of surface paper treatment.

Sample E1 E2 E3 E4

Time (min) 5 10 15 20

Pressure (mbar) 8×10−2 8×10−2 8×10−2 8×10−2

Power (W) 100 100 100 100

Bias Voltage,Vdc (V) 170 170 170 170
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FIGURE 1. a) Substrates used for deposits. b) Scheme of a PECVD reactor chamber used for deposition.

tween 5 min, 10, 15 and 20 min. The input power was main-
tained at constant value of 100 W and a self-bias voltage
(Vdc) of 170 V at the upper electrode. The experimental pa-
rameters are summarized in Table I.

In order to investigate the film’s characteristic, the sur-
face morphology of the as deposited thin films was analyzed
by means of scanning electron microscope (SEM, JEOLJSM-
6360LV) while surface topography and roughness of the films
were evaluated by AFM in contact mode by a Nanosurf Flex-
AFM system equipped with a10 × 10 µm high-resolution
scanner. AFM images were recorded with a resolution of
256 × 256 pixels over scanning areas of2 × 2 µm, and the
Gwyddion software was used for image processing and sur-
face roughness calculations [21]. To characterize the bond-
ing structure of the deposited films an FTIR (Bruker, EQUT-
NOX 55 model) spectrophotometer with wavenumber range
of 400 − 4000 cm−1 was employed. The water contact an-
gles of the films measurements were determined byGBX
“Digidrop” optical contact angle measurer instrument.

3. Results and discussion

3.1. SEM image of untreated paper

The micrographs obtained by scanning electron microscopy
(SEM) of the untreated paper sheets are shown in Fig. 2. Sur-
face micrographs show a homogeneous and relatively regular
coating, with cellulose fibers which fills the pores appear on
the surface. It should be noted that the surface display single
fibers which constitutes the matrix of the organic material.
These fibers are arranged in an unordered manner and appear
structured like those of polymeric materials. The white parts
in the figure are supposed to be lignin that goes into paper
making.

FIGURE 2. SEM image: paper sample without treatment.

3.2. Roughness measurement

To measure the roughness of the treated surfaces, atomic
force microscopy (AFM) analysis was performed on pa-
per samples treated with CH4 plasma at different time. As
known, surface roughness is most often described by ampli-
tude parameters, such as mean square deviation, and stan-
dard deviation. To analyze and compare the surface rough-
ness of the deposited thin films for each surface treatment we
measured the roughness in particular; the root mean square
(RMS) as depicted by Fig. 3. The registered values are sum-
marized in the Table II and illustrated by Fig. 3 in 2D and 3D
images. As can be seen from Table II, surface roughness de-
creases from 1.64 to 0.97 nm, and then increases to 1.66 nm
and 1.7 for more deposition time. This variation of RMS
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FIGURE 3. AFM 2D and 3D images.

TABLE II. Surface roughness of the films.

Sample Time (min) Roughness (nm) Contact angle (◦)

E1 5 1.64 153.8

E2 10 0.97 137.7

E3 15 1.66 149.2

E4 20 1.7 156

can be explained by; initially, the surface paper is more rough
and as we start the treatment the surface texture is modified
by filling up irregularities and pockets resulting in roughness
decreasing giving up to a value of 1.64 nm. By continu-
ing the deposit, these pockets and irregularities become more
filled to give rise a smooth surface with 0.97 nm of roughness
with almost total disappearance of irregularities as shown in
Fig. 3. However, surprisingly as the growth process contin-
ues for longer time the roughness does not continue to take
low values but increases towards 1.66 nm and 1.7 nm with the

reappearance of a uniform texture on top surface paper. This
means that the top surface paper is covered by a thin layer
of hydrogenated carbon film that is consisted by a mixture
of sp2 andsp3 carbon hybridization. Some authors [21-23]
in their studies attributed the increase of surface roughness to
the increase in growth ofsp2 carbon bonds and the increase in
clusters size, and vice versa. On the other hand, Pandeyet al.
[24] reported that the higher thesp3 fraction is, the smoother
is the surface. K. N. Pandiyarajet al. [25] have attributed the
difference in RMS withsp3 fraction by changing the values
of bias potential of the substrate holder, which is not the case
in our experiments surface treatment. Consequently, thesp3

fraction in our thin films does not change since the substrate
holder is grounded for all treatments. However, thesp2 frac-
tion in DLC films can change with film thickness as reported
by Scharf and Singer [26] in their study of diamond-like car-
bon films by Raman spectroscopy. This finding leads us to
suppose that the increase in roughness can be attributed to
the clustering ofsp2 bonds as mentioned before.

3.3. Contact angle measurement

The effect of CH4 plasma on the wettability was investigated
by measuring the contact angle of the sessile water droplet
on the paper surface. Figure 4 presents the images of the wa-
ter contact angle variation as a function of deposition time.
One can observe that all the coating surfaces have become
super-hydrophobic, except the coating deposited for 10 min
which is exhibiting a hydrophobic behavior. In Fig. 5, the
variation of the contact angle and roughness versus deposi-
tion time is illustrated; the samples treated for5 min exhibits
a hydrophobic character with a contact angle equal 153.8◦

and Rrms equal to 1.64 nm. Increasing the time treatment
to 10 min the Rrms decrease to the 0.97 nm, consequently
the contact angle decreases to 137.7◦, then Rrms increase
to 1.66 nm and 1.7 nm for a treatment at 15 min and 20 min

FIGURE 4. Water drop images for contact angle measurement.
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FIGURE 5. Contact angle and roughness vs deposition time.

respectively, which leads to an increase in the contact an-
gle to 149.2◦ and 156◦, respectively. Generally, hydropho-
bicity and hydrophilicity of surfaces are influenced by sur-
face roughness, and surface energy, a rough surface and a
low surface energy gives a superhydrophobic surface [27]
the surface energy [28] includes two important components,

dispersion and polar components. Polar components repre-
sent the surface interactions, which are related to dipoles,
while dispersive component represents the surface interac-
tions, which are based on temporary variation in the electron
density. Bhushan and Jung [29] reported that two main re-
quirements for a super-hydrophobic surface are that the sur-
face should be rough and has a low surface energy with a
special focus on roughness which is usually a more critical
property than the low surface energy. Such assumption is
confirmed by Fig. 5 where contact angle and roughness are
plotted together as a function of deposition time. At first
glance, one can conclude that CA and RMS exhibit a same
behavior and there will be a relationship between the two pa-
rameters as reported above. On one side, the roughness of
the surface serve to trap enough air, which prevents the water
drops from being in perfect contact with the surface, which
facilitates the sliding of the water drops. On the other side,
the presence of CHx radicals has an important influence on
the surface hydrophobicity. N. Sooryunet al. [30], indicate
that the alkane group has an intrinsic critical surface tension,
the contact angle can show a certain value if the whole surface
is covered by the functional group layer such as C−H stretch,
CH2 bend and CH3 bend, which proves the hydrophobicity
formation by the plasmas.

FIGURE 6. FTIR Spectra of hydrogenated carbon thin films.
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3.4. FTIR Studies of chemical bands

Now let us determine the presence of functional groups on
the surface of the treated paper by using FTIR analysis. Fig-
ure 6 shows the FTIR spectra of all treated surface paper. As
one can see for all samples, an absorption band occurs be-
tween737 and 613 cm−1. This bond is decomposed into
three strong peaks assigned to C−H out of plane vibrations.
A strong peak appears at1104 cm−1 for samples deposited at
5 min, and then disappears for samples deposited at 10 min.
The same peak appears again shifted towards the weaker fre-
quencies for samples deposited at 15 min and 20 min. This
peak is attributed to the stretching vibration of C−O as re-
ported by N. V. Farinella Van. P. D.et al. [31] who found
a peak at1110 cm−1 of C−O in the lignin structure. Also,
the absorption peak appearing at1293 cm−1 is assigned to
stretching bands in C−O [32], which shifts towards high fre-
quencies for samples treated during20 mn. The band at
1512 is attributed to C=C aromatic stretching modes [33]
while at appearing at2917 cm−1 is assigned to antisymmet-
ric stretchingsp3−C−Hn as confirmed by some other au-
thors [23,34,35]. A weak peak is observed at2324 cm−1

attributed to the C−C bends, and becomes strong with depo-
sition time. Such variation in the relative intensity suggests
a removal and incorporation of speciesi.e. groups are rein-
corporated in the same proportion as they are removed. The
peaks at3325 cm−1, 3330 cm−1 and3732 cm−1 corresponds
to O−H stretching bands [36,37] and the peak at3732 cm−1

are assigned to O−H stretching while the same peak around
3600 − 3800 cm−1 is identified by [38] and attributed to an
isolated -OH stretching vibration. All CHx molecules are the
result of methane molecule (CH4) dissociation, giving rise
to radicals such as CH3, CH2, C2H5, C2H6 etc. while the
oxygen entering in the OH bond formation comes from the
residual vacuum generally equal to2×10−5 mbar. The pres-
ence of functional groups (non-polar such as CHx) will pre-
vent the entry of water molecules in the polar bonds in most
of the surface of the paper, thus contributing to the improve-
ment of the hydrophobic properties of the surface of the glass
[39], thus contributing to the improvement of the hydropho-
bic properties of the paper surface.

4. Conclusion

The study we carried out concerns the treatment of paper sur-
face plasma enhanced chemical vapor deposition (PECVD)
technique by usingCH4 gas. Paper samples in contact with
the plasma leads to the deposition of a thin layer of hydro-
genated carbon, the thickness of which was varied with the
deposition time while other experimental parameters were
kept constant during all manipulations. In summary, the pre-
sented results on hydrophobicity of surface paper have been
discussed according to AFM, contact angle and FTIR mea-
surements. The concluding remarks that can be drawn are as
follows:

- After a contact with CH4 plasma in a PECVD reac-
tor a thin layer of hydrogenated carbon material is de-
posited,

- Surface paper roughness is in the order of approxi-
mately 1 nm to 1.7 nm after a surface treatment ranging
from 5 min to 20 min.

- The deposition of a thin layer of hydrogenated carbon
on surface paper gives hydrophobicity and even super-
hydrophobicity to its surface,

- The FTIR spectroscopy confirms the presence of non-
polar groups on the surface that enhance hydrophobic-
ity,

- The presented results confirm the existence of a rela-
tionship between hydrophobicity and roughness pro-
moted by a clustering ofsp2 hybridization with film
thickness,

In conclusion, the encouraging results promise the effi-
cient application of hydrogenated carbon to surface paper
modification, thus protecting and giving it a long life with
minimal damage upon contact with water.
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